
Int. J. Embedded Systems, Vol. 3, No. 3, 2008 181

Copyright © 2008 Inderscience Enterprises Ltd.

The Artemis workbench for system-level
performance evaluation of embedded systems

Andy D. Pimentel
Computer Systems Architecture Group,
Informatics Institute, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
E-mail: andy@science.uva.nl

Abstract: In this paper, we present an overview of the Artemis workbench, which provides
modelling and simulation methods and tools for efficient performance evaluation and exploration
of heterogeneous embedded multimedia systems. More specifically, we describe the Artemis
system-level modelling methodology, including its support for gradual refinement of architecture
performance models as well as for calibration of the system-level models. We show that this
methodology allows for architectural exploration at different levels of abstraction while
maintaining high-level and architecture independent application specifications. Moreover,
we illustrate these modelling aspects using a case study with a Motion-JPEG application.

Keywords: system-level modelling and simulation; model refinement; performance evaluation;
design space exploration; model calibration.

Reference to this paper should be made as follows: Pimentel, A.D. (2008) ‘The Artemis
workbench for system-level performance evaluation of embedded systems’, Int. J. Embedded
Systems, Vol. 3, No. 3, pp.181–196.

Biographical notes: Andy D. Pimentel received the MSc and PhD Degrees in Computer Science
from the University of Amsterdam, where he currently is an Assistant Professor in the
Informatics Institute. He is co-founder of the International Workshop on Systems, Architectures,
Modelling, and Simulation (SAMOS) and is member of the European Network of Excellence on
High-Performance Embedded Architecture and Compilation (HiPEAC). His research interests
include computer architecture, computer architecture modelling and simulation, system-level
design, design space exploration, performance analysis, embedded systems, and parallel
computing. He is a member of the IEEE Computer Society.

1 Introduction

Designers of modern embedded systems are faced with a
number of emerging challenges. Because embedded systems
are mostly targeted for mass production and often run on
batteries, they should be cheap to realise and power
efficient. In addition, these systems increasingly need to
support multiple applications and standards for which they
should provide high, and sometimes real-time, performance.
For example, digital televisions or mobile devices have to
support different standards for communication and coding
of digital contents. On top of this, modern embedded
systems should be flexible so that they can easily be
extended to support future applications and standards.
Such flexible support for multiple applications calls
for a high degree of programmability. However,
performance requirements and constraints on cost and
power consumption require substantial parts of these
systems to be implemented in dedicated hardware blocks.
As a result, modern embedded systems often have a
heterogeneous system architecture, i.e., they consist of
components ranging from Programmable processor cores to
fully dedicated hardware components for the time-critical
application tasks. Increasingly, such heterogeneous systems

are integrated on a single chip. This yields heterogeneous
multi-processor Systems-on-Chip (SoCs) that exploit task
level Parallelism in applications.

The heterogeneity of modern embedded systems and
the varying demands of their target applications greatly
complicate the system design. It is widely agreed upon that
traditional design methods fall short for the design of these
systems as such methods cannot deal with the systems’
complexity and flexibility. This has led to the notion of a
new design methodology, namely system-level design.
Below, we briefly describe three important ingredients of
system-level design approaches.

Platform architectures

Platform-based design (Vahid and Givargis, 2001;
Sangiovanni-Vincentelli and Martin, 2001) has become a
popular design method as it stresses the re-use of
Intellectual Property (IP) blocks. In this design approach, a
single hardware platform is used as a ‘hardware
denominator’ that is shared across multiple applications in a
given domain and is accompanied by a range of methods
and tools for design and development. This increases
production volume and reduces cost compared to
customising a chip for every application.

182 A.D. Pimentel

Separation of concerns

To even further improve the potentials for re-use of IP and
to allow for effective exploration of alternative design
solutions, it is widely recognised that the ‘separation of
concerns’ is a crucial component in system-level design
(Keutzer et al., 2000). Two common types of separation in
the design process are:

• separating computation from communication by
connecting IP processing cores via a standard
(message-passing) network interface (Benini and
de Micheli, 2002)

• separating application (what is the system supposed to
do) from architecture (how it does it) (Kienhuis et al.,
1997; Balarin et al., 1997).

High-level modelling and simulation early in the design

In system-level design, designers already start with
modelling and simulating (possible) system components and
their interactions in the early design stages (Pimentel et al.,
2001). More specifically, system-level models typically
represent application behaviour, architecture characteristics,
and the relation (e.g., mapping, hardware-software
partitioning) between application(s) and architecture. These
models do so at a high level of abstraction, thereby
minimising the modelling effort and optimising simulation
speed that is needed for targeting the early design stages.
This high-level modelling allows for early verification
of a design and can provide estimations on the performance
(e.g., Balarin et al., 1997; Pimentel et al., 2001), power
consumption (e.g., Brooks et al., 2000) or cost
(DeBardelaben et al., 1997) of the design.

Design space exploration plays a crucial role in system-
level design of embedded system (platform) architectures.
Due to the systems’ complexity, it is imperative to have
good performance evaluation tools for efficiently exploring
a wide range of design choices during the early design
stages. In this paper, we present an overview of the Artemis
workbench, which provides high-level modelling and
simulation methods and tools for efficient performance
evaluation and exploration of heterogeneous embedded
multimedia systems (Pimentel et al., 2001). More
specifically, we describe the Artemis system-level
modelling methodology -which deploys the aforementioned
principle of separation of concerns (Keutzer et al., 2000)
– and particularly focus on the support for gradual
refinement of architecture performance models as well as on
the calibration of system-level models. We show that this
methodology allows for architectural exploration at different
levels of abstraction while maintaining high-level and
architecture independent application specifications.
Furthermore, we illustrate these modelling aspects using a
case study with a Motion-JPEG encoder application.

The remainder of the paper is organised as follows.
The next section provides a birds eye view of the Artemis
workbench, briefly discussing the different tool-sets that are
integrated in the workbench. Section 3 focuses on Artemis’
system-level modelling and simulation techniques by

describing its prototype modelling and simulation
environment, called Sesame. In Section 4, we explain how
Artemis facilitates gradual refinement of system-level
architecture models by applying dataflow graphs. Section 5
illustrates the discussed modelling and refinement
techniques using a case study with a Motion-JPEG encoder
application. This section also demonstrates how our
system-level models can be calibrated with low-level
implementation information using an automated component
synthesis approach. Finally, Section 6 discusses related
work, after which Section 7 concludes the paper.

2 The Artemis workbench

The Artemis workbench consists of a set of methods and
tools conceived and integrated in a framework to allow
designers to model applications and SoC-based
(multiprocessor) architectures at a high level of abstraction,
to map the former onto the latter, and to estimate
performance numbers through co-simulation of application
and architecture models. Figure 1 depicts the flow of
operation for the Artemis workbench, where the grey parts
refer to the various tool-sets that together embody the
workbench. The point of departure is an application
domain (being multimedia applications for Artemis), an
experimental domain-specific platform architecture and a
domain-specific application specified as an executable
sequential program. The platform architecture is instantiated
in the architecture model layer of the workbench, while the
application specification is converted to a functionally
equivalent concurrent specification using a translator called
Compaan (Turjan et al., 2004; Stefanov et al., 2004;
Deprettere et al., 2002). More specifically, Compaan
transforms the sequential application specification into a
Kahn Process Network (KPN) (Kahn, 1974). In between the
application and architecture layers there is a mapping layer.
This mapping layer provides means to perform quantitative
performance analysis on levels of abstraction, and to refine
application specification components between levels of
abstraction. Such refinement is required to match
application specifications to the level of detail of the
underlying architecture models. Effectively, the mapping
layer bridges the gap between the application and
architecture (models), sometimes referred to as the
implementation gap (Mihal and Keutzer, 2003). In the next
sections, we will elaborate on all of the above modelling,
mapping, and refinement aspects in more detail.

Because Artemis operates at a high level of abstraction,
low-level component performance numbers can be used to
calibrate the system-level architecture models. To this end,
individual processes (i.e., code segments) of a KPN
application specification can be taken apart and
implemented as individual low-level components (that
appear in the current high-level instance of the platform
architecture). This results in performance numbers – as well
as in estimations on cost and power consumption – for the
low-level components that the system-level modelling
framework needs to provide accurate performance

 The Artemis workbench for system-level performance 183

estimations for the multiprocessor system architecture as a
whole. For this calibration process, the Artemis workbench
uses the Laura toolset (Zissulescu et al., 2003; Stefanov
et al., 2004) and the Molen calibration platform architecture
(Vassiliadis et al., 2001, 2003a, 2003b). Before presenting
more details on Artemis’ system-level modelling and
simulation techniques, which forms the bulk of this paper,
the remainder of this section first takes a closer look at the
Compaan1 and Laura1 tool-sets as well as the Molen1
calibration platform.

Figure 1 The infrastructure of the Artemis workbench

2.1 The Compaan and Laura tool-sets

Today, traditional imperative languages like C, C++ or
Matlab are still dominant with respect to implementing
applications for SoC-based (platform) architectures.
It is, however, very difficult to map these imperative
implementations, with typically a sequential model of
computation, onto multi-processor SoC architectures that
allow for exploiting task-level parallelism in applications. In
contrast, models of computation that inherently express
task-level parallelism in applications and make
communications explicit, such as CSP (Hoare, 1978) and
Process Networks (Lee and Parks, 1995; Kahn, 1974), allow
for easier mapping onto multi-processor SoC architectures.
However, specifying applications using these models of
computation usually requires more implementation effort in
comparison to sequential imperative solutions.

In Artemis, we use an approach in which we start from a
sequential imperative application specification – more
specifically an application written in a subset of
Mat-lab – which is then automatically converted into a KPN
(Kahn, 1974) using the Compaan tool-set (Turjan et al.,
2004; Stefanov et al., 2004; Deprettere et al., 2002).

This conversion is fast and correct by construction.
In the KPN model of computation, parallel processes
communicate with each other via unbounded FIFO
channels. Reading from channels is done in a blocking
manner, while writing to channels is non-blocking.
We decided to use KPNs for application specifications
because they nicely fit with the targeted media-processing
application domain and they are deterministic. The latter
implies that the same application input always results in the
same application output, irrespective of the scheduling of
the KPN processes. This provides us with a lot of
scheduling freedom when, as will be discussed later on,
mapping KPN processes onto SoC architecture models for
quantitative performance analysis.

The infrastructure of the Compaan tool-set is illustrated
on the left-hand side of Figure 2. The grey parts refer to the
separate tools that are part of Compaan, while the white
parts refer to the (intermediate) formats of the application
specification. Starting-point is an application specification
in Matlab, which needs to be specified as a parameterised
static nested loop program. Recently, Compaan’s scope has
been extended to also include weakly-dynamic nested loop
programs that allow for specifying data-dependent
behaviour (Stefanov and Deprettere, 2003). On these
Matlab application specifications, various source-level
transformations can be applied in order to, for example,
increase or decrease the amount of parallelism in the final
KPN (Stefanov et al., 2002). In a next step, the Matlab code
is transformed into Single Assignment Code (SAC), which
resembles the Dependence Graph (DG) of the original
nested loop program. Hereafter, the SAC is converted to a
Polyhedral Reduced Dependency Graph (PRDG) data
structure, being a compact mathematical representation
of a DG in terms of polyhedra. Finally, a PRDG is
converted into a KPN by associating a KPN process with
each node in the PRDG. The parallel KPN processes
communicate with each other according to the data
dependencies given in the DG.

The Laura tool-set (Zissulescu et al., 2003; Stefanov
et al., 2004), depicted on the right-hand side of Figure 2,
takes a KPN as input and produces synthesisable VHDL
code that implements the application specified by the KPN
for a specific FPGA platform. To this end, the KPN
specification is first converted into a functionally equivalent
network of conceptual processors, called hardware model.
This hardware model, which is platform independent as no
information on the target FPGA platform is incorporated,
defines the key components of the architecture and their
attributes. It also defines the semantic model, i.e., how the
various components interact with each other. Subsequently,
platform specific information is added to the hardware
model. This includes the addition of IP cores that implement
certain functions in the original application as well as
setting attributes of components such as bit-width and buffer
sizes. In the final step, the hardware model is converted
into VHDL. To do so, Laura supplies a piece of VHDL code
for each component in the hardware model that expresses
how to represent that component in the target architecture.

184 A.D. Pimentel

Using commercial tools, the VHDL code can then be
synthesised and mapped onto an FPGA. As can be seen in
Figure 2, the results from this automated implementation
trajectory can be fed back to Compaan to explore different
transformations that will, in the end, lead to different
implementations.

Figure 2 The Compaan (left) and Laura (right) tool-sets.

2.2 The Molen calibration platform

Figure 3 depicts the platform architecture that is used for
model calibration in Artemis. This platform architecture,
called Molen (Vassiliadis et al., 2001, 2003a, 2003b),
connects a programmable processor with a reconfigurable
unit and uses microcode to incorporate architectural support
for the reconfigurable unit. Instructions are fetched from the
memory, after which the arbiter performs a partial decoding
on the instructions to determine where they should be issued
(Kuzmanov and Vassiliadis, 2003). Those instructions that
have been implemented in fixed hardware are issued to the
Core Processing (CP) unit, which is one of the PowerPCs
from a Xilinx Virtex II Pro™ platform in the Molen
prototype implementation (Kuzmanov et al., 2004), while
instructions for custom execution are redirected to the
reconfigurable unit. The instructions entering the CP unit
are further decoded and then issued to their corresponding
functional units.

The reconfigurable unit consists of a Custom
Configured Unit (CCU), currently implemented by the
Xilinx Virtex II Pro™ FPGA, and a ρµ-code unit.
The reconfigurable unit performs operations that can be as
simple as an instruction or as complex as a piece of code
describing a certain function. Molen divides an operation
into two distinct phases: set and execute. The set phase is
responsible for reconfiguring the CCU hardware, enabling
the execution of an operation. Such a phase may be

subdivided into two sub-phases, namely partial-set (p-set)
and complete-set (c-set). The p-set phase covers common
functions of an application or set of applications.
Subsequently, the c-set sub-phase only reconfigures those
blocks in the CCU which are not covered in the p-set
sub-phase in order to complete the functionality of the CCU.

Figure 3 The Molen calibration platform architecture

To perform the actual reconfiguration of the CCU,
reconfiguration microcode is loaded into the ρµ-code unit
and then executed (using p-set and c-set instructions)
(Kuzmanov et al., 2003). Hereafter, the execute phase is
responsible for the operation execution on the CCU,
performed by executing the execution microcode. Important
in this respect is the fact that both the set and execute phases
do not explicitly specify a certain operation to be performed.
Instead, the p-set, c-set and execute instructions point to the
memory location where the reconfiguration or execution
microcode is stored.

The Compaan and Laura tool-sets in combination with
the Molen platform architecture provide great opportunities
for the previously discussed calibration of system-level
architecture models. For this purpose, Laura maps a specific
component from an application specification to a hardware
implementation by converting the Compaan generated KPN
associated with the application component to a VHDL
implementation. This VHDL code is subsequently used as
reconfiguration microcode for Molen’s CCU, while the
remainder of the application specification (i.e., the code that
has not been synthesised to a hardware implementation) is
executed on Molen’s Core Processor. As a result, the
application component mapped onto the CCU provides
low-level implementation numbers that can be used to
calibrate the corresponding component in the system-level
architecture model. In Section 3.4, we present a case study
in which this model calibration is illustrated for a DCT task
in a Motion-JPEG encoder application.

3 The Sesame environment

Artemis’ system-level modelling and simulation
environment, called Sesame (Pimentel et al., 2002; Coffland
and Pimentel, 2003), builds upon the ground-laying work of

 The Artemis workbench for system-level performance 185

the Spade framework (Lieverse et al., 2001c). This means
that Sesame facilitates performance analysis of embedded
systems architectures according to the Y-chart design
approach (Kienhuis et al., 1997; Balarin et al., 1997),
recognising separate application and architecture models
within a system simulation. An application model describes
the functional behaviour of an application, including both
computation and communication behaviour. An architecture
model defines architecture resources and captures their
performance constraints. After explicitly mapping an
application model onto an architecture model, they are
co-simulated via trace-driven simulation. This allows for
evaluation of the system performance of a particular
application, mapping, and underlying architecture. Essential
in this modelling methodology is that an application model
is independent from architectural specifics, assumptions on
hardware/software partitioning, and timing characteristics.
As a result, a single application model can be used to
exercise different hardware/software partitionings and can
be mapped onto a range of architecture models, possibly
representing different system architectures or simply
modelling the same system architecture at various levels of
abstraction. The layered infrastructure of Sesame is shown
in Figure 4.

Figure 4 Sesame’s infrastructure

3.1 Application modelling

For application modelling (de Kock et al., 2000), Sesame
uses KPN application specifications that are generated by
the Compaan toolset or have been derived by hand.
The computational behaviour of an application is captured
by instrumenting the code of each Kahn process with
annotations that describe the application’s computational
actions. The reading from or writing to Kahn channels
represents the communication behaviour of a process within
the application model. By executing the Kahn model, each
process records its actions in order to generate its own trace
of application events, which is necessary for driving an
architecture model. These application events typically are

coarse grained, such as execute(DCT) or read(channeLid,
pixel-block).

To execute Kahn application models, and thereby
generating the application events that represent the
workload imposed on the architecture, Sesame features a
process network execution engine supporting Kahn
semantics. This execution engine runs the Kahn processes
as separate threads using the Pthreads package. Currently,
the Kahn processes need to be written in C++, but C and
Java support is also planned for the future. To allow for
rapid creation and modification of models, the structure of
the application models (i.e., which processes are used in the
model and how they are connected to each other) is not
hard-coded in the C++ implementation of the processes, but
instead, it is described in a language called YML (Y-chart
Modelling Language) (Coffland and Pimentel, 2003). This
is an XML-based language which is similar to Ptolemy’s
MoML (Lee and Neuendorffer, 2000) but is slightly less
generic in the sense that YML only needs to support a few
simulation domains. As a consequence, YML supports a
subset of MoML’s features. However, YML provides one
additional feature in comparison to MoML as it contains
built-in scripting support. This allows for loop-like
constructs, mapping and connectivity functions, and so on,
which facilitate the description of large and complex
models. In addition, it enables the creation of libraries of
parameterised YML component descriptions that can be
instantiated with the appropriate parameters, thereby
fostering re-use of YML descriptions. To simplify the use of
YML even further, a YML editor has also been developed
to compose model descriptions using a GUI. Figure 5 gives
an impression of the YML editor’s GUI, showing its layered
layout that corresponds to the three layers of Sesame
(see Figure 4), namely the application model layer, mapping
layer and architecture model layer.

3.2 Architecture modelling

Architecture models in Sesame, which typically operate at
the so-called transaction level (Cai and Gajski, 2003;
Grötker et al., 2002), simulate the performance
consequences of the computation and communication events
generated by an application model. These architecture
models solely account for architectural performance
constraints and do not need to model functional behaviour.
This is possible because the functional behaviour is already
captured in the application models, which subsequently
drive the architecture simulation. An architecture model is
constructed from generic building blocks provided by a
library, which contains template performance models for
processing cores, communication media (like busses) and
various types of memory. The structure of architecture
models – specifying which building blocks are used from
the library and the way they are connected – is also
described in YML.

Sesame’s architecture models are implemented using
either Pearl (Muller, 1993) or SystemC (http://
www.systemc.org/, Grötker et al., 2002). Pearl is a small but
powerful discrete-event simulation language which provides

186 A.D. Pimentel

easy construction of the models and fast simulation
(Pimentel et al., 2002). For our SystemC architecture
models, we provide an add-on library to SystemC,
called SCPEx (SystemC Pearl Extension) (Thompson
and Pimentel, 2004), which extends SystemC’s
programming model with Pearl’s message-passing paradigm

and which provides SystemC with YML support.
SCPEx raises the abstraction level of SystemC
models, thereby reducing the modelling effort required
for developing transaction-level architecture models and
making the modelling process less prone to programming
errors.

Figure 5 A screenshot of the YML editor (see online version for colours)

3.3 Mapping

To map Kahn processes (i.e., their event traces) from
an application model onto architecture model components
and to support the scheduling of application events
from different event traces when multiple Kahn processes
are mapped onto a single architecture component
(e.g., a programmable processor), Sesame provides an
intermediate mapping layer. This layer consists of virtual
processor components and FIFO buffers for communication
between the virtual processors. There is a one-to-one
relationship between the Kahn processes in the application
model and the virtual processors in the mapping layer. This
is also true for the Kahn channels and the FIFO buffers in
the mapping layer, except for the fact that the latter are
limited in size. Their size is parameterised and dependent on
the modelled architecture. As the structure of the mapping
layer closely resembles the structure of the application
model under investigation, Sesame provides a tool that is
able to automatically generate the mapping layer from the
YML description of an application model.

A virtual processor in the mapping layer reads in an
application trace from a Kahn process via a trace event

queue and dispatches the events to a processing component
in the architecture model. The mapping of a virtual
processor onto a processing component in the architecture
model is freely adjustable, facilitated by the fact that
the mapping layer and its mapping onto the architecture
model are described in YML (and manipulated
using the YML editor, see Figure 5). Communication
channels – i.e., the buffers in the mapping layer – are also
mapped onto the architecture model. In Figure 4, for
example, one buffer is placed in shared memory2 while the
other buffer is mapped onto a point-to-point FIFO channel
between processors 1 and 2.

The mechanism for dispatching application events from
a virtual processor to an architecture model component
guarantees deadlock-free scheduling of the application
events from different event traces. In this mechanism,
computation events are always directly dispatched by a
virtual processor to the architecture component onto which
it is mapped. The latter schedules incoming application
events that originate from different event queues according
to a given policy and subsequently models their timing
consequences. The scheduling of application events
supports a range of predefined policies, like FCFS and

 The Artemis workbench for system-level performance 187

round-robin, but can also easily be customised with
alternative policies. Communication events are, however,
not directly dispatched by a virtual processor. Rather, a
virtual processor first consults the appropriate buffer at
the mapping layer to check whether or not a communication
is safe to take place so that no deadlock can occur. Only if it
is found to be safe (i.e., for read events the data should be
available and for write events there should be room in the
target buffer), then communication events may be
dispatched to the processor component in the architecture
model. As long as a communication event cannot be
dispatched, the virtual processor blocks. This is possible
because the mapping layer executes in the same simulation
as the architecture model. Therefore, both the mapping layer
and the architecture model share the same simulation-time
domain. This also implies that each time a virtual processor
dispatches an application event (either computation or
communication) to a component in the architecture model,
the virtual processor is blocked in simulated time until the
event’s latency has been simulated by the architecture
model.

When architecture model components are gradually
refined to include more implementation details, the virtual
processors at the mapping layer are also refined. The latter
is done with dataflow graphs such that it allows us to
perform architectural simulation at multiple levels of
abstraction without modifying the application model.
Figure 4 illustrates this dataflow-based refinement by
refining the virtual processor for process B with a fictive
dataflow graph. In this approach, the application event
traces specify what a virtual processor executes and with
whom it communicates, while the internal dataflow graph of
a virtual processor specifies how the computations and
communications take place at the architecture level. In the
next section, we provide more insight on how this
refinement approach works by explaining the relation
between trace transformations for refinement and dataflow
actors at the mapping layer.

In a closely related project, called Archer (Živković
et al., 2002), an alternative mapping approach is studied.
That is, while Archer and Sesame share quite a few
application and architecture modelling techniques, Archer
uses a different mapping strategy than Sesame. In Archer,
Control Data Flow Graphs (CDFG) (Wolf, 2001) are taken
as a basis. However, as the CDFG notation is too complex
for design space exploration, the CDFGs are lifted to a
higher abstraction level, called Symbolic Programs (SP)
(Živković et al., 2003b). The SPs, which in Archer are
automatically derived from a KPN application specification,
are CDFG-like representations of the Kahn processes. They
contain control constructs like CDFGs, but unlike CDFGs,
they are not directly executable since SPs only contain
symbolic instructions (i.e., application events) and no real
code. Therefore, SPs need extra information for execution to
determine the control flow within an SP, which is supplied
in terms of control traces. These control traces are
generated by running the application with a particular set of
data. At the architecture layer, SPs are executed with
the control traces to generate event traces which are

subsequently used to drive the resources in the architecture
model. Like Sesame, Archer also supports the refinement
of architecture models. It does so by transforming
application-level SPs into architecture-level SPs (Živković
et al., 2003a).

3.4 Mapping support

To facilitate effective design space exploration, Sesame
provides some (initial) support for finding promising
candidate application-to-architecture mappings to guide a
designer during the system-level simulation stage. To this
end, we have developed a mathematical model that captures
several trade-offs faced during the process of mapping
(Erbas et al., 2003). In this model, we take into account the
computational and communication demands of an
application as well as the properties of an architecture, in
terms of computational and communication performance,
power consumption, and cost. The resulting trade-offs with
respect to performance, power consumption and cost are
formulated as a multi-objective combinatorial optimisation
problem. Using an optimisation software tool, which is
based on a widely-known evolutionary algorithm (Zitzler,
1999), the mapping decision problem is solved by providing
the designer with a set of approximated Pareto-optimal
mapping solutions that can be further evaluated using
system-level simulation. For a more detailed description of
this mapping support, the interested reader is referred to
(Erbas et al., 2003).

4 Architecture model refinement

Refining architecture model components in Sesame requires
that the application events driving them should also be
refined to match the architectural detail. Since we aim at a
smooth transition between different abstraction levels,
re-implementing or transforming (parts of) the application
models for each abstraction level is undesirable. Instead,
Sesame maintains only application models at a high level of
abstraction (thereby optimising the potentials for reuse of
application models) and bridges the abstraction gap between
application models and underlying architecture models at
the mapping layer. As will be explained in this section,
bridging the abstraction gap is accomplished by refining the
virtual processors in the mapping layer with dataflow actors
that transform coarse-grained application events into finer
grained events at the desired abstraction level which are
subsequently used to drive the architecture model
components (Pimentel and Erbas, 2003; Erbas and Pimentel,
2003; Erbas et al., 2003). In other words, the dataflow
graphs consume external input (dataflow) tokens that
represent high-level computational and communication
application events and produce external output tokens that
represent the refined architectural events associated with the
application events.

Refinement of application events is denoted using trace
transformations (Lieverse et al., 2001b), in which the
left-hand side contains the coarse-grained application events

188 A.D. Pimentel

that need to be refined and the right-hand side the resulting
architecture-level events. Furthermore, ‘→’ symbols in trace
transformations denote the ‘followed by’ ordering relation.
To give an example, the following trace transformations
refine R(ead) and W(rite) application events such that the
synchronisations are separated from actual data transfers
(Lieverse et al., 2001b):

ref

R cd ld sr⇒ → →
Θ

 (1)

.
ref

W cr st sd⇒ → →
Θ

 (2)

Here, refined architecture-level events check-data*,
load-data†, signal-room*, check-room*, store-data†),
signal-data* are abbreviated as cd, ld, sr, cr, st, sd,
respectively. The events marked with * refer to
synchronisations while those marked with † refer to data
transmissions. The above refinements allow for, for
example, moving synchronisation points or reducing their
number when a pattern of application events is transformed
(Lieverse et al., 2001b; Pimentel and Erbas, 2003).
Consider, for example, an application process that reads a
block of data from an input buffer, performs some
computation on it, and writes the results to an output buffer.
This would generate a ‘R → E → W ’ application-event
pattern, in which the E(xecute) refers to the computation on
the block of data. Assuming that this application process is
mapped onto a processing component that does not have
local storage but operates directly on its input and output
buffers, we need the following trace transformation:

.
ref

R E W cd cr ld E st sr sd→ → ⇒ → → → → → →
Θ

 (3)

In the refined event sequence, we early check — using the
check-room (cr) – if there is room in the output buffer
before fetching the data (ld) from the input buffer because
the processing component cannot temporarily store results
locally. In addition, the input buffer must remain available
until the processing component has finished operating on it
(i.e., after writing the results to the output buffer).
Therefore, the signal-room (sr) is scheduled after the st.

In Sesame, Synchronous Data Flow (SDF) (Lee and
Messerschmitt, 1987) actors are deployed to realise trace
transformations. Integer-controlled Data Flow (IDF) (Buck,
1994) actors are subsequently utilised to model repetitions
and branching conditions which may be present in the
application code (Erbas and Pimentel, 2003). However, as
illustrated in Pimentel and Erbas (2003), they may also be
used within static transformations to achieve less
complicated (in terms of the number of actors and channels)
dataflow graphs.

Refining application event traces by means of dataflow
actors works as follows. For each Kahn process at the
application layer, an IDF graph is synthesised at the
mapping layer and embedded in the corresponding virtual
processor. As a result, each virtual processor is equipped
with an abstract representation of the application code
from its corresponding Kahn process, similar to the concept
of Symbolic Programs from Živković et al. (2002).

Sesame’s IDF graphs consist of static SDF actors (due to the
fact that SDF is a subset of IDF) embodying the architecture
events that are the – possibly transformed – representation
of application events at the architecture level. In addition, to
capture control behaviour of the Kahn processes, the IDF
graphs also contain dynamic actors for conditional jumps
and repetitions. The IDF graphs are executable as the actors
have an execution mechanism called firing rules which
specify when an actor can fire. When firing an actor, it
consumes the required tokens from its input token channels
and produces a specified number of tokens on its output
channels. A special characteristic of our IDF graphs is that
the SDF actors are tightly coupled with the architecture
model components (Pimentel and Erbas, 2003). This means
that a firing SDF actor may send a token to the architecture
model to initiate the simulation of an event. The SDF actor
in question is then blocked until it receives an
acknowledgement token from the architecture model
indicating that the performance consequences of the event
have been simulated within the architecture model. To give
an example, an SDF actor that embodies a write event will
block after firing until the write has been simulated at the
architecture level.

In IDF graphs, scheduling information of IDF actors is
not incorporated into the graph definition but is explicitly
supplied by a scheduler. This scheduler operates on the
original application event traces in order to schedule our
IDF actors. The actor scheduling can be done either in a
semi-static or dynamic manner. In dynamic scheduling, the
application and architecture models are co-simulated
using a UNIX IPC-based interface to communicate events
from the application model to the scheduler. As a
consequence, the scheduler only operates on a window of
application events which implies that the IDF graphs cannot
be analysed at compile-time. This means that, for example,
it is not possible to decide at compile-time whether an IDF
graph will complete its execution in finite time, or whether
the execution can be performed with bounded memory.
Alternatively, we can also schedule the IDF actors in a
semi-static manner. To do so, the application model should
first generate the entire application traces and store them
into trace files (if their size permits this) prior to the
architectural simulation. This static scheduling mechanism
is a well-known technique in Ptolemy (Buck et al., 1994)
and has been proven to be very useful for system simulation
(Buck, 1994). However, in Sesame, it does not yield to a
fully static scheduling. This is because of the fact that, as
was previously explained, our SDF actors have a token
exchange mechanism with the underlying architecture
model, yielding some dynamic behaviour.

We also intend to investigate whether or not our IDF
graphs can be specified as so-called well-behaved dataflow
graphs (Gao et al., 1992). In these well-behaved dataflow
graphs dynamic actors are only used as a part of two
predefined clusters of actors – known as schemas – that
allow for modelling conditional and repetitive behaviour.
The resulting graphs have, as opposed to regular IDF
graphs, many of the same attractive properties with respect
to static analysis as graphs composed only of SDF actors.

 The Artemis workbench for system-level performance 189

To illustrate how IDF graphs are constructed and
applied for event refinement, we use an example taken from
a Motion-JPEG encoder application we studied in Lieverse
et al. (2001a) and Pimentel et al. (2002). Figure 6 shows an
annotated C++ code fragment from the Quality-Control
(QC) Kahn process of the Motion-JPEG application. The
QC process dynamically computes the tables for Huffman
encoding as well as those required for quantising each frame
in the video stream, according to the image statistics and the
obtained compression bitrate of the previous video frame.
In Figure 7, an IDF graph for the QC process is given,
realising a high-level (unrefined) simulation. That is, the
architecture-level events embodied by the SDF actors
(depicted as circles) directly represent the application-level
R(ead), E(xecute) and W(rite) events. The SDF actors
drive the architecture model components by the
aforementioned token exchange mechanism, although
Figure 7 does not depict the architecture model nor the
token exchange channels for the sake of simplicity.
Also not shown are the token channels to and from the IDF
graphs of neighbouring virtual processors with which is
communicated. For example, the R(ead) actors are in reality
connected to a W(rite) actor from a remote virtual processor
in order to signal when data is available and when room is
available. The IDF actors CASE-BEGIN, CASE-END,
REPEAT-BEGIN, and REPEAT-END model conditional
and repetition structures that are present in the application
code. The scheduler reads the application trace from the
Kahn process in question and executes the IDF graph by
scheduling the IDF actors accordingly by sending the
appropriate control tokens. In Figure 7, there are
(horizontal) dotted token channels between the SDF actors,
denoting dependencies. Adding these token channels to the
graph results in sequential execution of architecture-level
events while removing them will allow for exploiting
parallelism by the underlying architecture model. Like all
models in Sesame, the structure of our IDF graphs is also
described using YML.

In Figure 8, an IDF graph for the QC process is shown
that implements the aforementioned communication
refinement in which the application-level R(ead) and W(rite)
events are refined such that the synchronisation and
data-transfer parts become explicit. The computational
E(xecute) events remain unrefined in this example.
We again omitted the token channels to/from IDF graphs of
neighbouring virtual processors in Figure 8, but in reality
cd actors have, for example, an incoming token channel
from an sd actor of a remote IDF graph. By firing the
refined SDF actors (cd, cr, etc.) in the IDF graph according
to the order in which they appear on the right-hand side of a
trace transformation – see for example transformation
(equation (3)), noting that the right-hand side may also be
specified as a partial ordering (Lieverse et al., 2001b;
Erbas et al., 2003) – this automatically yields a valid

schedule for the IDF graph (Erbas and Pimentel, 2003).
Here, we also recall that the level of parallelism between the
architecture-level events is specified by the presence or
absence of token channels between SDF actors.
To conclude, communication refinement is accomplished by
simply replacing SDF actors with refined ones, allowing to
evaluate the performance of different communication
behaviours at architecture level while the application model
remains unaffected. As shown in Erbas et al. (2003) and like
we will demonstrate in the next section, this approach
allows for refining computational behaviour as well.

Figure 6 An annotated C++ code fragment

Figure 7 IDF graph for high-level (unrefined) simulation

190 A.D. Pimentel

Figure 8 IDF graph realising communication refinement

The IDF-based refinement approach also permits
mixed-level simulations, in which only parts of the
architecture model are refined while the other parts remain
at the higher level of abstraction. This will be demonstrated
in the next section too. These mixed-level simulations
enable more detailed performance evaluation of a specific
architecture component in the context of the behaviour of
the whole system. They therefore avoid the need for
building a completely refined architecture model during the
early design stages. Moreover, mixed-level simulations do
not suffer from deteriorated system evaluation efficiency
caused by unnecessarily refined parts of the architecture
model.

5 Motion-JPEG case study

This section presents an experiment that illustrates some of
the important aspects of Artemis’ flow of operation
as depicted in Figure 1. More specifically, using the
Motion-JPEG (M-JPEG) encoder application from
the previous section, we demonstrate how model calibration
can be performed by means of the Compaan/Laura tool-sets
and the Molen platform. Furthermore, we describe the
system-level modelling and simulation aspects of the
M-JPEG experiment, emphasising on the IDF-based
architecture model refinement that was performed.

In the experiment, we selected the DCT task from the
M-JPEG application to be used for model calibration.
This means that the DCT task is taken ‘all the way down’ to
a hardware implementation in order to study its low-level

performance aspects. To do so, the following steps were
taken, which are integrally shown in Figure 9. The DCT was
first isolated from the sequential M-JPEG code and used as
input to the Compaan tool-set. Subsequently, Compaan
generated a KPN application specification for the DCT task.
This DCT KPN is internally specified at pixel level but has
in- and output tasks that operate at the level of pixel blocks
because the original M-JPEG application specification also
operates at this block level. Using the Laura tool-set, the
KPN for the DCT task was translated into a VHDL
implementation, in which for example the 2D-DCT
component is implemented as a 92-stage pipelined IP block.
This implementation can subsequently be mapped onto the
FPGA (i.e., CCU) of the Molen platform. By mapping the
remainder of the M-JPEG code onto Molen’s (CP), we were
able to study the hardware DCT implementation in the
context of the M-JPEG application. As will be explained
later, the results of this exercise have been used to calibrate
our system-level architecture modelling. Although being out
of scope for this paper, it might be worth mentioning that
the M-JPEG encoder with FPGA-implemented DCT
obtained a 2.14 speedup – out of a 2.5 maximum attainable
theoretical speedup – in comparison to a full software
implementation. For the system-level modelling and
simulation part of the experiment, we decided to model the
Molen calibration platform architecture itself. This gives us
the opportunity to actually validate our performance
estimations against the real numbers from the
implementation. The resulting system-level Molen model
contains two processing components (Molen’s CP and
CCU) which are bi-directionally connected using two
uni-directional FIFO buffers. Like in the real Laura →
Molen mapping, we mapped the DCT Kahn process from
our M-JPEG application model onto the CCU component in
the architecture model, whereas the remaining Kahn
processes were mapped onto the CP component. We also
decided to refine the CCU in our architecture model such
that it models the pixel-level DCT implementation used in
the Compaan/Laura implementation. The CP component in
our architecture model was not refined, implying that it
operates (i.e., models timing consequences) at the same
(pixel-block) level as the application events it receives from
the application model. Hence, this yields a mixed-level
simulation. We would also like to stress that the M-JPEG
application model was not changed for this experiment. This
means that the application events for the CCU component,
referring to DCT operations on entire pixel blocks, needed
to be refined to pixel-level events. In addition, at the
architecture model level, the execution of these pixel-level
events required to be modelled according to the pipelined
execution semantics of the actual implementation.
This because the Preshift and 2D-DCT blocks in the
Laura-generated implementation are pipelined units.

 The Artemis workbench for system-level performance 191

Figure 9 Model calibration for the DCT task

According to what was explained in the previous section,
we accomplished the refinement of the CCU component in
the architecture model by refining the virtual processor
associated with the DCT Kahn process in the mapping layer,
as this is the virtual processor that is mapped onto the CCU
component. The resulting IDF graph that is embedded in the
virtual processor has several levels of hierarchy, of which
the top level is shown in Figure 10.

The top-level IDF graph consists of the actor scheduler
and two actors, called P1 and P2. These two actors refer to
the two alternating application-event patterns that the DCT
process generates. One of the patterns (denoted by actor P1)
results from the DCT process finding out the location
(i.e., which input buffer) of the next half macro-block3 that
needs to be processed, while the other pattern (denoted by
actor P2) results from the actual processing (reading,
executing, and writing) of a half macro-block. As we are not
interested in the first application-event pattern, actor
P1 is not further refined. The channels labelled with Type,
Block-in and Block-out in Figure 10 refer to the token
channels to and from the remote virtual processors with
which is communicated. The two dotted double-headed
arrows represent the token exchange channels connected
to the architecture model for modelling the latencies
associated with actor firings, as was explained in the
previous section.

In Figure 11, we zoom in on actor P2, showing the
internal IDF graph of this composite actor. Actor P2 is fired

each time the scheduler at the top level (see Figure 10)
recognises the processing of a half macro-block from the
incoming application event trace. So, this implies that actor
P2 describes the architectural behaviour of processing a half
macro-block. To do so, P2 first models the processing of
single pixel blocks from a half macro-block using the
REPEAT actors. The REPEAT actors receive control tokens
from the scheduler specifying that a half macro-block
consists of four pixel blocks (2Y, 1U, 1V). For every pixel
block, it is first checked whether or not the data is available
in the input buffer (cd) and room is available to store results
in the output buffer (cr). Subsequently, we model the
reading of the pixel block from the input buffer by means of
the ld actor, which generates 64 output tokens when fired.
These tokens represent the separate pixels inside a pixel
block. Here, grey actors mean that they perform a token
exchange with the underlying architecture model, thereby
modelling the latency of their action. According to the
Compaan/Laura implementation of the DCT task
(see Figure 9), we model the execution of the preshift and
2D-DCT at the pixel level. Using the CASE actors,
we select pixels from only the two Y blocks inside a half
macro-block to fire the preshift actor. Next, the 2D-DCT
operation is modelled for every pixel, described in more
detail further on. Finally, the pixels are stored in the output
buffer (st), and the input and output buffers are signalled
that, respectively, room is available again (sr) and data is
available (sd).

192 A.D. Pimentel

Figure 10 Virtual processor for DCT Kahn process

As mentioned before, the preshift and 2D-DCT components
in the Compaan/Laura implementation of the DCT are
pipelined units. We model the pipelined execution
semantics of our preshift and 2D-DCT actors by embedding
another SDF graph in them that models an abstract pipeline.
Figure 12 depicts this abstract pipeline model for the
2D-DCT composite actor. It models the latency and
throughput behaviour of the pipeline when assuming that no
pipeline bubbles occur within the processing of a single
pixel block. We would like to note that we also could have
modelled the pipeline in more detail, accurately accounting
for pipeline stalls, by explicitly modelling all of the pipeline
stages, like was done in Erbas et al. (2003). This is
relatively easy using YML, which allows us to describe
models in a repetitive manner using loop-like constructs.

Figure 11 IDF graph for actor P2 from Figure 10

For each pixel in a pixel block, the in actor in our abstract
pipeline model fires a token to the lat and through
actors. The token channel between the in and lat actor
contains an initial number of 63 tokens. This means that
after the first pixel from a pixel block, the lat actor will fire.
This actor performs a token exchange with the underlying
architecture model, where the latency of the lat actor equals
to 91 cycles. Since the 2D-DCT -component pipeline in
reality contains 92 stages, this 91-cycle latency means that
we model the first pixel from the pixel block traversing
through the pipeline until the last stage. After this, the
through actor will be fired 64 times, each with a latency of a
single cycle, representing the 64 pixels leaving the pipeline
one after the other.

Notably, we have been using low-level information
– such as pipeline depth of units, latencies for
reading/writing a pixel from/to a buffer and so on – from the
Compaan/Laura/Molen implementation to calibrate our
system-level model. To check whether or not the resulting
model, which was calibrated with low-level information,
produces accurate performance estimates at the system
level, we compared the performance of the M-JPEG
encoder application executed on the real Molen platform
with the results from our system-level performance model.
Table 1 shows the validation results for a sequence of
sample input frames.

Figure 12 SDF graph modelling an abstract pipeline

Table 1 Validation results of M-JPEG experiment

 Real Molen
(cycles)

Sesame simulation
(cycles)

Error
(%)

Full SW
implementation

84581250 85024000 0.5

DCT mapped onto
CCU

39369970 40107869 1.9

The results from Table 1 include both the cases in which all
application tasks are performed in software (i.e., they are
mapped onto Molen’s CP) and in which the DCT task is
mapped onto Molen’s CCU. Here, we would like to stress

 The Artemis workbench for system-level performance 193

that we did not perform any tuning of our system-level
model with Molen’s M-JPEG execution results. As can be
seen from the results, Sesame’s system-level performance
estimations are relatively accurate. This indicates that
our technique for architecture model refinement, facilitating
architectural exploration while keeping the application
model unchanged, shows significant promise.

6 Related work

There are a number of architectural exploration
environments, such as (Metro)Polis (Balarin et al., 1997,
2003), Mescal (Mihal et al., 2002), and Milan (Mohanty and
Prasanna, 2002), and various SystemC-based environments
like the work of Kogel et al. (2003), that facilitate flexible
system-level performance evaluation by providing support
for mapping a behavioural application specification to an
architecture specification. In Artemis, we try to push the
separation of modelling application behaviour and
modelling architectural constraints at the system level to
even greater extents. This is achieved by architecture-
independent application models, application-independent
architecture models and a mapping step that relates
these models for (trace-driven) co-simulation. Moreover,
within Artemis, we use multiple models of computation,
specifically chosen in accordance with the task to be
achieved. As already shown in this paper, we use
process networks for application modelling, dataflow
networks for certain tasks at the mapping layer (e.g., trace
transformations) and a discrete-event simulator for fast
simulation of our architecture models.

The work of Lahiri et al. (2001) also uses a trace-driven
approach, but this is done to extract communication
behaviour for studying on-chip communication
architectures. Rather than using the traces as input to an
architecture simulator, their traces are analysed statically.
In addition, a traditional hardware/software co-simulation
stage is required in order to generate the traces. The Archer
project (Živković et al., 2002, 2003b), which was already
mentioned before, shows a lot of similarities with the
Sesame framework. This is due to the fact that both Sesame
and Archer stem from the earlier Spade project (Lieverse
et al., 2001c). A major difference is, however, that Archer
follows a different application-to-architecture mapping
approach. Instead of using event-traces, it maps Symbolic
Programs, which are derived from the application model,
onto architecture model resources.

Ptolemy (Buck et al., 1994) is an environment for
simulation and prototyping of heterogeneous systems.
It allows for using multiple models of computation within a
single system simulation. It does so by supporting
domains to build sub-systems each conforming to a different
model of computation. Ptolemy supports an increasing set
of models of computation, including discrete event models,
finite state machine models, CSP (Hoare, 1978) models,
and many types of dataflow models (Lee and Parks,
1995): Synchronous Dataflow, Boolean Dataflow,

Integer-controlled Dataflow, Dynamic Dataflow, as well as
(Kahn) Process Networks (Kahn, 1974).

Calibration of high-level simulation models using more
accurate lower-level simulations is a well-known technique.
For a system-level architecture model, this could, for
example, mean that an instruction-set simulator is used to
calibrate an abstract (system-level) model of a
programmable processor (e.g., Mohanty and Prasanna,
2002). Although we have not addressed such traditional
model calibration in this paper, it is applicable to Artemis.
In addition to that, Artemis also allows for selecting an
application task after which the Compaan/Laura tool-chain
automatically maps this task to an FPGA-based
implementation. Such an automated implementation
trajectory can rapidly produce valuable low-level
information for calibrating our system-level models.

Research on the gradual refinement of (abstract)
system-level architecture performance models is still in its
infancy. There are several attempts being made to address
this issue, such as in the Metropolis (Balarin et al., 2003)
and Milan frameworks (Mohanty and Prasanna, 2002), the
work of (Peng et al., 2002), and in the context of SystemC
(e.g., Kogel et al., 2003). In Peng et al. (2002), for example,
a methodology is proposed in which architecture-
independent specification models are transformed (i.e.,
refined) into architecture models to facilitate architectural
exploration. Although being promising, these efforts
generally do not offer a clear methodology accompanied
with tool-support that allows a designer to gradually refine
high-level architecture performance models, while during
this refinement process the separation between application
and architecture is retained as much as possible to allow
effective exploration of alternative solutions. In addition to
this, the majority of the work in this field has focused on
communication refinement only. For example, in Abdi et al.
(2003), Lieverse et al. (2001b), Nicolescu et al. (2001),
Brunel et al. (1999), Nieuwland and Lippens (1998) and
Rowson and Sangiovanni-Vincentelli (1997), various
mechanisms are proposed for the refinement of application
level communication primitives into more detailed
implementation (architecture) primitives.

7 Conclusions

In this paper, we provided an overview of the Artemis
workbench, which allows designers to model (multimedia)
applications and SoC-based (multiprocessor) architectures
at a high level of abstraction, to map the former onto the
latter, and to estimate performance numbers through
co-simulation of application and architecture models.
Moreover, we presented an approach for calibrating
our (system-level) architecture performance models with
low-level information derived from an automated
implementation trajectory that can map specific application
components onto an FPGA platform. A significant part of
this paper was however dedicated to the architecture model
refinement methodology of Artemis. We explained how

194 A.D. Pimentel

Artemis bridges the abstraction gap between application and
architecture models by applying dataflow actors in the
intermediate mapping layer, transforming coarse-grained
application events into finer grained architecture events that
drive the architecture model components. This event
refinement technique allows for architectural exploration at
different levels of abstraction while maintaining high-level
and architecture independent application models. Using an
experiment with a Motion-JPEG encoder application, we
illustrated the system-level modelling, model refinement
and model calibration aspects of the Artemis workbench.

Credits

A large number of people are responsible for, or have
contributed to, the work described in this paper. The
Compaan and Laura tool-sets have been developed at
Leiden University by the group of Ed Deprettere.
Main contributors of these tools-sets are Alexandru Turjan,
Bart Kienhuis, Edwin Rijpkema, Todor Stefanov, Claudiu
Zissulescu, and Ed Deprettere. The Molen platform has
been designed and developed at Delft University of
Technology by the group of Stamatis Vassiliadis.
We especially would like to mention the following Molen
contributors: Stephan Wong, Georgi Kuzmanov, Georgi
Gaydadjiev and Stamatis Vassiliadis. The Sesame
modelling and simulation framework has been developed at
the University of Amsterdam by the group of Andy
Pimentel. The main contributors of Sesame are: Berry van
Halderen, Simon Polstra, Frank Terpstra, Joseph Cofnand,
Cagkan Erbas, and Andy Pimentel. In addition, we would
like to give credit to Paul Lieverse, Bart Kienhuis, Ed
Deprettere, Kees Vissers, Pieter van der Wolf, and Vladimir
Zivkovic for their ground-laying work with respect to the
modelling methodology applied in Artemis.

Acknowledgements

This research is supported by PROGRESS, the embedded
systems research program of the Dutch organisation for
Scientific Research NWO, the Dutch Ministry of Economic
Affairs and the Technology Foundation STW. We thank
Alexandru Turjan, Claudiu Zissulescu, Todor Stefanov,
Georgi Kuzmanov, Cagkan Erbas and Simon Polstra for
providing valuable input to this paper.

References
Abdi, S., Shin, D. and Gajski, D. (2003) ‘Automatic

communication refinement for system level design’, Proc.
Design Automation Conference (DAC), June, pp.300–305.

Balarin, F., Sentovich, E., Chiodo, M., Giusto, P., Hsieh, H.,
Tabbara, B., Jurecska, A., Lavagno, L., Passerone, C.,
Suzuki, K. and Sangiovanni-Vincentelli, A. (1997)
Hardware-Software Co-Design of Embedded Systems – The
POLIS Approach, Kluwer Academic Publishers.

Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C.
and Sangiovanni-Vincentelli, A. (2003) ‘Metropolis:
an integrated electronic system design environment’,
IEEE Computer, Vol. 36, No. 4, April.

Benini, L. and de Micheli, G. (2002) ‘Networks on chips: a new
SoC paradigm’, IEEE Computer, Vol. 35, No. l, January,
pp.70–80.

Brooks, D., Tiwari, V. and Martonosi, M. (2000) ‘Wattch:
a framework for architectural-level power analysis and
optimizations’, Proc. Int. Symposium on Computer
Architecture (ISCA), June.

Brunel, J.Y., de Kock, E.A., Kruijtzer, W.M., Kenter, H.J.H.N. and
Smits, W.J.M. (1999) ‘Communication refinement in video
systems on chip’, Proc. Int. Workshop on Hardware/Software
C’odesign (CODES), May, pp.142–146.

Buck, J.T. (1994) ‘Static scheduling and code generation from
dynamic dataflow graphs with integer valued control
streams’, Proc. Asilomar Conference on Signals, Systems, and
Computers, October.

Buck, J.T., Ha, S., Lee, E.A. and Messerschmitt, D.G. (1994)
‘Ptolemy: a framework for simulating and prototyping
heterogeneous systems’, Int. Journal of Computer Simulation,
Vol. 4, April, pp.155–182.

Cai, L. and Gajski, D. (2003) ‘Transaction level modeling: An
overview’, Proc. Int. Conference on HW/SW Codesign and
System Synthesis (CODES-ISSS), October, pp.19–24.

Coffland, J.E. and Pimentel, A.D. (2003) ‘A software
frame work for efficient system-level performance evaluation
of embedded systems’, Proc. ACM Symp. on Applied
Computing (SAC), pp.666–671, March. http://sesamesim.
sourceforge.net/

de Kock, E.A., Essink, G., Smits, W.J.M., van der Wolf, P.,
Brunei, J.Y., Kruijtzer, W.M., Lieverse, P. and Vissers, K.A.
(2000) ‘Yapi: application modeling for signal processing
systems’, Proc. Design Automation Conference (DAC), June,
pp.402–405.

DeBardelaben, J., Madisetti, V. and Gadient, A. (1997)
‘Incorporating cost modeling into embedded-system design’,
IEEE Design and Test of Computers, September, Vol. 14,
No. 3.

Deprettere, E.F., Rijpkema, E. and Kienhuis, B. (2002)
‘Translating imperative affine nested loop programs to
process networks’, in Deprettere, E.F., Teich, J. and
Vassiliadis, S. (Eds.): Embedded Processor Design
Challenges, Springer, LNCS 2268, pp.89–111.

Erbas, C., Erbas, S.C. and Pimentel, A.D. (2003)
‘A multi-objective optimization model for exploring
multiprocessor mappings of process networks’, Proc. Int.
Conference on HW/SW Codesign and System Synthesis
(CODES-ISSS), October, pp.182–187.

Erbas, C. and Pimentel, A.D. (2003) ‘Utilizing synthesis methods
in accurate system-level exploration of heterogeneous
embedded systems’, Proc. IEEE Workshop on Signal
Processing Systems (SiPS), August, pp.310–315.

Erbas, C., Polstra, S. and Pimentel, A.D. (2003) ‘IDF models for
trace transformations: a case study in computational
refinement’, Proc. Int. Workshop on Systems, Architectures,
Modeling, and Simulation (SAMOS), July, pp.178–187.

Gao, G.R., Govindarajan, R. and Panangaden, P. (1992)
‘Well-behaved dataflow programs for DSP computation’,
Proc. Int. Conference on Acoustics, Speech, and Signal
Processing (ICASSP), March, pp.561–564.

 The Artemis workbench for system-level performance 195

Grötker, T., Liao, S., Martin, G. and Swan, S. (2002) System
Design with SystemC, Kluwer Academic Publishers,
The Netherlands.

Hoare, C.A.R. (1978) ‘Communicating sequential processes’,
Communications of the ACM, Vol. 21, No. 8, August.

Kahn, G. (1974) ‘The semantics of a simple language for parallel
programming’, Proc. IFIP Congress 74.

Keutzer, K., Malik, S., Newton, A., Rabaey, J. and
Sangiovanni-Vincentelli, A. (2000) ‘System level design:
orthog-onalization of concerns and platform-based design’,
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 19, No. 12, December.

Kienhuis, B., Deprettere, E.F. Vissers, K.A. and van der Wolf, P.
(1997) ‘An approach for quantitative analysis of
application-specific dataflow architectures’, Proc. Int.
Conference on Application-Specific Systems, Architectures
and Processors (ASAP), July.

Kogel, T., Wieferink, A., Leupers, R., Ascheid, G., Meyr, H.,
Bussaglia, D. and Ariyamparambath, M. (2003) ‘Virtual
architecture mapping: a SystemC based methodology for
architectural exploration of system-on-chip designs’,
Proc. Int. workshop on Systems, Architectures, Modeling and
Simulation (SAMOS), pp.138–148.

Kuzmanov, G., Gaydadjiev, G.N. and Vassiliadis, S. (2004)
‘The virtex II Pro™ MOLEN processor’, Proc. Int. Workshop
on Systems, Architectures, Modeling, and Simulation
(SAMOS), July, pp.192–202.

Kuzmanov, G.K., Gaydadjiev, G.N. and Vassiliadis, S. (2003)
‘Loading p/x-code: design considerations’, Proc. Int.
Workshop on Systems, Architectures, Modeling, and
Simulation (SAMOS), July, pp.11–19.

Kuzmanov, G.K. and Vassiliadis, S. (2003) ‘Arbitrating
instructions in an ρµ-coded CCM’, Proc. 13th Int. Conference
on Field Programmable Logic and Applications (FPL),
September, pp.81–90.

Lahiri, K., Raghunathan, A. and Dey, S. (2001) ‘System-level
performance analysis for designing on-chip communication
architectures’, IEEE Trans, on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 20, No. 6, June,
pp.768–783.

Lee, E.A. and Messerschmitt, D.G. (1987) ‘Synchronous
dataflow’, Proceedings of the IEEE, Vol. 75, No. 9,
September, pp.1235–1245.

Lee, E.A. and Neuendorffer, S. (2000) MoML – A Modeling
Markup Language in XML, Version 0.4, Technical Report
UCB/ERL MOO/8, Electronics Research Lab, March,
University of California, Berkeley.

Lee, E.A. and Parks, T.M. (1995) ‘Dataflow process networks’,
Proc. IEEE, Vol. 83, No. 5, May, pp.773–801.

Lieverse, P., Stefanov, T., van der Wolf, P. and de Prettere, E.F.
(2001a) ‘System level design with spade: an M-JPEG case
study’, Proc. Int. Conference on Computer Aided Design
(ICCAD), November, pp.31–38.

Lieverse, P., van der Wolf, P. and Deprettere, E.F. (2001b)
‘A trace transformation technique for communication
refinement’, Proc. Int. Symposium, on Hardware/Software
Codesign (CODES), April, pp.134–139.

Lieverse, P., van der Wolf, P., Deprettere, E.F. and Vissers, K.A.
(2001c) ‘A methodology for architecture exploration of
heterogeneous signal processing systems’, Journal of VLSI
Signal Processing for Signal, Image and Video Technology,
Vol. 29, No. 3, November, pp.197–207.

Mihal, A. and Keutzer, K. (2003) ‘Mapping concurrent
applications onto architectural platforms’, in Jantsch, A. and
Tenhunen, H. (Eds.): Networks on Chips, pp.39–59, Kluwer
Academic Publishers.

Mihal, A., Kulkarni, C., Sauer, C., Vissers, K., Moskewicz, M.,
Tsai, M., Shah, N., Weber, S., Jin, Y., Keutzer, K. and
Malik, S. (2002) ‘Developing architectural platforms:
a disciplined approach’, IEEE Design and Test of Computers,
Vol. 19, pp.6–16.

Mohanty, S. and Prasanna, V.K (2002) ‘Rapid system-level
performance evaluation and optimization for application
mapping onto SoC architectures’, Proc. IEEE International
ASIC/SOC Conference.

Muller, H.L. (1993) Simulating Computer Architectures,
PhD thesis, Dept. of Computer Science, Univ. of Amsterdam,
February.

Nicolescu, G., Yoo, S. and Jerraya, A.A. (2001) ‘Mixed-level
cosimulation for fine gradual refinement of communication in
SoC design’, Proc. of the Int. Conference on Design,
Automation and Test in Europe (DATE), March.

Nieuwland, A. and Lippens, P. (1998) ‘A heterogeneous HW-SW
architecture for hand-held multi-media terminals’, Proc. IEEE
Workshop on Signal Processing Systems (SiPS), October,
pp.113–122.

Peng, J., Abdi, S. and Gajski, D. (2002) ‘Automatic model
refinement for fast architecture exploration’, Proc.
Int.Conference on VLSI Design, January, pp.332–337.

Pimentel, A.D. and Erbas, C. (2003) ‘An IDF-based
trace transformation method for communication refinement’,
Proc. Design Automation Conference (DAC), June,
pp.402–407.

Pimentel, A.D., Lieverse, P., van der Wolf, P.,
Hertzberger, L.O. and Deprettere, E.F. (2001) ‘Exploring
embedded systems architectures with Artemis’, IEEE
Computer, Vol. 34, No. 11, November, pp.57–63.

Pimentel, A.D., Polstra, S., Terpstra, F., van Halderen, A.W.,
Coffland, J.E. and Hertzberger, L.O. (2002) ‘Towards
efficient design space exploration of heterogeneous
embedded media systems’, in Deprettere, E.F., Teich, J. and
Vassiliadis, S. (Eds.): Embedded Processor Design
Challenges, Springer, LNCS 2268, pp.57–73.

Rowson, J.A. and Sangiovanni-Vincentelli, A. (1997) ‘Interface-
based design’, Proc. Design Automation Conference (DAC),
June.

Sangiovanni-Vincentelli, A. and Martin, G. (2001)
‘Platform-based design and software design methodology
for embedded systems’, IEEE Design and Test of Computers,
Vol. 18, No. 6, pp.23–33.

Stefanov, T. and Deprettere, E.F. (2003) ‘Deriving process
networks from weakly dynamic applications in system-level
design’, Proc. Int. Conference on HW/SW Code-sign and
System Synthesis (CODES-ISSS), October.

Stefanov, T., Kienhuis, B. and Deprettere, E.F. (2002)
‘Algorithmic transformation techniques for efficient
exploration of alternative application instances’, Proc. Int.
Symposium on Hardware/Software Codesign (CODES),
May, pp.7–12.

Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B. and
Deprettere, E.F. (2004) ‘System design using Kahn process
networks: the Compaan/Laura approach’, Proc. Int.
Conference on Design, Automation and Test in Europe
(DATE), February, pp.340–345.

196 A.D. Pimentel

Thompson, M. and Pimentel, A.D. (2004) ‘A high-level
programming paradigm for SystemC’, Proc. Int. Workshop on
Systems, Architectures, Modeling, and Simulation (SAMOS),
July, pp.530–539.

Turjan, A., Kienhuis, B. and Deprettere, E.F. (2004) ‘Translating
affine nested loop programs to process networks’, Proc. Int.
Conf. on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), September.

Vahid, F. and Givargis, T. (2001) ‘Platform tuning for embedded
systems design’, IEEE Computer, Vol. 34, No. 3, March.

Vassiliadis, S., Wong, S. and Cotofana, S. (2001) ‘The
MOLEN micro-coded processor’, Proc. Int. Conference on
Field-Programmable Logic and Applications (FPL), August,
pp.275–285.

Vassiliadis, S., Gaydadjiev, G.N., Bertels, K. and
Moscu Panainte, E. (2003a). ‘The Molen programming
paradigm’, Proc. Int. Workshop on Systems, Architectures,
Modeling, and Simulation (SAMOS), July, pp.1–10.

Vassiliadis, S., Wong, S. and Cotofana, S.D. (2003b) ‘Microcode
processing: positioning and directions’, IEEE Micro, Vol. 23,
No. 4, July, pp.21–30.

Živković, V., Deprettere, E.F., de Kock, E. and van der Wolf, P.
(2003a) ‘Mapping specification-level primitives to
ip-primitives: a case study’, Proc. Int. Workshop on Systems,
Architectures, Modelling, and Simulation (SAMOS), July.

Živković, V., Deprettere, E.F., van der Wolf, P. and de Kock, E.
(2003b) ‘Fast and accurate multiprocessor architecture
exploration with symbolic programs’, Proc. Int. Conference
on Design Automation and Test in Europe (DATE), March.

Živković, V., van der Wolf, P., Deprettere, E.F. and de Kock, E.A.
(2002) ‘Design space exploration of streaming multiprocessor
architectures’, Proc. IEEE Workshop on Signal Processing
Systems (SiPS), October.

Wolf, W. (2001) Computers as Components: Principles of
Embedded Computer Systems Design, Morgan Kaufmann
Publishers.

Zissulescu, C., Stefanov, T., Kienhuis, B. and Deprettere, E.F.
(2003) ‘LAURA: Leiden architecture research and
exploration tool’, Proc. 13th Int. Conference on Field
Programmable Logic and Applications (FPL), September.

Zitzler, E. (1999) Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications, PhD thesis, Swiss
Federal Institute of Technology Zurich.

Website
SystemC initiative, http://www.systemc.org/

Notes
1Here we should note that although a significant amount of work
has been performed on Compaan, Laura and Molen in the context
of the Artemis project, including the integration of these research
efforts into a single framework, they do not have their origin in
Artemis.

2The architecture model accounts for the modelling of bus activity
(arbitration, transfers, etc.) when accessing this buffer.

3In our M-JPEG application, we use 4:2:2 YUV macro-blocks.

