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Abstract. Daedalus is a system-level design flow for the design of multiprocessor
system-on-chip (MP-SoC) based embedded multimedia systems. It offers a fully
integrated tool-flow in which design exploration, system-level synthesis, applica-
tion mapping, and system prototyping of MP-SoC architectures are highly auto-
mated. In this paper, we describe Daedalus from a software perspective, explaining
its supporting software infrastructure and the way the various tools interoperate.
Moreover, we discuss the lack of support for achieving tool interoperability that we
have encountered during the development of Daedalus, and present several ideas
of future research directions to address this issue. More specifically, we argue that
a so-called Common Design Flow Infrastructure (CDFI) for system-level design
flows is needed to improve and stimulate research and development in the area of
system-level design methodology.

1 Introduction

The concept of system-level design of embedded systems, which raises the abstraction
level of the design process to cope with design complexity, has been around for more
than a decade now and has shown a lot of potential. Despite of this, system-level design
still involves a substantial number of challenging design tasks. This is especially true for
the design of MultiProcessor-SoC (MP-SoC) architectures, which become increasingly
popular target platforms for modern embedded systems. For example, applications need
to be decomposed into parallel specifications so that they can be mapped onto the mul-
tiple processing elements inside MP-SoC architectures [1]. Subsequently, applications
need to be partitioned into HW and SW parts since MP-SoC architectures often are het-
erogeneous in nature. To this end, MP-SoC platform architectures need to be modeled
and simulated to study system behavior and to evaluate a variety of different design
options. Once a good candidate architecture has been found, it needs to be synthesized,
which involves the synthesis of its architectural components as well as the mapping
of applications onto the architecture. To accomplish all of these tasks, a range of dif-
ferent tools and tool-flows is often needed, potentially leaving designers with all kinds
of interoperability problems. Moreover, there typically remains a large gap between the
deployed system-level specifications (or models) and actual implementations of the sys-
tem under study, known as the implementation gap [2]. Currently, there exist no mature
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methodologies, techniques, and tools to effectively and efficiently convert system-level
system specifications to RTL specifications.

Recently, we presented our Daedalus system-level design framework which addresses
the above design challenges [3,4,5]. Daedalus’ main objective is to bridge the afore-
mentioned implementation gap for the design of multimedia MP-SoCs. It does so by
providing an integrated and highly-automated environment for system-level architec-
tural exploration, system-level synthesis, programming and prototyping. The Daedalus
design flow, starting from sequential application to an implemented MP-SoC system on
an FPGA with a parallelized application mapped onto it, can be traversed in only a matter
of hours. Evidently, this offers great potentials for quickly experimenting with different
MP-SoCs and exploring design options during the early stages of design.

In this paper, we describe Daedalus from a software perspective, providing insight
of how the different tools in the design flow interoperate and describing the support-
ing tool infrastructure that improves the actual deployment of the design flow. More-
over, we discuss the lessons that we have learned from the development of Daedalus,
mostly recognizing the lack of support for achieving tool interoperability, and present
several ideas of future research directions to address this issue. More specifically, we
argue that a so-called Common Design Flow Infrastructure (CDFI) for system-level
design flows is needed, which surpasses ongoing efforts in this direction, in order to
improve and stimulate research and development in the area of system-level design
methodology.

The next section provides a birds-eye, conceptual overview of the Daedalus design
flow. Section 3 describes the software infrastructure of Daedalus, after which Section 4
discusses some of the lessons we have learned from Daedalus’ development. In Section 5,
we present several initial ideas about a Common Design Flow Infrastructure which aims
at significantly improving the process of developing system-level design flows. Section
6 describes related work, and Section 7 concludes the paper.

2 The Daedalus Design Flow

In Figure 1, the conceptual design flow of the Daedalus framework is depicted. As
mentioned before, Daedalus provides a single environment for rapid system-level archi-
tectural exploration, high-level synthesis, programming and prototyping of multimedia
MP-SoC architectures. Here, a key assumption is that the MP-SoCs are constructed
from a library of pre-determined and pre-verified IP components. These components
include a variety of programmable and dedicated processors, memories and intercon-
nects, thereby allowing the implementation of a wide range of MP-SoC platforms.

Starting from a sequential application specification in C, the KPNgen tool [6] allows
for automatically converting the sequential application into a parallel Kahn Process
Network (KPN) [7] specification. Here, the sequential input specifications are restricted
to so-called static affine nested loop programs, which is an important class of programs
in, e.g., the scientific and multimedia application domains. By means of automated
source-level transformations [8], KPNgen is also capable of producing different input-
output equivalent KPNs, in which for example the degree of parallelism can be varied.
Such transformations enable application-level design space exploration.
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Fig. 1. The Daedalus design flow

The generated or handcrafted KPNs (the latter in the case that, e.g., the input specifi-
cation did not entirely meet the requirements of the KPNgen tool) can subsequently be
used by our Sesame modeling and simulation environment [9,10] to perform system-
level architectural design space exploration. To this end, Sesame uses (high-level) ar-
chitecture model components from the IP component library. Sesame allows for quickly
evaluating the performance of different application to architecture mappings, HW/SW
partitionings, and target platform architectures. Such exploration should result in a num-
ber of promising candidate system designs, of which their specifications (system-level
platform description, application-architecture mapping description, and application de-
scription) act as input to the ESPAM tool [11,12]. This tool uses these system-level
input specifications, together with RTL versions of the components from the IP library,
to automatically generate synthesizable VHDL that implements the candidate MP-SoC
platform architecture. In addition, it also generates the C code for those application
processes that are mapped onto programmable cores. Using commercial synthesis tools
and compilers, this implementation can be readily mapped onto an FPGA for prototyp-
ing. Such prototyping also allows for calibrating and validating Sesame’s system-level
models, and as a consequence, improving the trustworthiness of these models.

3 Daedalus’ Software Infrastructure

Daedalus does not only consist of the three core tools KPNgen, Sesame and ESPAM,
but also features several supporting tools to improve the user-friendliness, and there-
fore also the deployability, of the framework. This section provides an overview of
Daedalus’ software infrastructure.
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Integrated RDBMS. In Daedalus, most design information (e.g., structural descrip-
tions of the application, architecture, and the mapping of the former onto the latter)
as well as experimental results are described using XML-based descriptions. Daedalus
therefore contains the Oracle Berkeley DB XML relational database management sys-
tem (RDBMS) to store all information (models, parameters and results) related to de-
signs and experiments. Daedalus also features a graphical user interface (GUI ) to this
RDBMS, which provides the designer with a powerful tool to e.g. explore and visualize
the large amounts of data generated by Daedalus’ design space exploration. Moreover,
it guarantees the reproducibility of experiments at all times.

Workflow control. The vision behind the Daedalus software infrastructure is that it
should be open for integration of new tools as well as that it should allow for cus-
tomization of the design flow. Therefore, the design flow (or tool flow) in Daedalus
is composable and constructed from ‘design flow blocks’. These design flow blocks,
which are illustrated as the dashed boxes in Figure 2, are the tools that take part in the
design flow together with their input- and output descriptions. The latter descriptions,
illustrated by the gray boxes in Figure 2, provide information about what input/output
data a tool consumes/produces and from/to where it reads/writes this data. This allows
us to describe a design flow as a simple composition of the design flow blocks, spec-
ified in the workflow description. For example, Figure 2 shows a design flow which
includes a visualization block to visualize Sesame’s DSE results and which stores both
the DSE and ESPAM’s prototyping results in the RDBMS (using the so-called ‘XML
saver’ tool). Evidently, this composability of the design flow allows for easily adding
new design steps to a design flow, as well as to customize design flows for specific
design domains.

Control and monitoring of MP-SoC prototypes on FPGAs. We have also developed
control and monitoring software utilities to facilitate the process of setting up and exe-
cuting experiments on the FPGA-based prototypes of MP-SoCs generated by Daedalus.
Such utilities are necessary and very useful for: (i) conducting an effective and efficient
design space exploration at implementation level of abstraction with 100% accuracy
on a narrow design space defined by Sesame; (ii) measuring real performance and cost
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numbers used for calibration of the Daedalus’ high-level architecture models [13]; (iii)
preparing real HW/SW demonstrators. The control and monitoring utilities include a
configuration manager, an execution control panel, and an on-line monitoring console,
all supported by a GUI which allows users, unfamiliar with the FPGA prototyping board,
to perform experiments with the MP-SoCs. The configuration manager is used to setup
the prototyping FPGA board for a given experiment. The execution control panel allows
to define and execute a sequence of instructions (e.g. initialize, start, stop, etc.) that con-
trol the interaction of the MP-SoC prototype with the surrounding environment (e.g. the
user). The on-line monitoring console displays and stores the data streams that go in and
out of the MP-SoC, the content of the status registers of the MP-SoC prototype, and the
content of timers and counters that measure the real performance of the prototype.

The Open Source philosophy of Daedalus. The entire Daedalus framework has been
developed as high-quality software distributed under Open Source licenses such as GPL
or CPL (see http://daedalus.liacs.nl/Site/Download.html). This
provides many advantages and opportunities (e.g., more easy take-up of the technol-
ogy since no expensive licenses are required, possible world-wide contributions to the
technology, etc.) but it also poses challenges related to software maintainability and
tool interoperability. For example, regarding the maintainability, we have developed a
configuration and installation utility for the whole Daedalus software framework. At a
glance, this task seems to be trivial but our experience shows that it is not, especially
when our goal is a fully automated installation process on all major Linux OS distribu-
tions. Daedalus consists of many tools that depend on other tools and libraries that have
to be installed because they are not available on all or some of the Linux distributions.
Identifying, documenting, and maintaining all these tool and library dependencies is a
continuous process.

4 Lessons Learned: The Tool Interoperability Problem

A central problem for any design flow addressing the development of embedded sys-
tems is that it typically consists of a number of tools that need to inter-operate with
each other for the design flow to be efficient and effective. From the experience with
Daedalus, we found that tool interoperability is a major problem, which consumes an
unnecessary amount of (software engineering) effort. In general, the lack of support
for achieving interoperability between tools is becoming one of the big showstoppers
for the much-needed productivity improvement in the embedded systems design area,
which may seriously endanger the ability to cope with the rapidly growing design com-
plexity. This lack of good tool-infrastructure is a problem that both concerns the embed-
ded systems industry as well as academia. Many research groups develop algorithms
and solutions for specific design problems and issues that are not (yet) addressed by
commercial tool providers. But since commercial tool providers often refrain from pub-
lishing interfaces to their tools, research groups are typically left with the only option
of building tool support for the whole design flow themselves, including very basic el-
ements such as editors, graphical UI’s, etc. Daedalus was no exception here. Also since
there is no common well-defined notion of tool infrastructure, research groups find it
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often difficult to cooperate on tool research and development. The flow of ideas from
academia to industry is also made more difficult, because it is difficult to deploy new
algorithmic innovations into industrial design flows since the tools are not interoperable
in any reasonable way.

Moreover, there do not exist good standard case studies and benchmarks for system-
level design. We believe that this is due to the fact that (too) much effort is spent on
the tool-building part of system-level design research projects instead. This tool devel-
opment typically involves a significant (software) engineering effort, at the cost of the
scientific content of such projects. With a tool infrastructure that fosters the re-use of
design tools, this effort could be redirected to the development of good benchmarks and
case studies. This would invigorate design flow research as it enables the comparison of
research results. Currently, such a comparison of the various achievements in system-
level research is not or hardly possible. Finally, we believe that good benchmarks and
case studies will provide profit to the flow of ideas from academia to industry, because
the design flow improvements can be demonstrated on industrially relevant examples,
thus making them much more realistic.

5 Towards a Common Design Flow Infrastructure

To address the tool interoperability problem in system-level design flows, we argue
that it is highly desirable to have a tool infrastructure that supports system-level design
flows. This infrastructure, which should go beyond efforts such as OCP-IP [14] and
SPIRIT’s IP-XACT [15], would be a kind of meta-tool for developing system-level
design flows, having design flow steps as “plug-ins”. This requires the definition of
standardized tool, model and data descriptions and file formats to allow the interchange
of information between the framework and external tools (i.e., plug-ins). Moreover, the
framework should also allow for explicitly defining design flows. This will make it
possible to build pre-packaged standardized or customized design flows.

This Common Design Flow Infrastructure (CDFI), that should facilitate the construc-
tion and/or adaptation of complex system-level design flows, is conceptually shown in
Figure 3. Central to the CDFI is a repository on which all participating tools operate
and in which the key elements of system-level design flows (such as application speci-
fications, application and architecture models in various models of computation and at
various levels of abstraction, input/output data, simulation results, IP blocks, etc.) are
stored in a structural manner. The tools that participate in the CDFI and operate on its
repository could either directly belong to the implemented design flow, or have a more
supporting role such as translators that, e.g., perform model refinement or translation
between models specified in different models of computation.

For each tool that wishes to participate in the flow and thus operate on the CDFI
repository, one needs to formally specify its preconditions and input requirements, its
semantics, and its postconditions and output specification. To give a few examples,
please consider Figure 3. Here, the input/output specification for a tool like KPNgen
[6] could specify that it requires “sequential static affine nested loop programs” as in-
put, and produces parallel specifications in the form of Kahn Process Networks (KPNs)
[7]. Naturally, such specifications need to be formalized and should be based on a model
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Fig. 3. The CDFI allows the interconnection of System-level Design tools

with clear denotational semantics. Subsequently, for a DSE tool like Sesame [9], it must
be specified that it needs application models in the form of KPNs and generates a mul-
titude of performance metrics for a range of architectural implementation instances.
Finally, for a visualization tool it may be specified what performance metrics it needs in
order to perform post-mortem or run-time visualization of these data. This also means
that the output of tools as well as the input parameters must be structurally stored (i.e.,
described using meta-data) in the CDFI repository in order to allow other tools (such
as visualizers) to relate these data, e.g., visualizing cycle-counts, component utilization,
etc. for simulation runs with different input parameters. Moreover, we also need to for-
mally relate the already existing models in the CDFI with the models used by any new
tool. This specification will show if and how the new tool can be used in combination
with other tools in a CDFI-based design flow.

To actually allow for interoperability between different plug-in tools, these tools
must have a common understanding of the exact semantics of the CDFI repository
elements (e.g., models, data, IP components) they use. This requires standardization
with respect to the specification of these repository elements. For example, standard-
ized model specifications (i.e. metamodels) should provide the means to formally relate
models and to perform model translations (e.g., via a plug-in translator tool) when re-
quired. Essentially, we are looking for a type-system for the tools and their models, in
which for example model translations can be seen as type casts. Clearly, developing
methods for describing the semantic and input/output behavior of tools as well as for
specifying the elements used by these tools (e.g., data, models, IP components) – all
with the aim of tool interoperability in mind – is still a formidable research challenge.
Evidently, for the actual implementation of the CDFI, existing software technology
from e.g. the Model Driven Architecture (MDA) domain could be exploited.
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So far, we have only described the CDFI from the perspective of individual tools. In
addition, a coordination framework is needed that coordinates the control- and dataflow
between the different tools that take part in the design flow. In other words, this co-
ordination framework basically specifies a projection of the implemented design flow
on top of the generic CDFI repository and associated tools. Because we explicitly sep-
arate the tools and tool specifications (semantic and input/output description) on one
hand, and the coordination of the tools to form a specific design flow on the other hand,
it should be fairly easy to construct new design flows by re-using tools, extend a de-
sign flow, and/or substitute certain tools in a design flow with other tools. Evidently,
the development of such a coordination framework (accounting for the specification of
control- and dataflow between the different tools in the flow in a generic and flexible
manner) also requires substantial research, which could e.g. be inspired by the exten-
sive research that has been performed on workflow frameworks in the domain of Grid
Computing and eScience (e.g., [16]).

6 Related Work

Systematic and automated application-to-architecture mapping has been widely stud-
ied in the research community. The closest to our work is the Koski MP-SoC design
flow [17]. Koski also provides a single infrastructure for modeling of applications, au-
tomatic architectural design space exploration, and automatic system-level synthesis,
programming, and prototyping of selected MP-SoCs. But unlike Daedalus, Koski does
not allow for parallelization of applications, nor design space exploration at application
level. Koski requires applications to be specified by hand in UML. The Abhainn de-
sign framework [18] has similar objectives as Daedalus, but appears to lack automation
for several design steps, such as automated parallelization of applications (applications
are modeled using multidimensional arrayed synchronous dataflow specifications), au-
tomated design space exploration, and full-fledged MP-SoC synthesis. Other examples
of related work can be found in [19,20,21,22]. However, these efforts are limited to
processor-coprocesor architectures [19], only provide a limited degree of automation
[20,21], or do not provide an automated step towards the register transfer level [22].

Companies such as Xilinx and Altera provide design tool chains attempting to gen-
erate efficient implementations starting from descriptions higher than (but still related
to) the register transfer level of abstraction. The required input specifications are still so
detailed that designing a single processor system is still error-prone and time consum-
ing, let alone designing alternative multiprocessor systems. In contrast, Daedalus raises
the design to an even higher level of abstraction allowing the exploration, design and
programming of multiprocessor systems in a short amount of time.

With respect to our CDFI ideas, there are a number of related efforts. OCP-IP [14] is
an industrial/academic initiative dedicated to proliferating a common standard for intel-
lectual property (IP) core interfaces, or sockets, that facilitate ”plug and play” System-
on-Chip (SoC) design. Similarly, the SPIRIT consortium [15] aims at ”Enabling
Innovative IP Re-use and Design Automation”. It has defined an XML schema (called
IP-XACT) for meta-data that documents the characteristics of IP required for the au-
tomation of the configuration and integration of IP blocks as well as APIs to make this
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meta-data directly accessible to automation tools. Both the OCP-IP and SPIRIT initia-
tives focus on standardization with respect to IP blocks, while CDFI goes beyond that
by targeting integration and standardization of not only IP blocks but also design tools
and tool-flows that cover all aspects of the system design automation. The MoBIES ini-
tiative [23] studies model-driven approaches (or model-integrated approaches) to design
flows. The goal is to develop new methods and tools that will increase the productivity
of the designers. In a sense, the goal is the same as in the CDFI, but the means are dif-
ferent. The CDFI aims at increasing productivity by taking away the bottleneck caused
by bad tool interoperability, whereas MoBIES tries to find new ways (i.e. methods) to
build embedded systems. The CDFI approach is method neutral, it should increase the
productivity of any method.

7 Conclusions

In this paper, we presented our Daedalus system-level design framework for multime-
dia MP-SoCs from a software perspective, describing how its tools interoperate and
discussing the supporting tool infrastructure that improves the actual deployment of the
design flow. We also discussed the lack of support for achieving tool interoperability
that we have encountered during the development of Daedalus, and presented several
initial ideas of future research directions to address this issue. More specifically, we
argued that a so-called Common Design Flow Infrastructure (CDFI) for system-level
design flows is needed, which surpasses ongoing efforts in this direction, in order to
improve and stimulate research and development in the area of system-level design
methodology. Such a CDFI would, among other things, heavily reduce the software
engineering overheads in system-level design flow projects, enable the comparison
of design methodologies/techniques between researchers, and enhance the knowledge
transfer from research to industry.
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