
Int. J. Embedded Systems, Vol. 3, No. 3, 2008 181 

Copyright © 2008 Inderscience Enterprises Ltd. 

The Artemis workbench for system-level 
performance evaluation of embedded systems 

Andy D. Pimentel 
Computer Systems Architecture Group, 
Informatics Institute, University of Amsterdam, 
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 
E-mail: andy@science.uva.nl 

Abstract: In this paper, we present an overview of the Artemis workbench, which provides 
modelling and simulation methods and tools for efficient performance evaluation and exploration 
of heterogeneous embedded multimedia systems. More specifically, we describe the Artemis 
system-level modelling methodology, including its support for gradual refinement of architecture 
performance models as well as for calibration of the system-level models. We show that this 
methodology allows for architectural exploration at different levels of abstraction while 
maintaining high-level and architecture independent application specifications. Moreover,  
we illustrate these modelling aspects using a case study with a Motion-JPEG application. 

Keywords: system-level modelling and simulation; model refinement; performance evaluation; 
design space exploration; model calibration. 

Reference to this paper should be made as follows: Pimentel, A.D. (2008) ‘The Artemis 
workbench for system-level performance evaluation of embedded systems’, Int. J. Embedded 
Systems, Vol. 3, No. 3, pp.181–196. 

Biographical notes: Andy D. Pimentel received the MSc and PhD Degrees in Computer Science 
from the University of Amsterdam, where he currently is an Assistant Professor in the 
Informatics Institute. He is co-founder of the International Workshop on Systems, Architectures, 
Modelling, and Simulation (SAMOS) and is member of the European Network of Excellence on  
High-Performance Embedded Architecture and Compilation (HiPEAC). His research interests 
include computer architecture, computer architecture modelling and simulation, system-level 
design, design space exploration, performance analysis, embedded systems, and parallel 
computing. He is a member of the IEEE Computer Society. 

 

1 Introduction 

Designers of modern embedded systems are faced with a 
number of emerging challenges. Because embedded systems 
are mostly targeted for mass production and often run on 
batteries, they should be cheap to realise and power 
efficient. In addition, these systems increasingly need to 
support multiple applications and standards for which they 
should provide high, and sometimes real-time, performance. 
For example, digital televisions or mobile devices have to 
support different standards for communication and coding 
of digital contents. On top of this, modern embedded 
systems should be flexible so that they can easily be 
extended to support future applications and standards.  
Such flexible support for multiple applications calls  
for a high degree of programmability. However, 
performance requirements and constraints on cost and 
power consumption require substantial parts of these 
systems to be implemented in dedicated hardware blocks. 
As a result, modern embedded systems often have a 
heterogeneous system architecture, i.e., they consist of 
components ranging from Programmable processor cores to 
fully dedicated hardware components for the time-critical 
application tasks. Increasingly, such heterogeneous systems 

are integrated on a single chip. This yields heterogeneous 
multi-processor Systems-on-Chip (SoCs) that exploit task 
level Parallelism in applications. 

The heterogeneity of modern embedded systems and 
the varying demands of their target applications greatly 
complicate the system design. It is widely agreed upon that 
traditional design methods fall short for the design of these 
systems as such methods cannot deal with the systems’ 
complexity and flexibility. This has led to the notion of a 
new design methodology, namely system-level design. 
Below, we briefly describe three important ingredients of 
system-level design approaches. 

Platform architectures 

Platform-based design (Vahid and Givargis, 2001; 
Sangiovanni-Vincentelli and Martin, 2001) has become a 
popular design method as it stresses the re-use of 
Intellectual Property (IP) blocks. In this design approach, a 
single hardware platform is used as a ‘hardware 
denominator’ that is shared across multiple applications in a 
given domain and is accompanied by a range of methods 
and tools for design and development. This increases 
production volume and reduces cost compared to 
customising a chip for every application. 
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Separation of concerns 

To even further improve the potentials for re-use of IP and 
to allow for effective exploration of alternative design 
solutions, it is widely recognised that the ‘separation of 
concerns’ is a crucial component in system-level design 
(Keutzer et al., 2000). Two common types of separation in 
the design process are: 

• separating computation from communication by 
connecting IP processing cores via a standard 
(message-passing) network interface (Benini and  
de Micheli, 2002) 

• separating application (what is the system supposed to 
do) from architecture (how it does it) (Kienhuis et al., 
1997; Balarin et al., 1997). 

High-level modelling and simulation early in the design 

In system-level design, designers already start with 
modelling and simulating (possible) system components and 
their interactions in the early design stages (Pimentel et al., 
2001). More specifically, system-level models typically 
represent application behaviour, architecture characteristics, 
and the relation (e.g., mapping, hardware-software 
partitioning) between application(s) and architecture. These 
models do so at a high level of abstraction, thereby 
minimising the modelling effort and optimising simulation 
speed that is needed for targeting the early design stages. 
This high-level modelling allows for early verification  
of a design and can provide estimations on the performance 
(e.g., Balarin et al., 1997; Pimentel et al., 2001), power 
consumption (e.g., Brooks et al., 2000) or cost 
(DeBardelaben et al., 1997) of the design. 

Design space exploration plays a crucial role in system-
level design of embedded system (platform) architectures.  
Due to the systems’ complexity, it is imperative to have 
good performance evaluation tools for efficiently exploring 
a wide range of design choices during the early design 
stages. In this paper, we present an overview of the Artemis 
workbench, which provides high-level modelling and 
simulation methods and tools for efficient performance 
evaluation and exploration of heterogeneous embedded 
multimedia systems (Pimentel et al., 2001). More 
specifically, we describe the Artemis system-level 
modelling methodology -which deploys the aforementioned 
principle of separation of concerns (Keutzer et al., 2000)  
– and particularly focus on the support for gradual 
refinement of architecture performance models as well as on 
the calibration of system-level models. We show that this 
methodology allows for architectural exploration at different 
levels of abstraction while maintaining high-level and 
architecture independent application specifications. 
Furthermore, we illustrate these modelling aspects using a 
case study with a Motion-JPEG encoder application. 

The remainder of the paper is organised as follows.  
The next section provides a birds eye view of the Artemis 
workbench, briefly discussing the different tool-sets that are 
integrated in the workbench. Section 3 focuses on Artemis’ 
system-level modelling and simulation techniques by 

describing its prototype modelling and simulation 
environment, called Sesame. In Section 4, we explain how 
Artemis facilitates gradual refinement of system-level 
architecture models by applying dataflow graphs. Section 5 
illustrates the discussed modelling and refinement 
techniques using a case study with a Motion-JPEG encoder 
application. This section also demonstrates how our  
system-level models can be calibrated with low-level 
implementation information using an automated component 
synthesis approach. Finally, Section 6 discusses related 
work, after which Section 7 concludes the paper. 

2 The Artemis workbench 

The Artemis workbench consists of a set of methods and 
tools conceived and integrated in a framework to allow 
designers to model applications and SoC-based 
(multiprocessor) architectures at a high level of abstraction, 
to map the former onto the latter, and to estimate 
performance numbers through co-simulation of application 
and architecture models. Figure 1 depicts the flow of 
operation for the Artemis workbench, where the grey parts 
refer to the various tool-sets that together embody the 
workbench. The point of departure is an application  
domain (being multimedia applications for Artemis), an 
experimental domain-specific platform architecture and a 
domain-specific application specified as an executable 
sequential program. The platform architecture is instantiated 
in the architecture model layer of the workbench, while the 
application specification is converted to a functionally 
equivalent concurrent specification using a translator called 
Compaan (Turjan et al., 2004; Stefanov et al., 2004; 
Deprettere et al., 2002). More specifically, Compaan 
transforms the sequential application specification into a 
Kahn Process Network (KPN) (Kahn, 1974). In between the 
application and architecture layers there is a mapping layer. 
This mapping layer provides means to perform quantitative 
performance analysis on levels of abstraction, and to refine 
application specification components between levels of 
abstraction. Such refinement is required to match 
application specifications to the level of detail of the 
underlying architecture models. Effectively, the mapping 
layer bridges the gap between the application and 
architecture (models), sometimes referred to as the 
implementation gap (Mihal and Keutzer, 2003). In the next 
sections, we will elaborate on all of the above modelling, 
mapping, and refinement aspects in more detail. 

Because Artemis operates at a high level of abstraction, 
low-level component performance numbers can be used to 
calibrate the system-level architecture models. To this end, 
individual processes (i.e., code segments) of a KPN 
application specification can be taken apart and 
implemented as individual low-level components (that 
appear in the current high-level instance of the platform 
architecture). This results in performance numbers – as well 
as in estimations on cost and power consumption – for the 
low-level components that the system-level modelling 
framework needs to provide accurate performance 
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estimations for the multiprocessor system architecture as a 
whole. For this calibration process, the Artemis workbench 
uses the Laura toolset (Zissulescu et al., 2003; Stefanov  
et al., 2004) and the Molen calibration platform architecture 
(Vassiliadis et al., 2001, 2003a, 2003b). Before presenting 
more details on Artemis’ system-level modelling and 
simulation techniques, which forms the bulk of this paper, 
the remainder of this section first takes a closer look at the 
Compaan1 and Laura1 tool-sets as well as the Molen1 
calibration platform. 

Figure 1 The infrastructure of the Artemis workbench 

 

2.1 The Compaan and Laura tool-sets 

Today, traditional imperative languages like C, C++ or 
Matlab are still dominant with respect to implementing 
applications for SoC-based (platform) architectures.  
It is, however, very difficult to map these imperative 
implementations, with typically a sequential model of 
computation, onto multi-processor SoC architectures that 
allow for exploiting task-level parallelism in applications. In 
contrast, models of computation that inherently express 
task-level parallelism in applications and make 
communications explicit, such as CSP (Hoare, 1978) and 
Process Networks (Lee and Parks, 1995; Kahn, 1974), allow 
for easier mapping onto multi-processor SoC architectures. 
However, specifying applications using these models of 
computation usually requires more implementation effort in 
comparison to sequential imperative solutions. 

In Artemis, we use an approach in which we start from a 
sequential imperative application specification – more 
specifically an application written in a subset of  
Mat-lab – which is then automatically converted into a KPN 
(Kahn, 1974) using the Compaan tool-set (Turjan et al., 
2004; Stefanov et al., 2004; Deprettere et al., 2002).  

This conversion is fast and correct by construction.  
In the KPN model of computation, parallel processes 
communicate with each other via unbounded FIFO 
channels. Reading from channels is done in a blocking 
manner, while writing to channels is non-blocking.  
We decided to use KPNs for application specifications 
because they nicely fit with the targeted media-processing 
application domain and they are deterministic. The latter 
implies that the same application input always results in the 
same application output, irrespective of the scheduling of 
the KPN processes. This provides us with a lot of 
scheduling freedom when, as will be discussed later on, 
mapping KPN processes onto SoC architecture models for 
quantitative performance analysis. 

The infrastructure of the Compaan tool-set is illustrated 
on the left-hand side of Figure 2. The grey parts refer to the 
separate tools that are part of Compaan, while the white 
parts refer to the (intermediate) formats of the application 
specification. Starting-point is an application specification 
in Matlab, which needs to be specified as a parameterised 
static nested loop program. Recently, Compaan’s scope has 
been extended to also include weakly-dynamic nested loop 
programs that allow for specifying data-dependent 
behaviour (Stefanov and Deprettere, 2003). On these  
Matlab application specifications, various source-level 
transformations can be applied in order to, for example, 
increase or decrease the amount of parallelism in the final 
KPN (Stefanov et al., 2002). In a next step, the Matlab code 
is transformed into Single Assignment Code (SAC), which 
resembles the Dependence Graph (DG) of the original 
nested loop program. Hereafter, the SAC is converted to a 
Polyhedral Reduced Dependency Graph (PRDG) data 
structure, being a compact mathematical representation  
of a DG in terms of polyhedra. Finally, a PRDG is 
converted into a KPN by associating a KPN process with 
each node in the PRDG. The parallel KPN processes 
communicate with each other according to the data 
dependencies given in the DG. 

The Laura tool-set (Zissulescu et al., 2003; Stefanov  
et al., 2004), depicted on the right-hand side of Figure 2, 
takes a KPN as input and produces synthesisable VHDL 
code that implements the application specified by the KPN 
for a specific FPGA platform. To this end, the KPN 
specification is first converted into a functionally equivalent 
network of conceptual processors, called hardware model. 
This hardware model, which is platform independent as no 
information on the target FPGA platform is incorporated, 
defines the key components of the architecture and their 
attributes. It also defines the semantic model, i.e., how the 
various components interact with each other. Subsequently, 
platform specific information is added to the hardware 
model. This includes the addition of IP cores that implement 
certain functions in the original application as well as 
setting attributes of components such as bit-width and buffer 
sizes. In the final step, the hardware model is converted  
into VHDL. To do so, Laura supplies a piece of VHDL code 
for each component in the hardware model that expresses 
how to represent that component in the target architecture. 
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Using commercial tools, the VHDL code can then be 
synthesised and mapped onto an FPGA. As can be seen in 
Figure 2, the results from this automated implementation 
trajectory can be fed back to Compaan to explore different 
transformations that will, in the end, lead to different 
implementations. 

Figure 2 The Compaan (left) and Laura (right) tool-sets. 

 

2.2 The Molen calibration platform 

Figure 3 depicts the platform architecture that is used for 
model calibration in Artemis. This platform architecture, 
called Molen (Vassiliadis et al., 2001, 2003a, 2003b), 
connects a programmable processor with a reconfigurable 
unit and uses microcode to incorporate architectural support 
for the reconfigurable unit. Instructions are fetched from the 
memory, after which the arbiter performs a partial decoding 
on the instructions to determine where they should be issued 
(Kuzmanov and Vassiliadis, 2003). Those instructions that 
have been implemented in fixed hardware are issued to the 
Core Processing (CP) unit, which is one of the PowerPCs 
from a Xilinx Virtex II Pro™ platform in the Molen 
prototype implementation (Kuzmanov et al., 2004), while 
instructions for custom execution are redirected to the 
reconfigurable unit. The instructions entering the CP unit 
are further decoded and then issued to their corresponding 
functional units. 

The reconfigurable unit consists of a Custom 
Configured Unit (CCU), currently implemented by the 
Xilinx Virtex II Pro™ FPGA, and a ρµ-code unit.  
The reconfigurable unit performs operations that can be as 
simple as an instruction or as complex as a piece of code 
describing a certain function. Molen divides an operation 
into two distinct phases: set and execute. The set phase is 
responsible for reconfiguring the CCU hardware, enabling 
the execution of an operation. Such a phase may be 

subdivided into two sub-phases, namely partial-set (p-set) 
and complete-set (c-set). The p-set phase covers common 
functions of an application or set of applications. 
Subsequently, the c-set sub-phase only reconfigures those 
blocks in the CCU which are not covered in the p-set  
sub-phase in order to complete the functionality of the CCU. 

Figure 3 The Molen calibration platform architecture 

 

To perform the actual reconfiguration of the CCU, 
reconfiguration microcode is loaded into the ρµ-code unit 
and then executed (using p-set and c-set instructions) 
(Kuzmanov et al., 2003). Hereafter, the execute phase is 
responsible for the operation execution on the CCU, 
performed by executing the execution microcode. Important 
in this respect is the fact that both the set and execute phases 
do not explicitly specify a certain operation to be performed. 
Instead, the p-set, c-set and execute instructions point to the 
memory location where the reconfiguration or execution 
microcode is stored. 

The Compaan and Laura tool-sets in combination with 
the Molen platform architecture provide great opportunities 
for the previously discussed calibration of system-level 
architecture models. For this purpose, Laura maps a specific 
component from an application specification to a hardware 
implementation by converting the Compaan generated KPN 
associated with the application component to a VHDL 
implementation. This VHDL code is subsequently used as 
reconfiguration microcode for Molen’s CCU, while the 
remainder of the application specification (i.e., the code that 
has not been synthesised to a hardware implementation) is 
executed on Molen’s Core Processor. As a result, the 
application component mapped onto the CCU provides  
low-level implementation numbers that can be used to 
calibrate the corresponding component in the system-level 
architecture model. In Section 3.4, we present a case study 
in which this model calibration is illustrated for a DCT task 
in a Motion-JPEG encoder application. 

3 The Sesame environment 

Artemis’ system-level modelling and simulation 
environment, called Sesame (Pimentel et al., 2002; Coffland 
and Pimentel, 2003), builds upon the ground-laying work of 
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the Spade framework (Lieverse et al., 2001c). This means 
that Sesame facilitates performance analysis of embedded 
systems architectures according to the Y-chart design 
approach (Kienhuis et al., 1997; Balarin et al., 1997), 
recognising separate application and architecture models 
within a system simulation. An application model describes 
the functional behaviour of an application, including both 
computation and communication behaviour. An architecture 
model defines architecture resources and captures their 
performance constraints. After explicitly mapping an 
application model onto an architecture model, they are  
co-simulated via trace-driven simulation. This allows for 
evaluation of the system performance of a particular 
application, mapping, and underlying architecture. Essential 
in this modelling methodology is that an application model 
is independent from architectural specifics, assumptions on 
hardware/software partitioning, and timing characteristics. 
As a result, a single application model can be used to 
exercise different hardware/software partitionings and can 
be mapped onto a range of architecture models, possibly 
representing different system architectures or simply 
modelling the same system architecture at various levels of 
abstraction. The layered infrastructure of Sesame is shown 
in Figure 4. 

Figure 4 Sesame’s infrastructure 

 

3.1 Application modelling 

For application modelling (de Kock et al., 2000), Sesame 
uses KPN application specifications that are generated by 
the Compaan toolset or have been derived by hand.  
The computational behaviour of an application is captured 
by instrumenting the code of each Kahn process with 
annotations that describe the application’s computational 
actions. The reading from or writing to Kahn channels 
represents the communication behaviour of a process within 
the application model. By executing the Kahn model, each 
process records its actions in order to generate its own trace 
of application events, which is necessary for driving an 
architecture model. These application events typically are 

coarse grained, such as execute(DCT) or read(channeLid, 
pixel-block). 

To execute Kahn application models, and thereby 
generating the application events that represent the 
workload imposed on the architecture, Sesame features a 
process network execution engine supporting Kahn 
semantics. This execution engine runs the Kahn processes 
as separate threads using the Pthreads package. Currently, 
the Kahn processes need to be written in C++, but C and 
Java support is also planned for the future. To allow for 
rapid creation and modification of models, the structure of 
the application models (i.e., which processes are used in the 
model and how they are connected to each other) is not 
hard-coded in the C++ implementation of the processes, but 
instead, it is described in a language called YML (Y-chart 
Modelling Language) (Coffland and Pimentel, 2003). This 
is an XML-based language which is similar to Ptolemy’s 
MoML (Lee and Neuendorffer, 2000) but is slightly less 
generic in the sense that YML only needs to support a few 
simulation domains. As a consequence, YML supports a 
subset of MoML’s features. However, YML provides one 
additional feature in comparison to MoML as it contains 
built-in scripting support. This allows for loop-like 
constructs, mapping and connectivity functions, and so on, 
which facilitate the description of large and complex 
models. In addition, it enables the creation of libraries of 
parameterised YML component descriptions that can be 
instantiated with the appropriate parameters, thereby 
fostering re-use of YML descriptions. To simplify the use of 
YML even further, a YML editor has also been developed 
to compose model descriptions using a GUI. Figure 5 gives 
an impression of the YML editor’s GUI, showing its layered 
layout that corresponds to the three layers of Sesame  
(see Figure 4), namely the application model layer, mapping 
layer and architecture model layer. 

3.2 Architecture modelling 

Architecture models in Sesame, which typically operate at 
the so-called transaction level (Cai and Gajski, 2003; 
Grötker et al., 2002), simulate the performance 
consequences of the computation and communication events 
generated by an application model. These architecture 
models solely account for architectural performance 
constraints and do not need to model functional behaviour. 
This is possible because the functional behaviour is already 
captured in the application models, which subsequently 
drive the architecture simulation. An architecture model is 
constructed from generic building blocks provided by a 
library, which contains template performance models for 
processing cores, communication media (like busses) and 
various types of memory. The structure of architecture 
models – specifying which building blocks are used from 
the library and the way they are connected – is also 
described in YML. 

Sesame’s architecture models are implemented using 
either Pearl (Muller, 1993) or SystemC (http:// 
www.systemc.org/, Grötker et al., 2002). Pearl is a small but 
powerful discrete-event simulation language which provides 
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easy construction of the models and fast simulation 
(Pimentel et al., 2002). For our SystemC architecture 
models, we provide an add-on library to SystemC,  
called SCPEx (SystemC Pearl Extension) (Thompson  
and Pimentel, 2004), which extends SystemC’s 
programming model with Pearl’s message-passing paradigm 

and which provides SystemC with YML support.  
SCPEx raises the abstraction level of SystemC  
models, thereby reducing the modelling effort required  
for developing transaction-level architecture models and 
making the modelling process less prone to programming 
errors. 

Figure 5 A screenshot of the YML editor (see online version for colours) 

 
 
3.3 Mapping 

To map Kahn processes (i.e., their event traces) from  
an application model onto architecture model components 
and to support the scheduling of application events  
from different event traces when multiple Kahn processes 
are mapped onto a single architecture component  
(e.g., a programmable processor), Sesame provides an 
intermediate mapping layer. This layer consists of virtual 
processor components and FIFO buffers for communication 
between the virtual processors. There is a one-to-one 
relationship between the Kahn processes in the application 
model and the virtual processors in the mapping layer. This 
is also true for the Kahn channels and the FIFO buffers in 
the mapping layer, except for the fact that the latter are 
limited in size. Their size is parameterised and dependent on 
the modelled architecture. As the structure of the mapping 
layer closely resembles the structure of the application 
model under investigation, Sesame provides a tool that is 
able to automatically generate the mapping layer from the 
YML description of an application model. 

A virtual processor in the mapping layer reads in an 
application trace from a Kahn process via a trace event 

queue and dispatches the events to a processing component 
in the architecture model. The mapping of a virtual 
processor onto a processing component in the architecture 
model is freely adjustable, facilitated by the fact that  
the mapping layer and its mapping onto the architecture 
model are described in YML (and manipulated  
using the YML editor, see Figure 5). Communication  
channels – i.e., the buffers in the mapping layer – are also 
mapped onto the architecture model. In Figure 4, for 
example, one buffer is placed in shared memory2 while the 
other buffer is mapped onto a point-to-point FIFO channel 
between processors 1 and 2. 

The mechanism for dispatching application events from 
a virtual processor to an architecture model component 
guarantees deadlock-free scheduling of the application 
events from different event traces. In this mechanism, 
computation events are always directly dispatched by a 
virtual processor to the architecture component onto which 
it is mapped. The latter schedules incoming application 
events that originate from different event queues according 
to a given policy and subsequently models their timing 
consequences. The scheduling of application events 
supports a range of predefined policies, like FCFS and 
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round-robin, but can also easily be customised with 
alternative policies. Communication events are, however, 
not directly dispatched by a virtual processor. Rather, a 
virtual processor first consults the appropriate buffer at  
the mapping layer to check whether or not a communication 
is safe to take place so that no deadlock can occur. Only if it 
is found to be safe (i.e., for read events the data should be 
available and for write events there should be room in the 
target buffer), then communication events may be 
dispatched to the processor component in the architecture 
model. As long as a communication event cannot be 
dispatched, the virtual processor blocks. This is possible 
because the mapping layer executes in the same simulation 
as the architecture model. Therefore, both the mapping layer 
and the architecture model share the same simulation-time 
domain. This also implies that each time a virtual processor 
dispatches an application event (either computation or 
communication) to a component in the architecture model, 
the virtual processor is blocked in simulated time until the 
event’s latency has been simulated by the architecture 
model. 

When architecture model components are gradually 
refined to include more implementation details, the virtual 
processors at the mapping layer are also refined. The latter 
is done with dataflow graphs such that it allows us to 
perform architectural simulation at multiple levels of 
abstraction without modifying the application model.  
Figure 4 illustrates this dataflow-based refinement by 
refining the virtual processor for process B with a fictive 
dataflow graph. In this approach, the application event 
traces specify what a virtual processor executes and with 
whom it communicates, while the internal dataflow graph of 
a virtual processor specifies how the computations and 
communications take place at the architecture level. In the 
next section, we provide more insight on how this 
refinement approach works by explaining the relation 
between trace transformations for refinement and dataflow 
actors at the mapping layer. 

In a closely related project, called Archer (Živković  
et al., 2002), an alternative mapping approach is studied. 
That is, while Archer and Sesame share quite a few 
application and architecture modelling techniques, Archer 
uses a different mapping strategy than Sesame. In Archer, 
Control Data Flow Graphs (CDFG) (Wolf, 2001) are taken 
as a basis. However, as the CDFG notation is too complex 
for design space exploration, the CDFGs are lifted to a 
higher abstraction level, called Symbolic Programs (SP) 
(Živković et al., 2003b). The SPs, which in Archer are 
automatically derived from a KPN application specification, 
are CDFG-like representations of the Kahn processes. They 
contain control constructs like CDFGs, but unlike CDFGs, 
they are not directly executable since SPs only contain 
symbolic instructions (i.e., application events) and no real 
code. Therefore, SPs need extra information for execution to 
determine the control flow within an SP, which is supplied 
in terms of control traces. These control traces are 
generated by running the application with a particular set of 
data. At the architecture layer, SPs are executed with  
the control traces to generate event traces which are 

subsequently used to drive the resources in the architecture 
model. Like Sesame, Archer also supports the refinement  
of architecture models. It does so by transforming 
application-level SPs into architecture-level SPs (Živković 
et al., 2003a). 

3.4 Mapping support 

To facilitate effective design space exploration, Sesame 
provides some (initial) support for finding promising 
candidate application-to-architecture mappings to guide a 
designer during the system-level simulation stage. To this 
end, we have developed a mathematical model that captures 
several trade-offs faced during the process of mapping 
(Erbas et al., 2003). In this model, we take into account the 
computational and communication demands of an 
application as well as the properties of an architecture, in 
terms of computational and communication performance, 
power consumption, and cost. The resulting trade-offs with 
respect to performance, power consumption and cost are 
formulated as a multi-objective combinatorial optimisation 
problem. Using an optimisation software tool, which is 
based on a widely-known evolutionary algorithm (Zitzler, 
1999), the mapping decision problem is solved by providing 
the designer with a set of approximated Pareto-optimal 
mapping solutions that can be further evaluated using 
system-level simulation. For a more detailed description of 
this mapping support, the interested reader is referred to 
(Erbas et al., 2003). 

4 Architecture model refinement 

Refining architecture model components in Sesame requires 
that the application events driving them should also be 
refined to match the architectural detail. Since we aim at a 
smooth transition between different abstraction levels,  
re-implementing or transforming (parts of) the application 
models for each abstraction level is undesirable. Instead, 
Sesame maintains only application models at a high level of 
abstraction (thereby optimising the potentials for reuse of 
application models) and bridges the abstraction gap between 
application models and underlying architecture models at 
the mapping layer. As will be explained in this section, 
bridging the abstraction gap is accomplished by refining the 
virtual processors in the mapping layer with dataflow actors 
that transform coarse-grained application events into finer 
grained events at the desired abstraction level which are 
subsequently used to drive the architecture model 
components (Pimentel and Erbas, 2003; Erbas and Pimentel, 
2003; Erbas et al., 2003). In other words, the dataflow 
graphs consume external input (dataflow) tokens that 
represent high-level computational and communication 
application events and produce external output tokens that 
represent the refined architectural events associated with the 
application events. 

Refinement of application events is denoted using trace 
transformations (Lieverse et al., 2001b), in which the  
left-hand side contains the coarse-grained application events 
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that need to be refined and the right-hand side the resulting 
architecture-level events. Furthermore, ‘→’ symbols in trace 
transformations denote the ‘followed by’ ordering relation. 
To give an example, the following trace transformations 
refine R(ead) and W(rite) application events such that the 
synchronisations are separated from actual data transfers 
(Lieverse et al., 2001b): 

ref

R cd ld sr⇒ → →
Θ

 (1) 

.
ref

W cr st sd⇒ → →
Θ

 (2) 

Here, refined architecture-level events check-data*,  
load-data†, signal-room*, check-room*, store-data†), 
signal-data* are abbreviated as cd, ld, sr, cr, st, sd, 
respectively. The events marked with * refer to 
synchronisations while those marked with † refer to data 
transmissions. The above refinements allow for, for 
example, moving synchronisation points or reducing their 
number when a pattern of application events is transformed 
(Lieverse et al., 2001b; Pimentel and Erbas, 2003). 
Consider, for example, an application process that reads a 
block of data from an input buffer, performs some 
computation on it, and writes the results to an output buffer. 
This would generate a ‘R → E → W ’ application-event 
pattern, in which the E(xecute) refers to the computation on 
the block of data. Assuming that this application process is 
mapped onto a processing component that does not have 
local storage but operates directly on its input and output 
buffers, we need the following trace transformation: 

.
ref

R E W cd cr ld E st sr sd→ → ⇒ → → → → → →
Θ

 (3) 

In the refined event sequence, we early check — using the 
check-room (cr) – if there is room in the output buffer 
before fetching the data (ld) from the input buffer because 
the processing component cannot temporarily store results 
locally. In addition, the input buffer must remain available 
until the processing component has finished operating on it 
(i.e., after writing the results to the output buffer). 
Therefore, the signal-room (sr) is scheduled after the st. 

In Sesame, Synchronous Data Flow (SDF) (Lee and 
Messerschmitt, 1987) actors are deployed to realise trace 
transformations. Integer-controlled Data Flow (IDF) (Buck, 
1994) actors are subsequently utilised to model repetitions 
and branching conditions which may be present in the 
application code (Erbas and Pimentel, 2003). However, as 
illustrated in Pimentel and Erbas (2003), they may also be 
used within static transformations to achieve less 
complicated (in terms of the number of actors and channels) 
dataflow graphs. 

Refining application event traces by means of dataflow 
actors works as follows. For each Kahn process at the 
application layer, an IDF graph is synthesised at the 
mapping layer and embedded in the corresponding virtual 
processor. As a result, each virtual processor is equipped 
with an abstract representation of the application code  
from its corresponding Kahn process, similar to the concept 
of Symbolic Programs from Živković et al. (2002). 

Sesame’s IDF graphs consist of static SDF actors (due to the 
fact that SDF is a subset of IDF) embodying the architecture 
events that are the – possibly transformed – representation 
of application events at the architecture level. In addition, to 
capture control behaviour of the Kahn processes, the IDF 
graphs also contain dynamic actors for conditional jumps 
and repetitions. The IDF graphs are executable as the actors 
have an execution mechanism called firing rules which 
specify when an actor can fire. When firing an actor, it 
consumes the required tokens from its input token channels 
and produces a specified number of tokens on its output 
channels. A special characteristic of our IDF graphs is that 
the SDF actors are tightly coupled with the architecture 
model components (Pimentel and Erbas, 2003). This means 
that a firing SDF actor may send a token to the architecture 
model to initiate the simulation of an event. The SDF actor 
in question is then blocked until it receives an 
acknowledgement token from the architecture model 
indicating that the performance consequences of the event 
have been simulated within the architecture model. To give 
an example, an SDF actor that embodies a write event will 
block after firing until the write has been simulated at the 
architecture level. 

In IDF graphs, scheduling information of IDF actors is 
not incorporated into the graph definition but is explicitly 
supplied by a scheduler. This scheduler operates on the 
original application event traces in order to schedule our 
IDF actors. The actor scheduling can be done either in a 
semi-static or dynamic manner. In dynamic scheduling, the 
application and architecture models are co-simulated  
using a UNIX IPC-based interface to communicate events 
from the application model to the scheduler. As a 
consequence, the scheduler only operates on a window of 
application events which implies that the IDF graphs cannot 
be analysed at compile-time. This means that, for example, 
it is not possible to decide at compile-time whether an IDF 
graph will complete its execution in finite time, or whether 
the execution can be performed with bounded memory. 
Alternatively, we can also schedule the IDF actors in a 
semi-static manner. To do so, the application model should 
first generate the entire application traces and store them 
into trace files (if their size permits this) prior to the 
architectural simulation. This static scheduling mechanism 
is a well-known technique in Ptolemy (Buck et al., 1994) 
and has been proven to be very useful for system simulation 
(Buck, 1994). However, in Sesame, it does not yield to a 
fully static scheduling. This is because of the fact that, as 
was previously explained, our SDF actors have a token 
exchange mechanism with the underlying architecture 
model, yielding some dynamic behaviour. 

We also intend to investigate whether or not our IDF 
graphs can be specified as so-called well-behaved dataflow 
graphs (Gao et al., 1992). In these well-behaved dataflow 
graphs dynamic actors are only used as a part of two 
predefined clusters of actors – known as schemas – that 
allow for modelling conditional and repetitive behaviour. 
The resulting graphs have, as opposed to regular IDF 
graphs, many of the same attractive properties with respect 
to static analysis as graphs composed only of SDF actors. 
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To illustrate how IDF graphs are constructed and 
applied for event refinement, we use an example taken from 
a Motion-JPEG encoder application we studied in Lieverse 
et al. (2001a) and Pimentel et al. (2002). Figure 6 shows an 
annotated C++ code fragment from the Quality-Control 
(QC) Kahn process of the Motion-JPEG application. The 
QC process dynamically computes the tables for Huffman 
encoding as well as those required for quantising each frame 
in the video stream, according to the image statistics and the 
obtained compression bitrate of the previous video frame.  
In Figure 7, an IDF graph for the QC process is given, 
realising a high-level (unrefined) simulation. That is, the 
architecture-level events embodied by the SDF actors 
(depicted as circles) directly represent the application-level 
R(ead), E(xecute) and W(rite) events. The SDF actors  
drive the architecture model components by the 
aforementioned token exchange mechanism, although 
Figure 7 does not depict the architecture model nor the 
token exchange channels for the sake of simplicity.  
Also not shown are the token channels to and from the IDF 
graphs of neighbouring virtual processors with which is 
communicated. For example, the R(ead) actors are in reality 
connected to a W(rite) actor from a remote virtual processor 
in order to signal when data is available and when room is 
available. The IDF actors CASE-BEGIN, CASE-END, 
REPEAT-BEGIN, and REPEAT-END model conditional 
and repetition structures that are present in the application 
code. The scheduler reads the application trace from the 
Kahn process in question and executes the IDF graph by 
scheduling the IDF actors accordingly by sending the 
appropriate control tokens. In Figure 7, there are 
(horizontal) dotted token channels between the SDF actors, 
denoting dependencies. Adding these token channels to the 
graph results in sequential execution of architecture-level 
events while removing them will allow for exploiting 
parallelism by the underlying architecture model. Like all 
models in Sesame, the structure of our IDF graphs is also 
described using YML. 

In Figure 8, an IDF graph for the QC process is shown 
that implements the aforementioned communication 
refinement in which the application-level R(ead) and W(rite) 
events are refined such that the synchronisation and  
data-transfer parts become explicit. The computational 
E(xecute) events remain unrefined in this example.  
We again omitted the token channels to/from IDF graphs of 
neighbouring virtual processors in Figure 8, but in reality  
cd actors have, for example, an incoming token channel 
from an sd actor of a remote IDF graph. By firing the 
refined SDF actors (cd, cr, etc.) in the IDF graph according 
to the order in which they appear on the right-hand side of a 
trace transformation – see for example transformation 
(equation (3)), noting that the right-hand side may also be 
specified as a partial ordering (Lieverse et al., 2001b;  
Erbas et al., 2003) – this automatically yields a valid  
 
 
 
 

schedule for the IDF graph (Erbas and Pimentel, 2003).  
Here, we also recall that the level of parallelism between the 
architecture-level events is specified by the presence or  
absence of token channels between SDF actors.  
To conclude, communication refinement is accomplished by 
simply replacing SDF actors with refined ones, allowing to 
evaluate the performance of different communication 
behaviours at architecture level while the application model 
remains unaffected. As shown in Erbas et al. (2003) and like 
we will demonstrate in the next section, this approach 
allows for refining computational behaviour as well. 

Figure 6 An annotated C++ code fragment 

 

Figure 7 IDF graph for high-level (unrefined) simulation 
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Figure 8 IDF graph realising communication refinement 

 

The IDF-based refinement approach also permits  
mixed-level simulations, in which only parts of the 
architecture model are refined while the other parts remain 
at the higher level of abstraction. This will be demonstrated 
in the next section too. These mixed-level simulations 
enable more detailed performance evaluation of a specific 
architecture component in the context of the behaviour of 
the whole system. They therefore avoid the need for 
building a completely refined architecture model during the 
early design stages. Moreover, mixed-level simulations do 
not suffer from deteriorated system evaluation efficiency 
caused by unnecessarily refined parts of the architecture 
model. 

5 Motion-JPEG case study 

This section presents an experiment that illustrates some of 
the important aspects of Artemis’ flow of operation  
as depicted in Figure 1. More specifically, using the 
Motion-JPEG (M-JPEG) encoder application from  
the previous section, we demonstrate how model calibration 
can be performed by means of the Compaan/Laura tool-sets 
and the Molen platform. Furthermore, we describe the 
system-level modelling and simulation aspects of the  
M-JPEG experiment, emphasising on the IDF-based 
architecture model refinement that was performed. 

In the experiment, we selected the DCT task from the 
M-JPEG application to be used for model calibration.  
This means that the DCT task is taken ‘all the way down’ to 
a hardware implementation in order to study its low-level  
 
 
 
 
 

performance aspects. To do so, the following steps were 
taken, which are integrally shown in Figure 9. The DCT was 
first isolated from the sequential M-JPEG code and used as 
input to the Compaan tool-set. Subsequently, Compaan 
generated a KPN application specification for the DCT task. 
This DCT KPN is internally specified at pixel level but has 
in- and output tasks that operate at the level of pixel blocks 
because the original M-JPEG application specification also 
operates at this block level. Using the Laura tool-set, the 
KPN for the DCT task was translated into a VHDL 
implementation, in which for example the 2D-DCT 
component is implemented as a 92-stage pipelined IP block. 
This implementation can subsequently be mapped onto the 
FPGA (i.e., CCU) of the Molen platform. By mapping the 
remainder of the M-JPEG code onto Molen’s (CP), we were 
able to study the hardware DCT implementation in the 
context of the M-JPEG application. As will be explained 
later, the results of this exercise have been used to calibrate 
our system-level architecture modelling. Although being out 
of scope for this paper, it might be worth mentioning that 
the M-JPEG encoder with FPGA-implemented DCT 
obtained a 2.14 speedup – out of a 2.5 maximum attainable 
theoretical speedup – in comparison to a full software 
implementation. For the system-level modelling and 
simulation part of the experiment, we decided to model the 
Molen calibration platform architecture itself. This gives us 
the opportunity to actually validate our performance 
estimations against the real numbers from the 
implementation. The resulting system-level Molen model 
contains two processing components (Molen’s CP and 
CCU) which are bi-directionally connected using two  
uni-directional FIFO buffers. Like in the real Laura → 
Molen mapping, we mapped the DCT Kahn process from 
our M-JPEG application model onto the CCU component in 
the architecture model, whereas the remaining Kahn 
processes were mapped onto the CP component. We also 
decided to refine the CCU in our architecture model such 
that it models the pixel-level DCT implementation used in 
the Compaan/Laura implementation. The CP component in 
our architecture model was not refined, implying that it 
operates (i.e., models timing consequences) at the same 
(pixel-block) level as the application events it receives from 
the application model. Hence, this yields a mixed-level 
simulation. We would also like to stress that the M-JPEG 
application model was not changed for this experiment. This 
means that the application events for the CCU component, 
referring to DCT operations on entire pixel blocks, needed 
to be refined to pixel-level events. In addition, at the 
architecture model level, the execution of these pixel-level 
events required to be modelled according to the pipelined 
execution semantics of the actual implementation.  
This because the Preshift and 2D-DCT blocks in the  
Laura-generated implementation are pipelined units. 
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Figure 9 Model calibration for the DCT task 

 
 
According to what was explained in the previous section, 
we accomplished the refinement of the CCU component in 
the architecture model by refining the virtual processor 
associated with the DCT Kahn process in the mapping layer, 
as this is the virtual processor that is mapped onto the CCU 
component. The resulting IDF graph that is embedded in the 
virtual processor has several levels of hierarchy, of which 
the top level is shown in Figure 10. 

The top-level IDF graph consists of the actor scheduler 
and two actors, called P1 and P2. These two actors refer to 
the two alternating application-event patterns that the DCT 
process generates. One of the patterns (denoted by actor P1) 
results from the DCT process finding out the location  
(i.e., which input buffer) of the next half macro-block3 that 
needs to be processed, while the other pattern (denoted by 
actor P2) results from the actual processing (reading, 
executing, and writing) of a half macro-block. As we are not 
interested in the first application-event pattern, actor  
P1 is not further refined. The channels labelled with Type, 
Block-in and Block-out in Figure 10 refer to the token 
channels to and from the remote virtual processors with 
which is communicated. The two dotted double-headed 
arrows represent the token exchange channels connected  
to the architecture model for modelling the latencies 
associated with actor firings, as was explained in the 
previous section. 

In Figure 11, we zoom in on actor P2, showing the 
internal IDF graph of this composite actor. Actor P2 is fired 

each time the scheduler at the top level (see Figure 10) 
recognises the processing of a half macro-block from the 
incoming application event trace. So, this implies that actor 
P2 describes the architectural behaviour of processing a half 
macro-block. To do so, P2 first models the processing of 
single pixel blocks from a half macro-block using the 
REPEAT actors. The REPEAT actors receive control tokens 
from the scheduler specifying that a half macro-block 
consists of four pixel blocks (2Y, 1U, 1V). For every pixel 
block, it is first checked whether or not the data is available 
in the input buffer (cd) and room is available to store results 
in the output buffer (cr). Subsequently, we model the 
reading of the pixel block from the input buffer by means of 
the ld actor, which generates 64 output tokens when fired. 
These tokens represent the separate pixels inside a pixel 
block. Here, grey actors mean that they perform a token 
exchange with the underlying architecture model, thereby 
modelling the latency of their action. According to the 
Compaan/Laura implementation of the DCT task  
(see Figure 9), we model the execution of the preshift and 
2D-DCT at the pixel level. Using the CASE actors,  
we select pixels from only the two Y blocks inside a half 
macro-block to fire the preshift actor. Next, the 2D-DCT 
operation is modelled for every pixel, described in more 
detail further on. Finally, the pixels are stored in the output 
buffer (st), and the input and output buffers are signalled 
that, respectively, room is available again (sr) and data is 
available (sd). 
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Figure 10 Virtual processor for DCT Kahn process 

 

As mentioned before, the preshift and 2D-DCT components 
in the Compaan/Laura implementation of the DCT are 
pipelined units. We model the pipelined execution 
semantics of our preshift and 2D-DCT actors by embedding 
another SDF graph in them that models an abstract pipeline. 
Figure 12 depicts this abstract pipeline model for the  
2D-DCT composite actor. It models the latency and 
throughput behaviour of the pipeline when assuming that no 
pipeline bubbles occur within the processing of a single 
pixel block. We would like to note that we also could have 
modelled the pipeline in more detail, accurately accounting 
for pipeline stalls, by explicitly modelling all of the pipeline 
stages, like was done in Erbas et al. (2003). This is 
relatively easy using YML, which allows us to describe 
models in a repetitive manner using loop-like constructs. 

Figure 11 IDF graph for actor P2 from Figure 10 

 

For each pixel in a pixel block, the in actor in our abstract 
pipeline model fires a token to the lat and through  
actors. The token channel between the in and lat actor 
contains an initial number of 63 tokens. This means that 
after the first pixel from a pixel block, the lat actor will fire. 
This actor performs a token exchange with the underlying 
architecture model, where the latency of the lat actor equals 
to 91 cycles. Since the 2D-DCT -component pipeline in 
reality contains 92 stages, this 91-cycle latency means that 
we model the first pixel from the pixel block traversing 
through the pipeline until the last stage. After this, the 
through actor will be fired 64 times, each with a latency of a 
single cycle, representing the 64 pixels leaving the pipeline 
one after the other. 

Notably, we have been using low-level information  
– such as pipeline depth of units, latencies for 
reading/writing a pixel from/to a buffer and so on – from the 
Compaan/Laura/Molen implementation to calibrate our 
system-level model. To check whether or not the resulting 
model, which was calibrated with low-level information, 
produces accurate performance estimates at the system 
level, we compared the performance of the M-JPEG 
encoder application executed on the real Molen platform 
with the results from our system-level performance model. 
Table 1 shows the validation results for a sequence of 
sample input frames. 

Figure 12 SDF graph modelling an abstract pipeline 

 

Table 1 Validation results of M-JPEG experiment 

 Real Molen 
(cycles) 

Sesame simulation 
(cycles) 

Error 
(%) 

Full SW 
implementation 

84581250 85024000 0.5 

DCT mapped onto 
CCU 

39369970 40107869 1.9 

The results from Table 1 include both the cases in which all 
application tasks are performed in software (i.e., they are 
mapped onto Molen’s CP) and in which the DCT task is 
mapped onto Molen’s CCU. Here, we would like to stress 
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that we did not perform any tuning of our system-level 
model with Molen’s M-JPEG execution results. As can be 
seen from the results, Sesame’s system-level performance 
estimations are relatively accurate. This indicates that  
our technique for architecture model refinement, facilitating 
architectural exploration while keeping the application 
model unchanged, shows significant promise. 

6 Related work 

There are a number of architectural exploration 
environments, such as (Metro)Polis (Balarin et al., 1997, 
2003), Mescal (Mihal et al., 2002), and Milan (Mohanty and 
Prasanna, 2002), and various SystemC-based environments 
like the work of Kogel et al. (2003), that facilitate flexible 
system-level performance evaluation by providing support 
for mapping a behavioural application specification to an 
architecture specification. In Artemis, we try to push the 
separation of modelling application behaviour and 
modelling architectural constraints at the system level to 
even greater extents. This is achieved by architecture-
independent application models, application-independent 
architecture models and a mapping step that relates  
these models for (trace-driven) co-simulation. Moreover, 
within Artemis, we use multiple models of computation, 
specifically chosen in accordance with the task to be 
achieved. As already shown in this paper, we use  
process networks for application modelling, dataflow 
networks for certain tasks at the mapping layer (e.g., trace 
transformations) and a discrete-event simulator for fast 
simulation of our architecture models. 

The work of Lahiri et al. (2001) also uses a trace-driven 
approach, but this is done to extract communication 
behaviour for studying on-chip communication 
architectures. Rather than using the traces as input to an 
architecture simulator, their traces are analysed statically.  
In addition, a traditional hardware/software co-simulation 
stage is required in order to generate the traces. The Archer 
project (Živković et al., 2002, 2003b), which was already 
mentioned before, shows a lot of similarities with the 
Sesame framework. This is due to the fact that both Sesame 
and Archer stem from the earlier Spade project (Lieverse  
et al., 2001c). A major difference is, however, that Archer 
follows a different application-to-architecture mapping 
approach. Instead of using event-traces, it maps Symbolic 
Programs, which are derived from the application model, 
onto architecture model resources. 

Ptolemy (Buck et al., 1994) is an environment for 
simulation and prototyping of heterogeneous systems.  
It allows for using multiple models of computation within a 
single system simulation. It does so by supporting  
domains to build sub-systems each conforming to a different 
model of computation. Ptolemy supports an increasing set 
of models of computation, including discrete event models, 
finite state machine models, CSP (Hoare, 1978) models,  
and many types of dataflow models (Lee and Parks,  
1995): Synchronous Dataflow, Boolean Dataflow,  

Integer-controlled Dataflow, Dynamic Dataflow, as well as 
(Kahn) Process Networks (Kahn, 1974). 

Calibration of high-level simulation models using more 
accurate lower-level simulations is a well-known technique. 
For a system-level architecture model, this could, for 
example, mean that an instruction-set simulator is used to 
calibrate an abstract (system-level) model of a 
programmable processor (e.g., Mohanty and Prasanna, 
2002). Although we have not addressed such traditional 
model calibration in this paper, it is applicable to Artemis. 
In addition to that, Artemis also allows for selecting an 
application task after which the Compaan/Laura tool-chain 
automatically maps this task to an FPGA-based 
implementation. Such an automated implementation 
trajectory can rapidly produce valuable low-level 
information for calibrating our system-level models. 

Research on the gradual refinement of (abstract)  
system-level architecture performance models is still in its 
infancy. There are several attempts being made to address 
this issue, such as in the Metropolis (Balarin et al., 2003) 
and Milan frameworks (Mohanty and Prasanna, 2002), the 
work of (Peng et al., 2002), and in the context of SystemC 
(e.g., Kogel et al., 2003). In Peng et al. (2002), for example, 
a methodology is proposed in which architecture-
independent specification models are transformed (i.e., 
refined) into architecture models to facilitate architectural 
exploration. Although being promising, these efforts 
generally do not offer a clear methodology accompanied 
with tool-support that allows a designer to gradually refine 
high-level architecture performance models, while during 
this refinement process the separation between application 
and architecture is retained as much as possible to allow 
effective exploration of alternative solutions. In addition to 
this, the majority of the work in this field has focused on 
communication refinement only. For example, in Abdi et al. 
(2003), Lieverse et al. (2001b), Nicolescu et al. (2001), 
Brunel et al. (1999), Nieuwland and Lippens (1998) and 
Rowson and Sangiovanni-Vincentelli (1997), various 
mechanisms are proposed for the refinement of application 
level communication primitives into more detailed 
implementation (architecture) primitives. 

7 Conclusions 

In this paper, we provided an overview of the Artemis 
workbench, which allows designers to model (multimedia) 
applications and SoC-based (multiprocessor) architectures 
at a high level of abstraction, to map the former onto the 
latter, and to estimate performance numbers through  
co-simulation of application and architecture models. 
Moreover, we presented an approach for calibrating  
our (system-level) architecture performance models with  
low-level information derived from an automated 
implementation trajectory that can map specific application 
components onto an FPGA platform. A significant part of 
this paper was however dedicated to the architecture model 
refinement methodology of Artemis. We explained how  
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Artemis bridges the abstraction gap between application and 
architecture models by applying dataflow actors in the 
intermediate mapping layer, transforming coarse-grained 
application events into finer grained architecture events that 
drive the architecture model components. This event 
refinement technique allows for architectural exploration at 
different levels of abstraction while maintaining high-level 
and architecture independent application models. Using an 
experiment with a Motion-JPEG encoder application, we 
illustrated the system-level modelling, model refinement 
and model calibration aspects of the Artemis workbench. 
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Notes 
1Here we should note that although a significant amount of work 
has been performed on Compaan, Laura and Molen in the context 
of the Artemis project, including the integration of these research 
efforts into a single framework, they do not have their origin in 
Artemis. 

2The architecture model accounts for the modelling of bus activity 
(arbitration, transfers, etc.) when accessing this buffer. 

3In our M-JPEG application, we use 4:2:2 YUV macro-blocks. 




