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Abstract. High-level performance modeling and simulation have become a key ingredient of system-level
design as they facilitate early architectural design space exploration. An important precondition for such high-
level modeling and simulation methods is that they should yield trustworthy performance estimations. This
requires validation (if possible) and calibration of the simulation models, which are two aspects that have not yet
been widely addressed in the system-level community. This article presents a number of mechanisms for both
calibrating isolated model components as well as a system-level performance model as a whole. We discuss
these model calibration mechanisms in the context of our Sesame system-level simulation framework. Two
illustrative case studies will also be presented to indicate the merits of model calibration.
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1. Introduction

The increasing complexity of modern embedded
systems has led to the emergence of system-level
design [21]. A key ingredient of system-level design
is the notion of high-level modeling and simulation
in which the models allow for capturing the behavior
of system components and their interactions at a high
level of abstraction. As these high-level models
minimize the modeling effort and are optimized for
execution speed, they can be applied at the very
early design stages to perform, for example, archi-
tectural design space exploration. Such early design
space exploration is of eminent importance as early
design choices heavily influence the success or
failure of the final product.
A fair number of promising system-level simula-

tion-based exploration environments have been pro-
posed in recent years, such as Metropolis [6], MESH
[13], Milan [27], Sesame [14, 31], and various

SystemC-based environments like GRACE++ [24].
These environments typically facilitate efficient and
flexible performance evaluation of embedded sys-
tems architectures. However, in the system-level
performance modeling domain, two important and
closely related aspects, namely model validation and
model calibration have received relatively little
attention. Figure 1 depicts a conceptual view of
these two aspects in relation to a simulation
(performance) model. Model validation refers to the
testing of the extent to which the model_s perfor-
mance estimates reflect the actual behavior. Model
calibration entails the fine-tuning of the model
parameters such that the model_s performance
predictions more accurately reflect the actual behav-
ior. Both model validation and calibration require
(detailed) reference information about the system
under study and its performance behavior, which
may originate from datasheets (or other forms of
detailed documentation), low(er)-level simulators, or



actual (prototype) implementations of the system. In
addition, model calibration may also use validation
results if available. Since the sources of (detailed)
reference information usually are not abundant
during the early design stages, validation and
calibration of system-level performance models
remains an open and challenging problem.
In this article, we address the calibration of

system-level performance models. More specifically,
we discuss model calibration in the context of our
Sesame simulation framework [14, 31]. Sesame aims
at efficient system-level performance analysis and
design space exploration of embedded multimedia
systems. It allows for rapid evaluation of different
architecture designs, application to architecture map-
pings, and hardware/software partitionings. More-
over, it does so at multiple levels of abstraction and
for a wide range of multimedia and signal processing
applications.
We will present an approach for providing support

for calibrating the model components in Sesame_s
system-level architecture models. To this end, we
use ISS-based mechanisms for calibrating program-
mable model components and an automated compo-
nent synthesis approach to calibrate dedicated model
components. In addition, we will also discuss a
strategy for validating and calibrating a constellation
of calibrated Sesame model components, forming a
system-level model. Using a Motion-JPEG (M-
JPEG) encoder application, we will illustrate two
cases of model calibration: one case focusing on
calibration at the model component level and one
case performing calibration at the system level.
The remainder of this article is organized as

follows. In the next section, we briefly introduce
the Sesame system-level simulation framework.
Section 3 provides an overview of the mechanisms

used for calibrating Sesame_s architecture model
components. Section 4 discusses a strategy for
validating and calibrating Sesame_s system-level
models as a whole. In Section 5, we present several
experiments with a M-JPEG encoder illustrating
model calibration, and also provide some validation
results. Section 6 describes related work. Finally,
Section 7 concludes the article and discusses future
work.

2. The Sesame Environment

The Sesame modeling and simulation environment
[14, 31] facilitates performance analysis of embed-
ded (media) systems architectures according to the
Y-chart design approach [6, 22]. This means that
Sesame recognizes separate application and archi-
tecture models, where an application model
describes the functional behavior of an application
and the architecture model defines architecture
resources and captures their performance constraints.
After explicitly mapping an application model onto
an architecture model, they are co-simulated via
trace-driven simulation. This allows for evaluation of
the system performance of a particular application,
mapping, and underlying architecture. Essential in
this methodology is that an application model is
independent from architectural specifics, assump-
tions on hardware/software partitioning, and timing
characteristics. As a result, a single application model
can be used to exercise different hardware/software
partitionings and can be mapped onto a range of
architecture models, possibly representing different
architecture designs or modeling the same architec-
ture design at various levels of abstraction. The
layered infrastructure of Sesame is shown in Fig. 2.
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Figure 1. Validation and calibration of architectural simulation models.
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For application modeling, Sesame uses the Kahn
Process Network (KPN) model of computation [20,
25]. This implies that applications are structured as a
network of concurrent communicating processes1,
thereby expressing the inherent task-level parallelism
available in the application and making communica-
tion explicit. The Kahn application models, which
are implemented in C++, are either derived by hand
(e.g. from existing sequential code) or are generated
by tools such as Compaan [34, 37] – which will be
discussed later on – or KPNgen [39].
The computational behavior of an application is

captured by instrumenting the code of each Kahn
process with annotations that describe the
application_s computational actions. The reading
from and writing to Kahn channels represent the
communication behavior of a process within the
application model. By executing the Kahn model,
each process records its computational and commu-
nication actions in order to generate its own trace of
application events, which is necessary for driving an
architecture model. These application events typical-
ly are coarse grained, such as Execute(DCT) or
Read(channel_id,pixel-block).
An architecture model simulates the performance

consequences of the computation and communica-
tion events generated by an application model. It
solely accounts for architectural (performance) con-
straints and does not need to model functional
behavior. This is possible because the functional

behavior is already captured in the application
model, which subsequently drives the architecture
simulation. To model the timing consequences of
application events, each architecture model compo-
nent is parameterized with a table of operation
latencies (illustrated for processor 1 in Fig. 2). The
table entries could, for example, specify the latency
of an Execute(DCT) event, or the latency of a
memory access in the case of a memory component.
This trace-driven simulation approach allows to, for
example, quickly assess different HW/SW partition-
ings by simply experimenting with the latency
parameters of processing components in the archi-
tecture model (i.e., a low latency for a computational
action refers to a HW implementation while a high
latency mimics a SW implementation). Sesame_s
architecture models are implemented in SystemC or
Pearl [14]. The latter is a small but powerful
discrete-event simulation language providing easy
construction of high-level architecture models and
fast simulation.
To interface between application and architecture

models, Sesame features an intermediate mapping
layer. This layer, which is automatically generated,
consists of virtual processor components and FIFO
buffers for communication between the virtual
processors. There is a one-to-one relationship be-
tween, on one hand, the Kahn processes and
channels in the application model and, on the other
hand, the virtual processors and buffers in the
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Figure 2. Sesame_s application model layer, architecture model layer, and mapping layer which interfaces between application and

architecture models.
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mapping layer. But unlike the Kahn channels, the
buffers in the mapping layer are limited in size, and
their size is dependent on the modeled architecture.
The mapping layer has three purposes [31]. First, it
controls the mapping of Kahn processes (i.e. their
event traces) onto architecture model components by
dispatching application events to the correct archi-
tecture model component. The mapping also
includes the mapping of buffers in the mapping
layer onto communication resources in the architec-
ture model. Second, the event dispatch mechanism in
the mapping layer guarantees that no communication
deadlocks occur in the case multiple application
tasks (i.e., multiple event traces) are mapped onto a
single architecture model component. In that case,
the dispatch mechanism also provides various appli-
cation event scheduling strategies. Finally, the
mapping layer is capable of dynamically transform-
ing application events into (lower-level) architecture
events in order to facilitate flexible refinement of
architecture models [30, 31]. For a more detailed
overview of Sesame, we refer the reader to [31].

3. Model Calibration

Calibration (and validation) of Sesame_s system-
level architecture models plays a continuous and
ever-returning role. The following questions should
be asked by the designer repeatedly:

1. BAre the values specified in the operation latency
tables of Sesame_s architecture model compo-
nents reflecting realistic performance behavior?^,
and

2. BIs the constellation of model components –
constituting the system-level model – adequately
reflecting the actual system behavior?^

Where in Pimentel et al. [32] we only focused on
the calibration of the model components_ latency
tables, i.e. addressing the first question, this article
will also address the second question. In the
remainder of this section, however, we limit our
discussion to the mechanisms we use for calibrating
the performance parameters (i.e., the operation
latency tables) of separate model components in
Sesame_s system-level architecture models. These
mechanisms can be classified into those used for the
calibration of programmable model components and

those to calibrate dedicated model components.
Calibration of communication or memory model
components will not be addressed in this article. In
the subsequent section, we will elaborate on our
strategy for validating and calibrating our system-
level models as a whole.

3.1. Calibration of Programmable Model
Components

To calibrate a Sesame architecture model component
such that it adequately mimics the performance of a
programmable processor (e.g., a general purpose
processor core, DSP, etc.), one could of course use
documented performance behavior of the processor
or real performance measurements on the processor,
if these are available. In addition, Sesame also
provides explicit support for calibrating programma-
ble model components. More specifically, Sesame
allows for both off-line and on-line calibration of
model components using an Instruction Set Simula-
tor (ISS). Both types of calibration are illustrated in
Fig. 3, which is based on a more abstract represen-
tation of Fig. 2. Currently, Sesame only supports the
SimpleScalar ISS2 [4] for calibration purposes, but
other ISSs could also be added with relative ease. As
we will discuss below, on-line and off-line calibra-
tion provide different trade-offs between accuracy
and simulation performance.
In off-line model calibration, the ISS is used to

statically (i.e., before system-level simulation) calibrate
the values in an operation latency table according to
code-fragment performance measurements on the ISS.
To explain this in more detail, consider Fig. 3a. In this
example, we assume that model component p2 – onto
which application process B is mapped (see Fig. 2) –
needs to be calibrated using the ISS. This means that
the code of Kahn application process B is cross-
compiled for the ISS (indicated by B¶ in Fig. 3a). The
cross-compiled code is further instrumented such that
it measures the performance of the code fragments
that relate to the computational application events
generated by the application process. For example, if
process B can generate an execute(DCT) event, then
the performance of the code in process B that is
responsible for the DCT calculation is measured. To
this end, we instrument the code at assembly level
(currently done manually) to indicate where to start
and stop the timing of code fragments. In the case of
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the SimpleScalar ISS, we use its annote instruction
field for this purpose.
To perform the actual code fragment timings for

application process B, the code of this process is
executed both in the Kahn application model and on
the ISS (the cross-compiled B¶). This allows us to keep
the applicationmodel to a large extent unaltered, where
B¶ runs as a Bshadow process^ of B to perform code
fragment measurements. The two executions of B are
synchronized by means of data exchanges – imple-
mented with an underlying IPC mechanism – which
are needed to provide B¶ (on the ISS) with the correct
application input-data. These data exchanges – which
will be illustrated and explained using Fig. 4 and
Table 1 later on – only occur when the Kahn
application process taking part in the calibration
(process B in our example) performs communication.
For example, when Kahn process B reads data from
its input channel, it forwards the data to process B¶ on
the ISS, i.e., process B¶ reads and writes its data from/
to process B instead of a Kahn channel. During
execution, the ISS keeps track of the code fragment
timings, which are average timings over multiple
invocations of a code fragment. The resulting average
timings are then used for (manually) calibrating the
latency values of the architecture model component in
question (in this case p2). Off-line calibration is a

relatively efficient mechanism since it is performed
before system-level simulation and basically is a one-
time effort. However, if there is high variability in the
demands of computations (i.e., data-dependant com-
putations) then the measured average timings may be
of moderate accuracy.
In on-line model calibration, which is illustrated in

Fig. 3b, the ISS is incorporated into the system-level
simulation to dynamically Bcalibrate an application
event trace^ destined for the architecture model. This
technique, which we also refer to as trace calibra-
tion, essentially yields a mixed-level co-simulation
of high-level Sesame architecture model components
and one or more low(er)-level ISSs [36]. Rather than
using fixed values in the latency tables of model
components, on-line calibration dynamically com-
putes the exact latencies of computational tasks
using the ISS. In the example of Fig. 3b, the code
from application process B is again executed both in
the Kahn application model and on the ISS, like is
done in off-line calibration. The ISS measures the
cycle count of any computational task in between the
Kahn communications in process B. Subsequently,
instead of generating symbolic computational exe-
cution events, like Execute(DCT), application pro-
cess B now generates Execute Dð Þ events, where D
equals to the actual measured number of cycles taken
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by, for example, a DCT computation (or any other
computation in between communications). Clearly,
on-line calibration trades off simulation performance
for increased accuracy when compared to off-line
calibration.
To provide a more detailed description of on-line

model calibration with its synchronizations and data
exchanges, consider Fig. 4. This figure renders the
dashed box from Fig. 3b in more detail. The code in
the Kahn application processes typically consists of
alternating periods of communication and computa-
tion, as illustrated by the small code fragment for
process B in Fig. 4. In this fragment, some data is
read from Kahn channel c in , followed by some
computational code (which may also be discarded, as
will be explained later), after which the resulting
data is written to Kahn channel c out . The two
boxes on the right of the code fragment in Fig. 4

indicate what the run-time system of the application
model executes when it encounters the read and
write Kahn communications. Note that these run-time
system actions are automatic and transparent: the
programmer does not need to add or change code. For
the case of an application read, Table 1 also shows the
sequence of run-time system operations together with
the information exchanges they cause. First, the run-
time system queries the ISS via the API, using
API get cyclesðÞ, to retrieve the current cycle count
from the ISS. As will also be described later on, the
ISS provides this cycle information by executing a
matching API put cyclesðÞ call. The run-time
system then generates an Execute Dð Þ application
event for the architecture model, where D ¼ ncur $
nprev, i.e., D equals to the time between the previous
cycle query and the current one. Hence, the Execute
event models the time that has past since the previous

Table 1. Run-time system operations for read from channel c in.

Run-time system operation process B Exchanged information Information exchange partner

1. n ¼ API get cyclesðÞ Cycle count From ISS (via API)

2. gen ExecuteðDÞ ExecuteðDÞ event To architecture model

3. gen Readðc in; ::Þ Read event To architecture model

4. data ¼ chan readð::Þ Data From application process

5. API writeðB0; data; ::Þ Data To ISS (via API)

Run–time system

[...]
API_put_cycles();

API_put_cycles();

code

[...]

write(c_out,...);
[...]

data = read(c_in,...);

gen_Execute(∆);
n = API_get_cycles();

gen_Read(c_in,...);

API_write(B’, data, ...);

data = API_read(B,...);

[...]
API_write(B,...);

B’

ISS

gen_Execute(∆);
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data = API_read(B’, ...);
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Figure 4. On-line model calibration: interaction between application model and instruction set simulator.
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communication. Subsequently, a Read application
event is generated for the architecture model. Here-
after, the actual read from Kahn channel c in is
performed. Finally, the data that has been read is
copied, using API write, to process B¶ that is running
on the ISS.
Figure 4 also shows how the ISS side (process B¶)

handles the read communication. First, it sends the
current cycle count of the ISS to the application .
model (API put cycles ) in order to service the
API get cyclesðÞ query from process B. Then, it
reads the data that was sent by process B, i.e., the
API read from process B¶ matches up with the
API write from process B. After receiving the data,
process B¶ can execute the computational code
shown in grey in Fig. 4. This computational code is
finished by a communication (a write to c out), which
again causes a cycle count query by the run-time
system of the application model. The generated
Execute Dð Þ application event that follows, represents
a detailed timing of the computational code on the
ISS. Figure 4 also shows that process B¶ on the ISS
first writes back the resulting data to process B in the
application model before the latter forwards this data
to Kahn channel c out . This makes it possible to
discard the computational code between the commu-
nications in process B in the application model. In
that case, only process B¶ simulates computational
functionality, while process B in the application
model only communicates data with its neighboring
application tasks. From the above, it should be clear
that the API get cycles and API read calls have
blocking semantics.

3.2. Calibration of Dedicated Model Components

To calibrate model components that mimic the
performance behavior of a dedicated implementation
of a certain task, Sesame exploits a tool-set that has
been developed at Leiden University. This tool-set,
consisting of the Compaan [34, 37] and Laura [34, 40]
tools, is capable of transforming a sequential applica-
tion specification into a parallel application specifica-
tion (a KPN to be more specific), and subsequently
allows for producing synthesizable very high-level
design language (VHDL) code that implements the
application specified by the KPN for a specific field
programmable gate-array (FPGA) platform.
Figure 5 illustrates how the Compaan and Laura

tools can be applied for the purpose of model
calibration. Let us assume that model component
p3 is a dedicated implementation of application
process C. To calibrate this model component, the
(sequential) code from application process C is first
converted into a parallel KPN using the Compaan
tool. By means of automated source-level trans-
formations, Compaan is able to produce different
input–output equivalent KPNs [33], in which for
example the degree of parallelism can be varied.
Since the different KPNs lead to different hardware
implementations in the end, the transformations
provided by Compaan are a mechanism to control
the synthesis process. Using the Laura tool, a
Compaan-generated KPN can subsequently be syn-
thesized to VHDL code which can then be mapped
(using regular commercial tools) onto an FPGA
(-based) platform. As will be shown in Section 5,
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one of the reconfigurable platforms that Laura can
use as a mapping target is the Molen platform [38].
This automated synthesis trajectory for specific

application tasks can be traversed in the order of
minutes. Actually, the place & route onto the FPGA
platform is currently the limiting stage in the trajectory.
Evidently, such synthesis results can be used to
calibrate the performance parameters of Sesame_s
model components that represent dedicated hardware
blocks. In Section 5, this will be illustrated using a
case study with a M-JPEG encoder application.

4. System-Level Validation and Calibration

Given the assumption that the platform architecture
under study is composed from a library of pre-
determined and pre-verified IP components, we are
also able to validate and calibrate our system-level
models as a whole, i.e., the constellation of calibrated
model components. To this end, we use the ESPAM
design flow [29], which like Compaan and Laura is
also developed at Leiden University. Figure 6
illustrates how this system-level validation and cali-
bration using ESPAM is realized.

A pivotal element in this approach is the XML-
based system-level specification, specifying the
deployed platform architecture, the Kahn applica-
tion(s), and the mapping of the application(s) onto
the platform architecture. Here, the platform archi-
tecture specification consists of a system-level netlist
description specifying which components from the
IP library are used and how they are connected.
Currently, the IP components that are available in the
library include a variety of programmable processors
(PowerPCs and MicroBlazes), dedicated hardware
blocks (like a DCT), memories (random access as
well as FIFO buffers), and interconnects (point-to-
points links, shared bus, and crossbar switch). Using
a generic interface component, these aforementioned
components can readily be glued together to form a
large variety of different platform instances.
On one hand, the system-level specification is used

as input to Sesame in order to perform system-level
performance analysis using abstract models of the IP
components (as described in Section 2). On the other
hand, the system-level specification can also act as
input to ESPAM, together with RTL versions of the
components from the IP library, to automatically
generate synthesizable VHDL that implements the
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candidate platform architecture. In addition, ESPAM
also generates the C/C++ code for those application
processes that are mapped onto programmable cores.
Using commercial synthesis tools and compilers, this
implementation can readily be mapped onto an
FPGA for prototyping. For a relatively complex
multi-processor system-on-chip platform, ESPAM_s
system-level synthesis design flow (including the
physical implementation) can be traversed in only a
matter of hours [29]. Clearly, the results from such
rapid system-level synthesis and prototyping allows
for calibrating and validating Sesame_s system-level
models. This will also be illustrated in the next
section.

5. Experiments

First, we present an experiment that illustrates how
model (component) calibration can be performed
using the Compaan/Laura tool-set (as described in
Section 3.2). To this end, we modeled a M-JPEG
encoder application and selected the DCT task from
this application to be used for model calibration. In
other words, the DCT is assumed to be implemented
as a dedicated hardware block, and Sesame_s model
component accounting for the DCT_s performance
behavior needs to be calibrated accordingly. This
implies that the DCT task is taken Ball the way
down^ to a hardware implementation to gain more
insight in its low-level performance aspects. To do
so, the following steps were taken3, which are
integrally shown in Fig. 7. The DCT was first
isolated from the M-JPEG code and used as input
to the Compaan tool. Subsequently, Compaan gen-
erated a KPN application specification for the DCT
task. This DCT KPN is internally specified at pixel
level but has in- and output tasks that operate at the
level of pixel blocks because the original M-JPEG
application specification also operates at this pixel-
block level.
Using the Laura tool, the KPN for the DCT task

was converted into a VHDL implementation, in
which for example the 2D-DCT component is
implemented as a 92-stage pipelined IP block. This
implementation can subsequently be mapped onto an
FPGA platform. In this example, the DCT imple-
mentation was mapped onto the Molen reconfigura-
ble platform [38]. The Molen platform connects a
programmable processor (depicted as Core Processor
in Fig. 7) with a reconfigurable processor which is

based on FPGA technology. It uses microcode to
incorporate architectural support for the reconfigur-
able processor (i.e., to control the reconfiguration
and execution). By mapping the Laura-generated
DCT implementation on Molen_s reconfigurable
processor and mapping the remainder of the M-
JPEG code onto Molen_s core processor, we can
study the hardware DCT implementation, for the
purpose of model calibration, in the context of the
M-JPEG application.
For the Sesame system-level simulation part of the

experiment, we decided to model the Molen recon-
figurable platform architecture itself. This gives us
the opportunity to actually validate our performance
estimations against the real numbers from the
implementation. The resulting system-level Molen
model contains two processing components (Molen_s
core and reconfigurable processors) which are bi-
directionally connected using two uni-directional
FIFO buffers. Like in the real Laura! Molen
mapping, we mapped the DCT Kahn process from
our M-JPEG application model onto the reconfig-
urable processor in the architecture model, whereas
the remaining Kahn processes were mapped onto the
core processor component.
The reconfigurable processor component in our

architecture model was also refined – using our
dataflow-based architecture model refinement meth-
odology as discussed in [30, 31] – such that it models
the pixel-level pipelined DCT from the Compaan/
Laura implementation. Here, we used low-level
information – such as pipeline depth of the Preshift
and 2D-DCT units, latencies for reading/writing a
pixel from/to a buffer and so on – from the
Compaan/Laura implementation to calibrate the
reconfigurable processor component in our system-
level model. The core processor component in the
architecture model was not refined, implying that it
operates (i.e., models timing consequences) at the
same (pixel-block) level as the application events it
receives from the application model. The perfor-
mance parameters of this model component have
been calibrated using several simple (off-line) timing
experiments performed on Molen_s core processor.
Here, we would like to note that the resulting
system-level architecture model is mixed-level since
the reconfigurable processor component is modeled
at a lower level of abstraction (i.e., it has been
refined to account for the pipelined DCT implemen-
tation) than the core processor component.
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To check whether or not the resulting model,
which was calibrated at model component level,
produces accurate performance estimates at the
system level, we compared the performance of the
M-JPEG encoder application executed on the real
Molen platform with the results from our system-
level performance model. Table 2 shows the valida-
tion results for a sequence of sample input frames.
The results from Table 2 include both the cases in
which all application tasks are performed in software
(i.e., they are mapped onto Molen_s core processor)
and in which the DCT task is mapped onto Molen_s
reconfigurable processor. Here, we would like to
stress that we did not perform any tuning of our
system-level model with Molen_s M-JPEG execution
results (i.e., we did not perform multiple vali-
dation$calibration iterations, see Fig. 1). The results
from Table 2 clearly indicate that Sesame_s system-

level performance estimations are, with the help of
model calibration, quite accurate.
In a second experiment, we again used the M-

JPEG application. We now mapped the application
onto a cross-bar based multi-processor platform with
up to 4 processors (either MicroBlaze or PowerPC)
and distributed memory. This platform architecture
is fully composed of IP components from the library
supported by ESPAM (see Section 4). The processor,
memory and interconnect components in Sesame_s
architecture model were therefore directly taken
from the high-level model IP component library, as
shown in Fig. 6. Only the performance parameters
specific to the selected platform architecture needed
to be specified, such as the latencies for computa-
tional actions, the latencies for setting up and
communicating over the crossbar, and so on. We
determined the values of these performance param-
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eters by a combination of ISS-based calibration (for
the computational latencies of the MicroBlaze and
PowerPC processors) as well as from low(er)-level
information from the RTL versions of the IP
components themselves.
Using the above platform model, we performed a

design space exploration experiment by considering
three degrees of freedom: the number (1–4) and type
(MicroBlaze or PowerPC) of processors in the
platform, and the mapping of application tasks to
processors. The network configuration (crossbar
switch) as well as the buffer/memory organization
and sizes remained unaltered. Because of Sesame_s
efficiency, we were able to exhaustively explore the
resulting design space – consisting of 10,148 design
points – using system-level simulation, where the M-
JPEG application was executed on 8 consecutive
128%128 resolution frames for each design point.
This design space sweep took 86 min on a mid-range
laptop. Figure 8a shows for each platform instance
the estimated performance of the best application
mapping found during exploration4. These particular
platform instances and application mappings have
also been synthesized and prototyped using ESPAM.
The performance results of these implementations
are shown in Fig. 8c. Table 3a provides the errors in
percentages between the simulation and prototyping
results. Clearly, the simulation results from Fig. 8a
do not reflect the same behavior as the actual results
from the implementations. This is also shown by the
significant errors in Table 3a.
To address these discrepancies, we first looked at

further calibrating the separate model components.
For example, we used real performance measure-
ments from the MicroBlaze and PowerPC cores
instead of ISS-based measurements to calibrate
processor model components. However, these addi-
tional model component calibrations did not improve
the situation. Therefore, we shifted our focus to
system-level aspects of our performance model and,
to this end, used ESPAM for calibration purposes (as
discussed in Section 4). Here, we found that the
problem was caused by the mechanism for schedul-

ing application tasks on shared resources in the
multi-processor architecture. Where in our simula-
tions a dynamic scheduling policy was used (the
default in Sesame), the real implementation applies a
static approach in which application tasks are
Fmerged_ according to a static schedule determined
at compile time. As a result, the mappings found by
means of simulation with dynamic scheduling (see
Fig. 8a) perform poorly when implemented with
ESPAM because in these cases the static scheduling
causes some undesired sequentializations of the
parallel application. After adapting Sesame_s appli-
cation-event scheduler at the mapping layer to better
reflect the actual static scheduling behavior5, Ses-
ame_s performance estimates for the same set of
application mappings now show the correct perfor-
mance trends (see Fig. 8b), with an average error of
11.7% and worst-case error of 19% (as shown in
Table 3b). The remaining inaccuracies in terms of
absolute cycle numbers are mainly caused by the
modeling of the PowerPC processors. This is
because these processors are connected to the
crossbar using a bus that is also used for access to
the processor_s local data and instruction memory.
Since we do not explicitly model (contention on) this
bus, our abstract PowerPC performance model is too
optimistic.

6. Related Work

Model calibration is a well-known and widely-used
technique in many modeling and simulation
domains. In the computer engineering domain, the
calibration of performance models is mostly applied
in cycle-accurate modeling of system components
like processor simulators, e.g., Black and Shen [9]
and Moudgill et al. [28]. So far, the calibration of
high-level performance models that aim at (early)
system-level design space exploration has not been
widely addressed yet. The work in Mathur and
Prasanna [26] proposes a so-called vertical simula-
tion approach that shows similarities with our

Table 2. Validation results of the M-JPEG experiment.

Real Molen (cycles) Sesame simulation (cycles) Error (%)

Full SW implementation 84581250 85024000 0.5

DCT mapped onto reconf. Processor 39369970 40107869 1.9
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calibration approach. It is unclear, however, whether
or not vertical simulation has ever been realized. In
Brunel et al. [10], a high-level communication model
is discussed which is calibrated using a cycle-true
simulator.
The back annotation technique is closely related to

model calibration. In back annotation, performance
latencies measured by a low-level simulator are back
annotated in a higher-level model. For example, an
un-timed behavioral model could be back annotated
such that it tracks timing information for a specific
implementation. So, rather than calibrating a fixed
set of performance model parameters, back annota-
tion adds architecture-specific timing behavior
(usually by means of code instrumentation) to a

higher-level model. Back annotation is a widely-used
technique for (high-level) performance modeling of
software [17]. In the context of system-level model-
ing, various research efforts (e.g., [5, 11, 12]) also
refer to back annotation as a technique for adding
more detailed timing information to higher-level
models in the case lower-level models are available.
But these efforts generally do not provide much
insight of how back annotation is applied during the
early stages of design where lower-level models
typically are not abundant. In a way, our calibration
methods can be considered as a form of back
annotating the latency tables in Sesame_s architec-
ture models using results from ISS simulation and/or
automated component synthesis.

a b

c
Figure 8. System-level model calibration: a Original simulation results, b simulation results after system-level calibration, and c prototype
results from ESPAM implementations.
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Related to our on-line calibration technique, much
work has been performed in the field of mixed-level
HW/SW co-simulation, mainly from the viewpoint of
co-verification. This has resulted in a multitude of
academic and commercial co-simulation frameworks
(e.g., [1, 2, 3, 5, 8, 16, 19]). Such frameworks typically
combine behavioral models, ISSs, bus-functional
models or HDL models into a single co-simulation.
These mixed-level co-simulations generally need to
solve two important problems: (1) making the co-
simulation functionally correct by translating any
differences in data and control granularity between
simulation components, and (2) keeping the global
timing correct by synchronizing the simulator com-
ponents and overcoming differences in timing gran-
ularity. The functionality issue is usually resolved
using wrappers, while global timing is typically
controlled using either a parallel discrete-event
simulation method [15] or a centralized simulation
backbone using e.g. SystemC [8, 16]. Synchroniza-
tion between simulation components usually takes
place with the finest timing granularity (i.e. lowest
abstraction level) as the greatest common denomi-
nator between components. E.g., system-level co-
simulations with cycle-accurate components are
typically synchronized at cycle granularity, causing
high performance overheads. Besides the perfor-
mance overheads caused by wrappers and time
synchronization, the IPC mechanisms often used for

communication between the co-simulation compo-
nents may also severely limit performance [23],
especially when synchronizing at cycle granularity.
In the mixed-level co-simulation that results from

our on-line (trace-)calibration technique, we take the
opposite direction with respect to maintaining global
timing. Instead of synchronizing simulation compo-
nents at the finest timing granularity, it maintains
correct global timing at the highest possible level of
abstraction, being the level of Sesame_s abstract
architecture model components. As shown in
Thompson et al. [36], the performance overhead
caused by wrappers and time synchronizations is in
that case reduced to a minimum. Our on-line
calibration technique shows some similarities with
the trace-driven co-simulation technique in Kim
et al. [23]. However, the latter operates at a lower
abstraction level and is applied in a classical HW/
SW co-simulation context.
As mentioned in our introduction, there are various

related architectural exploration environments (e.g.,
[7, 13, 24, 27, 35]) that, like Sesame, also facilitate
flexible system-level performance evaluation by pro-
viding support for mapping a behavioral application
specification to an architecture specification. In Gries
[18], an excellent survey is presented of various
methods, tools and environments for early design
space exploration. Compared to most related efforts,
Sesame tries to push the separation of modeling
application behavior and modeling architectural con-
straints at the system level to even greater extents.
Doing so, it aims at optimizing the potentials for
model re-use during the exploration cycle.

7. Conclusions

High-level performance modeling and simulation has
become a key component in system-level design.
Although many promising system-level modeling
and simulation frameworks have been proposed, the
aspects of model validation and calibration have not
yet been widely addressed in this domain. This
article presented the mechanisms currently available
to our Sesame simulation framework for the calibra-
tion of its system-level performance models. These
mechanisms can be classified into ISS-based calibra-
tion for calibrating programmable model compo-
nents, and synthesis-based calibration (exploiting an
external synthesis tool-flow) for calibrating dedicat-
ed model components as well as system-level models

Table 3. Errors (in %) between original simulation and proto-

typing results (a) and between calibrated simulation and prototyp-
ing results (b).

# Proc.

Number of MicroBlazes

0 1 2 3 4

a

1 18.2 15.2

2 49.2 46.2 23.8

3 56.5 58.2 3.7

4 60.1 14.7 28.3

Average error=34%

b

1 18.2 15.2

2 12.9 5.5 19.0

3 11.3 4.5 12.6

4 7.7 14.7 7.5

Average error=11.7%
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as a whole. To show the merits of model calibration,
we also presented two illustrative case studies with a
M-JPEG encoder application. These studies indicate
that model calibration is a crucial ingredient of system-
level performance analysis. Currently, we are
performing additional case studies to further evaluate
our model calibration mechanisms. Also, we intend to
incorporate more types of lower-level models for
model calibration in Sesame. These also include, for
example, low(er)-level models for the calibration of
Sesame_s high-level interconnection network models.
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Notes

1. In the Kahn paradigm, processes communicate via unbounded
FIFO channels. Reading from these channels is done in a

blocking manner, while writing is non-blocking.

2. We use SimpleScalar_s detailed micro-architectural sim$
outorder simulator.

3. The actual mapping of M-JPEG onto the Molen reconfigurable

platform, using the Compaan and Laura tool-set, was done by

colleagues of ours at Leiden University and Delft University of

Technology. See the Credits section.
4. Note that results are only depicted for platforms with up to two

PowerPCs. This is because the ESPAM-based synthesis trajec-

tory is restricted to these platform due to the specific Xilinx
Virtex-II-Pro FPGA chip it currently uses for prototyping.

5. This is only a matter of plugging in a different Bpolicy model

component.^
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