
Form Method Syst Des
DOI 10.1007/s10703-006-0021-2

Static priority scheduling of event-triggered real-time
embedded systems

Cagkan Erbas · Andy D. Pimentel · Selin Cerav-Erbas ·
Andy D. Pimentel

C© Springer Science + Business Media, LLC 2006

Abstract Real-time embedded systems are often specified as a collection of independent
tasks, each generating a sequence of event-triggered code blocks. The goal of scheduling
tasks in this domain is to find an execution order which satisfies all real-time constraints.
Within the context of recurring real-time tasks, all previous work either allowed preemptions,
or only considered dynamic scheduling, and generally had exponential complexity. However,
for many embedded systems running on limited resources, preemptive scheduling may be
very costly due to high context switching and memory overheads, and dynamic scheduling
can be less desirable due to high CPU overhead. In this paper, we study static priority
scheduling of recurring real-time tasks. We focus on and obtain schedule-theoretic results
for the non-preemptive uniprocessor case. To achieve this, we derive a sufficient (albeit
not necessary) condition for schedulability under static priority scheduling and show that
this condition can be efficiently tested in practice. The latter technique is demonstrated
with examples, where in each case, an optimal solution for a given problem specification is
obtained within reasonable time, by first detecting good candidates using meta-heuristics,
and then by testing them for schedulability.

Keywords Real-time embedded systems . Static priority scheduling . Simulated annealing
search framework

1. Introduction

Real-time embedded systems must run continuously and with limited resources. The goal
of scheduling in this domain is to find a set of rules for scheduling independent tasks

An early version of this paper appeared in proceedings of MEMOCODE’04.

C. Erbas (�) · A. D. Pimentel
Department of Computer Science, University of Amsterdam, 1098 SJ Amsterdam, The Netherlands
e-mail: cagkan@science.uva.nl

S. Cerav-Erbas
School of Management, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
e-mail: cerav@poms.ucl.ac.be

A. D. Pimentel
e-mail: andy@science.uva.nl Springer

Form Method Syst Des

given limited resources. There exists a trade-off between the generality of the task model
(a measure of accuracy) and the analyzability of the system modeled. The result is that
many task models have been proposed in the past which differ in their expressive power
and the complexity of their analysis. In general, a real-time system may be represented
as a collection of independent tasks, each generating a sequence of subtasks defined by a
ready-time, an execution requirement, and a deadline. Different task models may specify
different constraints on these parameters. For example, the multiframe model [14] permits
task cycling but ignores deadlines while the generalized multiframe model [4] adds explicit
deadlines to the multiframe model. Furthermore, the system may execute on one or more
processors, and the task execution may be preemptive or non-preemptive. The objective of
a schedulability analysis of a real-time system is to determine whether each task may be
guaranteed a processor time which starts at the task ready time, satisfies the task execution
requirement, and concludes by the task deadline.

For many embedded systems running on limited resources, preemptive scheduling may be
very costly and the designers of such systems may prefer non-preemptive scheduling despite
its relatively poor theoretical results. This is mainly due to the large runtime overhead incurred
by the expensive context switching and the memory overhead due to the necessity of storing
preempted task states. There is also a trade-off between static scheduling policies, which
give tasks unique priorities offline, and dynamic scheduling policies, where tasks are given
priorities online. While static scheduling has very low CPU overhead, dynamic scheduling
may be necessary for better processor utilization.
Conditional real-time code. Embedded real-time processes are typically implemented as
event-driven code blocks residing in an infinite loop. The first step in the schedulability
analysis of such real-time code is to obtain an equivalent task model which reveals the control
flow information. In the following conditional real-time code, the execution requirement and
deadline of a subtask vi (which represents a code block) are denoted as ei and di, respectively.
This means that whenever a subtask vi is triggered by an external event, the code block
corresponding to that subtask must be executed on the shared processing resources for ei

units of time within the next di units of time from its triggering time to satisfy its real-time
constraints. In many event-triggered real-time systems the action to be taken at a specific
time depends on factors which can only be determined at run-time, such as the current state
of the system, the time the external event occurs, the values of some external variables. In
the following code, this phenomenon is captured by the system state variable X, whose value
cannot be evaluated at compile-time.

while (external event)
execute v1 / ∗ with (e1, d1) ∗ /

if (X) then / ∗ depends on system state ∗ /

execute v2 / ∗ with (e2, d2) ∗ /

else
execute v3 / ∗ with (e3, d3) ∗ /

end if
end while

The traditional analysis of such conditional code, which depends on identifying the branch
with the worst case behavior, does not work in this case. The branch with the worst case
behavior depends on the system conditions that are external to the task. Consider the situation
(e2 = 2, d2 = 2) and (e3 = 4, d3 = 5). If a subtask with (e = 1, d = 1) from another task
is to be executed simultaneously, then the branch (e2, d2) is the worst case, whereas if the
other subtask is with (e = 2, d = 5), then the branch (e3, d3) corresponds to the worst case.

Springer

Form Method Syst Des

Hence the worst-case behavior of a task cannot be resolved reclusively, without considering
the other tasks present in the system.
Previous work. There has been a large body of research on real-time scheduling, even if we
restrict ourselves to the uniprocessor case, whose history goes back to 1973 [12]. While the
objective of some research in real-time scheduling is to improve modeling accuracy, in one
way or another generalizing the restrictions in [12] which produce very desirable theoretical
results, the objective of other research is to address schedule-theoretic questions arising in the
generalized models. Most task models assume event-triggered independent tasks. However,
there are also heterogeneous models considering mixed time/event-triggered systems [16]
and systems with data and control dependencies [15]. The recurring real-time task model
[2], the focus of this article, is a generalization of the previously introduced models, such
as the recurring branching model [1], the generalized multiframe model [4], the multiframe
model [14] and the sporadic [5, 13] model. It can be shown that any of these task models
corresponds to a special instance of the recurring task model, which in turn implies that it
supersedes all previous models in terms of its expressive power. With respect to dynamic
scheduling, it has been proved for both preemptive [12] and non-preemptive uniprocessor
cases [7] that Earliest Deadline First (EDF) scheduling (among the ready tasks, a task with an
earlier deadline is given a higher priority online) is optimal. The latter means that if a task is
schedulable by any scheduling algorithm, then it is also schedulable under EDF. Hence, the
online scheduling problem on uniprocessors is completely solved, we can always schedule
using EDF. On the other hand, in static priority scheduling, there are two issues [3]:

– Priority testing. Given a hard real-time task system and a unique priority assignment to
these tasks, can the system be scheduled by a static-priority scheduler such that all subtasks
will always meet their deadlines?

– Priority assignment. Given a hard real-time task system, what is the unique priority
assignment to these tasks (if one exists) which can be used by a static-priority run-time
scheduler to schedule these tasks such that all subtasks will always meet their deadlines?

However, at present, neither issue has been resolved within the context of the recurring
real-time task model (for either preemptive and non-preemptive cases), and no optimal
solution is known.
Our contributions. The priority assignment problem can be attacked by simply assigning a
priority to each task in the system, and then checking if the assignment is feasible. However,
for a system of n tasks, this approach has a complexity of n! which grows too fast. Therefore,
it does not provide a polynomial reduction from priority assignment to priority testing. In
this paper, we study static priority scheduling of recurring real-time tasks. We focus on the
non-preemptive uniprocessor case and obtain schedule-theoretic results for this case. To this
end, we derive a sufficient (albeit not necessary) condition for schedulability under static
priority scheduling, and show that this condition can be efficiently tested provided that task
parameters have integer values. In other words, a testing condition is derived for the general
priority testing problem, and efficient algorithms with run-times that are pseudo-polynomial
with respect to the problem input size are given for the integer-valued case. In addition, we
show that these results are not too pessimistic, on the contrary, they exhibit practical value
as they can be utilized within a search framework to solve the priority assignment problem.
We demonstrate this with examples, where in each case, an optimal priority assignment for
a given problem is obtained within reasonable time, by first detecting good candidates using
simulated annealing and then by testing them with the pseudo-polynomial time algorithm
developed for priority testing.

Springer

Form Method Syst Des

The paper is organized as follows: Section 2 formally introduces the recurring real-time
task model. Section 3 presents the schedulability condition for static priority schedulers. Sec-
tion 4 presents a simulated annealing based priority assignment search framework. Section
5 presents experimental results. Finally, Section 6 presents some concluding remarks.

2. Recurring real-time task model

A recurring real-time task T is represented by a directed acyclic graph (DAG) and a period
P(T) with a unique source vertex with no incoming edges and a unique sink vertex with no
outgoing edges. Each vertex of the task graph represents a subtask and is assigned with an
execution requirement e(v) and a deadline d(v) of real numbers. Each directed edge in the
task graph represents a possible control flow. Whenever vertex v is triggered, the subtask
corresponding to it is generated with ready time equal to the triggering time, and it must
be executed for e(v) units of time within the next d(v) units of time. In the non-preemptive
case which we consider, once a vertex starts being executed, it cannot be preempted. Hence,
it is executed until its execution time is completed. Only when its execution is complete,
can another vertex, which has been triggered possibly from another task, be scheduled for
execution. In addition, each edge (u, v) of a task graph is assigned with a real number
p(u, v) ≥ d(u) called inter-triggering separation which denotes the minimum amount of
time which must elapse after the triggering of vertex u, before the vertex v can be triggered.

The execution semantics of a recurring real-time task state that initially the source vertex
can be triggered at any time. When a vertex u is triggered, then the next vertex v can only
be triggered if there is an edge (u, v) and after at least p(u, v) units of time has passed since
the vertex u is triggered. If the sink vertex of a task T is triggered, then the next vertex of
T to be triggered is the source vertex. It can be triggered at any time after P(T) units of
time from its last triggering.1 If there are multiple edges from vertex u which represents a
conditional branch, among the possible vertices only one vertex can be triggered. Therefore,
a sequence of vertex triggerings v1, v2, . . . , vk at time instants t1, t2, . . . tk is legal if and
only if there are directed edges (vi , vi+1) and p(vi , vi+1) ≤ ti+1 − ti for i = 1, . . . , k. The
real-time constraints require that the execution of vi should be completed during the time
interval [ti , ti + d(vi)].

More informally, the following rules apply for the execution semantics of a recurring
real-time task:

– Whenever a vertex u (representing a subtask) from a task T is triggered it needs to be
executed on the shared processor for e(u) units of time within the next d(u) units of time
(starting from its triggering time).

– Initially the source vertex of a task may be triggered at any time.
– Assume that some vertex u is triggered at time t.
– If u is not the sink vertex, then the next vertex to be triggered is some vertex v such that

(u, v) is an edge of the task graph. The vertex v can be triggered at time t + p(u, v) or
later.

– If u is the sink vertex, then the next vertex to be triggered is the source vertex. The source
vertex can be triggered at any time after t provided that at least P(T) units of time has
passed from its previous triggering.

1 If P(T) is a constant interval, then the task is called periodic; if P(T) specifies a minimal interval, then the
task is called sporadic. Therefore, recurring real-time task is closer to sporadic task [5, 13].

Springer

Form Method Syst Des

Schedulability analysis of a task system. A task system T = {T1, . . . , Tk} is a collection
of task graphs, the vertices of which are triggered independently. A triggering sequence
for T is obtained by merging together (ordered by triggering times, with ties broken ar-
bitrarily) triggering sequences of the constituting tasks. Therefore, a triggering sequence
for such a task system T is legal if and only if for every task graph Ti, the subsequence
formed by combining only the vertices belonging to Ti constitutes a legal triggering se-
quence for Ti. In other words, the following principles govern a recurring real-time task
system:

– Tasks are triggered independently.
– In order to form a triggering sequence for a task system, the triggering sequences from its

constituting tasks are merged into one by reordering all triggered subtasks with respect to
their triggering times.

– A triggering sequence of a task system is legal, if and only if the triggering sequences of
its constituting tasks are legal.

The schedulability analysis of a task system T determines whether under all possible legal
triggering sequences of T , the subtasks corresponding to the vertices of the tasks can be
scheduled such that all their deadlines are met. Particularly, we are interested in the non-
preemptive uniprocessor case.

2.1. Request bound function (T.rbf(t))

The results on schedulability analysis in this paper are based on the abstraction of a task
T by its request bound function T.rbf(t) which is defined as follows [3]: T.rbf(t) takes a
non-negative real number t ≥ 0 and returns the maximum cumulative execution requirement
by the subtasks of T that have their triggering times within any time interval of duration t. In
other words, the request bound function T.rbf(t) of task T denotes the maximum execution
time required by the subtasks of T within any time interval of length t, yet all of which is
not necessarily to be completed within t. From the point of view in [3], T.rbf(t) can also be
considered as the maximum amount of time for which T could deny the processor to tasks
with lower priority over some interval of length t.

In Fig. 1, we give an illustrative example.2 In this graph, T .rbf (2) = 7 because vertex
v1 can be triggered within 2 units of time. Similarly, T .rbf (20) = 11 due to a possible
legal triggering sequence of v3, v0, v1 at time instants t1 = 0, t2 = 10, t3 = 20 within a
time interval of t = 20. It can be shown by exhaustively enumerating all possible vertex
triggerings of T that there exists no other sequence of vertex triggerings with a cumulative
execution requirement that would exceed 11 within t = 20. Also notice that in the mentioned
vertex triggering, the deadline requirements state that v3 and v0 should be completed by the
time instants t1 + 10 = 10 and t2 + 5 = 15 which are both within t, while the deadline
requirement for v1 is at t3 + 10 = 30 which is outside t. In Fig. 2, we have plotted T.rbf(t)
function values of the task T in Fig. 1 for t ≤ 20. It should be clear that the function T.rbf(t)
is monotonically increasing.

2 For convenience, in all figures for task graphs we only write the index of the vertex inside the node; e.g.,
vertex v1 is illustrated by a node with index value 1 inside.

Springer

Form Method Syst Des

p(0, 1) = 10

15

(7, 10)

5

20

1 2

(1, 2)

P(T) = 50
(1, 10)3

(e(0), d(0)) = (3, 5)

0
T.rbf(2) = 7
T.rbf(10) = 10
T.rbf(15) = 10
T.rbf(20) = 11

Fig. 1 Computing the demand
bound and request bound
functions for T

4

8

4 8 12 16 20
t

T.rbf(t)

12

Fig. 2 The monotonically
increasing function T.rbf(t) for
the task T in Fig. 1

2.2. Computing request bound function

First we are going to compute T.rbf(t) for small values of t in which the source vertex is
either not triggered, or is triggered only once. Then using results of [3], we will provide an
expression for any t. In this way, the effect of recurring behavior of the task model can be
included in the calculations.
Computing T.rbf(t) for small t. To obtain all vertex triggerings, in which the source vertex is
either not triggered or is triggered only once, we take two copies of the original DAG, add an
edge from the sink vertex of the first copy to the source vertex of the second copy (by setting
the inter-triggering separation equal to the deadline of the sink vertex of the first copy), and
then delete the source vertex of the first copy. The task graph specification of a recurring
real-time task has a unique source and a unique sink vertices. In order to comply with this,
we add we add a dummy source vertex to the first copy with (e, v) = (0, 0). Starting from a
transformed task graph, [3] enumerates all paths in the task graph to compute T.rbf(t) which
has an exponential complexity while [7] starts from T and neglects the recurring behavior.
Based on dynamic programming, we now give an incremental pseudo-polynomial time algo-
rithm3 to compute T.rbf(t) for tasks with integer execution requirements and inter-triggering
separations.4 Let there be n vertices in T ′, v0, . . . , vn−1. As shown in Fig. 3, the vertex
indices of T′ are assigned such that there can be an edge from vi to v j only if i < j.
Let ti,e be the minimum time interval within which the task T can have an execution

3 A pseudo-polynomial time algorithm for an integer-valued problem is an algorithm whose running time is
polynomial in the input size and in the values of the input integers. See [11] for a nice coverage.
4 Computing T.rbf(t) remains NP-hard even if the parameters (i.e. execution requirements, deadlines and
inter-triggering separations) of the recurring real-time task model are restricted to integer numbers [8].

Springer

Form Method Syst Des

20

7

(1, 10)
0

15

(0, 0)

0

0

(1, 2)

2

1

(7, 10)

15

20
(1, 10)

3
10

(3, 5)

4

10

5

(7, 10)

5

(1, 2)

6

Fig. 3 Transformed task graph T′ for T in Fig. 1.

requirement of exactly e time units due to some legal triggering sequence, considering
only a subset of vertices from the set {v0, . . . , vi }. Similarly, let t i

i,e be the minimum time
interval within which a sequence of vertices from the set {v0, . . . , vi } and ending with vertex
vi, can have an execution of exactly e time units. Apparently, Emax = (n − 1)emax where
emax = max{e(vi), i = 1, . . . , n − 1} is an upperbound for T.rbf(t) for any small t ≥ 0.

Algorithm 1 computes T.rbf(t) for small t in pseudo-polynomial time for tasks with integer
e(v) ≥ 0. Starting from the sequence {v0} and adding one vertex to this set in each iteration,
the algorithm builds an array of minimal time intervals ending at the last vertex added for all
execution requirement values between 0 and

Emax, i.e. it computes t i
i,e. Then using this result and the result of the previous calculation

(ti−1,e), it computes ti,e by taking their minimum. Once all vertices are processed and an
array of minimal time intervals is built, the algorithm makes a lookup in the array and returns
the maximum execution requirement for a given small t. It has a running time of O(n3 Emax).

Springer

Form Method Syst Des

Computing T.rbf(t) for any t. Once T.rbf(t) is known for small t, the following expression
from [3] can be used to calculate it for any t.

T .rbf (t) = max{�t/P(T)�E(T) + T .rbf (t mod P(T)),

(�t/P(T)� − 1)E(T) + T .rbf (P(T) + t mod P(T))}, (1)

where E(T) denotes maximum possible cumulative execution requirement on any path from
the source to the sink vertex of T.

3. Schedulability under static priority scheduling

In this section, we derive a sufficient condition for schedulability under static priority schedul-
ing. It is based on the abstraction of a recurring real-time task in terms of its request bound
function.

We first define the function T.rbf+(t) as

T .rbf +(t) =
{

0, if t < 0

T .rbf (t), if t ≥ 0

Theorem 1. Given a task system T = {T1, . . . , Tk}, where the task Tr has priority r, 0 ≤
r ≤ k, and r < q indicates that Tr has a higher priority than Tq. The task system is static
priority schedulable if for all tasks Tr the following condition holds: for any vertex v of any
task Tr, ∃τ with 0 ≤ τ ≤ d(v) − e(v) for which

e>r
max + Tr .rbf +(

t − pTr
min

) +
r−1∑
i=1

Ti .rbf +(t + τ) ≤ t + τ, ∀t ≥ 0 (2)

where e>r
max = max{e(v′) | v′is a vertex of Tj , j = r + 1, . . . , k} and pTr

min = min{p(u, u′) |
u and u′ are vertices of Tr}.

Proof: Let v be any vertex of the task Tr with an execution requirement e(v) and a deadline
d(v). Consider the following scenario which is also depicted in Fig. 4:

Let v be triggered at time t and be scheduled at time t + τ . We assume that t − τ̂

is the first time before time t where the processor has no task with priority ≤ r to exe-
cute. Hence, at this time the processor is either idle or executing a task with priority > r.
On the other hand, t − τ̂ is also the time where at least one vertex of a task graph with

e(v)

0

tasks with > r

tasks with <r

t

v is triggered

t+

v is scheduled

>

t+d(v)t

Fig. 4 Scheduling scenario in Theorem 1

Springer

Form Method Syst Des

priority ≤ r was triggered. Under these conditions, the upperbound for the total remaining
execution requirement before the vertex v can be scheduled at time t + τ is composed of

– the remaining execution requirement of some task triggered before time t − τ̂ : e>r
max,

– the execution requirement of the task Tr (not including v) during time interval [t − τ̂ , t]:
Tr .rbf +(τ̂ − pTr

min), where pTr
min is the minimal inter-triggering separation in Tr. To see this

we have to consider two cases:

– if the time interval [t − τ̂ , t] is smaller than the minimal inter-triggering seperation in
Tr, i.e. τ̂ < pTr

min, then the execution requirement of the task Tr within [t − τ̂ , t] will be
zero.

– if the time interval [t − τ̂ , t] is larger than the minimal inter-triggering seperation in
Tr, i.e. τ̂ ≥ pTr

min, then the execution requirement of the task Tr within [t − τ̂ , t] will be
Tr .rbf (τ̂ − pTr

min).

– the total execution requirement of the tasks with priority < r during time interval [t − τ̂ ,

t + τ]:
∑r−1

i=1 Ti .rbf +(τ + τ̂).

Therefore, within [t − τ̂ , t + τ], the upperbound for the total execution requirement is

e>r
max + Tr .rbf +(

τ̂ − pTr
min

) +
r−1∑
i=1

Ti .rbf +(τ + τ̂). (3)

We define I [t − τ̂ , t + τ] to be the processor idle time during time interval [t − τ̂ , t + τ].
If we show that the lowerbound for I [t − τ̂ , t + τ] is non-negative, then we can conclude
that the task system is schedulable. The lowerbound for I [t − τ̂ , t + τ] can be written as,

(t + τ) − (t − τ̂) −
(

e>r
max + Tr .rbf +(

τ̂ − pTr
min

) +
r−1∑
i=1

Ti .rbf +(τ + τ̂)

)
. (4)

Springer

Form Method Syst Des

By the condition (2) in Theorem 1, (3) is bounded by τ + τ̂ . Substituting this in (4), we
obtain,

I [t − τ̂ , t + τ] ≥ 0. (5)

Hence, all tasks scheduled before vertex v meet their deadlines at t + τ . The condition 0 ≤
τ ≤ d(v) − e(v) ensures that v also meets its deadline. �

Theorem 1 can be used to construct Algorithm 2 which solves the priority testing problem
as defined in Section 1. Algorithm 2 simply checks if condition (2) holds for every vertex
in the task system, and relies on Algorithm 1 and (1) for T.rbf(t) calculations. Algorithm 2
along with Algorithm 1 is again a pseudo-polynomial time algorithm, since all other steps
in Algorithm 2 can also be performed in pseudo-polynomial time. To see this, given any
Tr ∈ T , let t Tr

max denote the maximum amount of time elapsed among all vertex triggerings
starting from the source and ending at the sink vertex, if every vertex of Tr is triggered at the
earliest possible time without violating inter-triggering separations. Clearly, it is sufficient
to test condition (2) in Algorithm 2 for tmax = max{t Tr

max, Tr ∈ T } times, which is pseudo-
polynomially bounded. Therefore, Algorithm 2 is also a pseudo-polynomial time algorithm.

4. Simulated annealing for priority assignment

Having developed a condition for priority testing in the previous section, this section deals
with the second problem from Section 1, namely the priority assignment. Our aim in this
section is to develop an efficient heuristic which searches for feasible schedules and locates
one (if exists) for a given task system.

Simulated annealing (SA) can be viewed as a local search equipped with a random
decision mechanism to escape from local optima. It is inspired by the annealing process in
condensed matter physics. In this process, a matter is first melted and then slowly cooled
in order to obtain the perfect crystal structure. In high temperatures, all the particles move
randomly to high energy states. But as the temperature is decreased, the probability of such
movements is also decreased.

In combinatorial optimization, the energy of a state corresponds to the cost function
value of a feasible point and the temperature becomes a control parameter. We start with an
arbitrary initial point and search its neighborhood randomly. If a better solution is found,
then it becomes the current solution and the search continues from that point. But if it is
a worse solution, then it may still be accepted with some probability depending on the
difference in cost function values and the current temperature. Initially at high temperatures,
the probability of accepting a worse solution is higher. The acceptance probability decreases,
as the temperature is lowered. As a consequence, SA behaves like a random walk during
early iterations, while it imitates hill climbing in low temperatures.

One of the strong features of SA is that it can find high quality solutions independent
of the initial solution. In general, weak assumptions about the neighborhood and cooling
scheme are enough to ensure convergence to optimal solutions. The key parameters in SA
are temperature reduction rate and neighborhood definition. In most cases, it may require
a lot of trials to adjust these parameters to a specific problem. We discuss the latter within
the context of the schedulability problem in the next section. In order to utilize SA, we first
formulate schedulability under static priority scheduling as a combinatorial optimization
problem.

Springer

Form Method Syst Des

Problem formulation. Assume that we are given an instance (F, c) of an optimization
problem, where F is the feasible set and c is the cost function. In our case F is the set
of all possible priority assignments to tasks in T and c is the cost of such an assignment.
Given a priority assignment f to tasks in T , let cond represent the schedulability condition in
(2), i.e. cond = e>r

max + Tr .rbf +(t − pTr
min) + ∑

T ∈T<r
T .rbf +(t + τ). In this assignment, we

define the cost of assigning priority r to a task, c(Tr , t) as

c(Tr , t) =

⎧⎪⎨
⎪⎩

0 if t = 0−

c(Tr , t − 1) if ∀v ∈ Tr , ∃τ s.t. cond ≤ t + τ

|A| + c(Tr , t − 1) if for some v ∈ A ⊆ Tr , �τ s.t. cond ≤ t + τ

where 0 ≤ τ ≤ d(v) − e(v) and 0 ≤ t ≤ t Tr
max. Following this definition, the cost of a partic-

ular priority assignment to a task system becomes c(f, T) = ∑
Ti ∈T c(Tr , t Tr

max). The aim is
to find the priority assignment f ∈ F which minimizes c(f, T).

Corollary 1. A task system T is schedulable under static priority scheduling if ∃ f such that
c(f, T) = 0.

Proof: The proof follows from the definition of c(f, T). Clearly, for each task in T , a
violation of schedulability condition given by (2) increments the value of c(f, T) by one.
Hence a value of zero indicates that the schedulability condition is not violated. �

5. Experimental results

The previous section introduced general characteristics of a simulated annealing framework.
We now continue discussing those parameters of SA that are fine tuned according to the
problem at hand. These parameters are used in all the experiments reported here. Figure 5
provides an overview for our framework. At first we use a heating mechanism to set the
initial temperature. To do so, we start with temp = 100 and look at the first 10 iterations. If
it is found that prob(p → s) < 0.5 in one of these early iterations, then the temperature is
increased such that the new solution is always accepted, i.e. current temperature is increased
with temp = |c(p, T) − c(s, T)|/ ln(0.5) on that iteration. Remember that we are given an
instance of the scheduling problem defined in the form (F, c) (see Section 4), and at each
iteration, we search a neighborhood N : F → 2F randomly at some feasible point p ∈ F for an
improvement. If such an improvement occurs at s ∈ N(p) then the next point becomes s. But if
c(s, T) > c(p, T) then s is still taken with a probability prob(p → s) = e−(c(s,T)−c(p,T))/temp.
In our experiments, the number of such iterations at each temperature is set to 100. The control
parameter temp is gradually decreased in accordance with a pre-defined cooling scheme. For
the latter, we use a static reduction function temp = 0.9 temp. Finally, we stop the search
either when a feasible schedule is found or when the temperature drops under a certain value
(temp = 0.1).

To illustrate the practical usefulness of our results, we have taken task examples from
the literature and constructed new task systems using their different combinations. The first
column in Table 1 refers to tasks used; tasks starting with hou c and hou u are Hou’s clustered
and unclustered tasks [10], respectively. Tasks starting with yen are Yen’s examples on p. 83
in [17]. Task dick is from [9]. These tasks were originally defined in different task models
and do not possess all characteristics of a recurring real-time task. Topologically, some tasks

Springer

Form Method Syst Des

temp.
<0.1 >0.1output

parent

to parent

SA parameters
solution costs

child

set
temp.

create
parent

search algorithm

heating

set child

<prob cost(c)<cost(p)

cost(c)>cost(p)
>prob rand.problem spec.

parent

sched.
NO

YES

iters.
<100

=100

create heating?
heat

NO

YES

YES NO
prob.

Fig. 5 Overview of the simulated annealing (SA) framework. The heating is done only for the first 10
iterations in order to setup a reasonable initial temperature

have multiple source and/or sink vertices. In such cases, we have added dummy vertices
(with null execution requirements) when necessary. In most cases, originally a deadline for
each task was defined, contrary to recurring real-time task model in which a deadline is
defined for each vertex (subtask). Therefore, we have defined deadlines for all vertices in
all tasks (same in all task sets) using a random generator. Then in all task systems, we have
tried to give maximal execution requirements to vertices in order to minimize the number
of feasible priority assignments. We have achieved this by gradually increasing execution
requirements until a small increase yielded an unschedulable task system.

In the appendix, Fig. 9 and Table 3 provide original task graphs and values of task pa-
rameters in our experiments, respectively. What is more, the details of transforming task
graphs with multiple source and/or sink vertices is explained on illustrative examples given

Table 1 Task system specifications

#ver./ed. #ver./ed.
T in T in T′ P(T) TS1 TS2 TS3 TS4 TS5 TS6 TS7

hou c1 4/3 9/10 300 o o o o o o o
hou c2 4/4 8/9 200 o o o o o o o
hou c3 3/2 7/8 200 o o o o o o o
hou c4 3/2 6/5 200 o o o o o o o
yen1 5/4 11/12 300 o o o o o o o
yen2 4/3 9/10 300 o o o o o o o
yen3 6/5 14/18 400 – o o o o o o
dick 5/5 11/14 400 – – o o o o o
hou u1 10/13 21/30 700 – – – o o o o
hou u2 10/16 20/33 500 – – – – o o o
hou u3 10/15 22/41 600 – – – – – o o
hou u4 10/14 22/36 700 – – – – – – o

Springer

Form Method Syst Des

Table 2 Experimental results

sol. ES (secs.) SA (secs.)
T #T tmin, tmid, tmax density ES1 ES2 Search Test Total

TS1 6 10, 100, 189 2.5% 4,511 333 22.15 6.25 28.40
TS2 7 10, 100, 188 2.14% – 2,856 32.75 7.90 40.65
TS3 8 10, 100, 184 0.89% – 23,419 64.40 9.30 73.70
TS4 9 10, 100, 428 – – – 88.60 37.80 126.40
TS5 10 10, 100, 429 – – – 170.75 53.40 224.15
TS6 11 10, 100, 427 – – – 311.05 62.80 373.85
TS7 12 10, 100, 430 – – – 331.45 86.45 417.90

in Fig. 8. We provide a summary of most important parameters in columns 2, 3 and 4 of
Table 1. The former two columns give the number of vertices and edges in task and trans-
formed task graphs, while the latter provides task periods. As already stated, run-times
of Algorithms 1 and 2 are pseudo-polynomially bounded with task sizes. The rest of the
columns in Table 1 give task system specifications.

For numerical results, we have integrated Algorithms 1 and 2 as C functions into the
introduced SA framework which was also implemented in C. The experiments reported here
have been performed on a Pentium 3 PC with 600 MHz CPU and 320 MB RAM running
Linux OS. For each task system scenario, we have performed 20 runs (with seeds from 1
to 20 for the random generator) searching for feasible schedules using the SA framework.
All results given in Table 2 are arithmetic means of 20 runs. During the experiments, we
observed that schedulability condition is more sensitive to small values of t, and in most
cases, it is enough to test up to the first tmin times to find a majority of non-optimal solutions.
Therefore, in order to decrease search run-times by means of spending less time on non-
optimal solutions, we have used a combination of tmin and tmid values instead of the actual
value tmax. In most cases, it was enough to test for the first tmin times to find a majority
of non-optimal solutions. In the search, if a feasible solution for tmin was found, it was
further tested for times up to tmid. Only if the solution also passed this second test, it was
output as a candidate for an optimal solution and the search was stopped. We call this CPU
time spent on search as SA search and report their averages in column 7 of Table 2. Since
SA tests many non-optimal solutions until it reaches an optimal one, using tmin instead of
tmax at each iteration dramatically decreased run-times. In Fig. 6, we plotted CPU times of
schedulabilility tests with tmin, tmid and tmax in all task system scenarios. If we compare CPU
times of tmin and tmax, the difference lies between 15 to 25 times for TS1, TS2 and TS3,
while for relatively larger task systems TS4, TS5, TS6 and TS7, it is between 45 to 60 times.
Finally, all candidate solutions found have been tested once with tmax. We call the CPU time
spent on this last step as SA test, and similarly report their averages in column 8 of Table 2.
If a candidate solution fails in the last step, SA is started again and the next solution found
is taken as the new candidate. However, it is interesting to note here that in our experiments,
all first candidate solutions passed the last test, and therefore none of the SA search or test
steps were repeated.

We have also performed exhaustive searches (ES) in cases where the size of task systems
permitted to do so. The main reason behind this was to find out solution density, i.e. the
number of optimal solutions in the feasible set. As a result of ES runs (given in column 4 in
Table 2), we found out that solution densities in TS1, TS2 and TS3 scenarios are less than
or equal to 2.5%. Two exhaustive searches ES1 and ES2 are given in columns 5 and 6 of

Springer

Form Method Syst Des

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

t_maxt_midt_min

C
P

U
 T

im
e

(s
ec

s.
)

t

Schedulability Test Times

TS 1
TS 2
TS 3
TS 4
TS 5
TS 6
TS 7

Fig. 6 Schedulability test times. The advantage of using a combination of tmin and tmid instead of tmax is
clear from high computation times needed for tmax, especially for larger task systems TS4, TS5, TS6 and TS7

 0

 2

 4

 6

 8

 10

 12

5<c<64<c<53<c<42<c<31<c<20<c<10

N
um

be
r

of
 S

ol
ut

io
ns

Cost Function Values (*1000)

Neighborhood Analysis

Fig. 7 Neighborhood analysis. The distance from an optimal point and the value of the cost function are not
strongly correlated

Springer

Form Method Syst Des

Table 2. In ES1, all points in the feasible set were tested with tmax which took 4,511 secs. for
TS1. In ES2, we first tested all points with tmin, then only tested those points which passed
the first test with tmax. Using this method, ES CPU time for TS1 decreased from 4,511 to
333 secs. and we could also perform ES runs for TS2 and TS3.

Finally, we have taken one optimal solution for TS3 and examined all its 28 neighbors.
The costs of these points are plotted in Fig. 7. Despite a significant number of other optimal
solutions around this solution, there are also some points with moderate to very high costs.
This shows us that the distance from an optimal point and the value of the cost function are
not strongly correlated. The latter may substantially increase SA run-times.

6. Conclusion

This paper has presented a sufficient (albeit not necessary) condition to test schedulability of
recurring real-time tasks under static priority scheduling. It has been shown that testing this
condition, i.e. priority testing, can be performed in pseudo-polynomial time, provided that
task execution requirements and inter-triggering separations have integer values. What is
more, we have developed a simulated annealing framework to target the problem of priority
assignment, that is to find an assignment of unique priorities to tasks in a given system
specification which would make the system schedulable under static priority scheduling.
To accomplish this, the heuristic has utilized the condition for priority testing in its inner
loop in a sophisticated and efficient manner, which resulted in spending less time on in-
feasible solutions, to test if the current priority assigment to tasks results in a schedulable
system.

The experiments with different task systems have revealed that the theoretical results
achieved were not too pessimistic and had also practical value. This is due to the fact that
we could report an optimal solution for a given task system specification within reasonable
time. As a future work, it could be interesting to investigate heuristics for priority testing by,
for example, tolerating some error in the calculations in order to achieve better run-times. In
fact, an error margin versus running time trade-off curve could be drawn, likewise the work
done for dynamic schedulers in [6].

Appendix A: task systems

Original task graphs for tasks used in the experiments are given in Fig. 9. In all task graphs,
a vertex with no incoming edge is a source vertex, and similarly a vertex with no outgoing
edge is a sink vertex. In the recurring real-time task model, tasks have single source and
sink vertices in their task graphs and transforming such a task graph was already shown in
Fig. 2. However as seen in Fig. 9, a number of tasks taken from the literature were defined
in earlier task models and they have multiple source and/or sink vertices. In Fig. 8, we show
how these task graphs are transformed so that the transformed task graphs have single source
and sink vertices. There exist three different cases: (1) tasks with multiple sink vertices, (2)
tasks with multiple source vertices, and (3) tasks with multiple source and sink vertices. In
Figs. 8(a)–(c), one example of a transformed task graph is given for each case.

Alternative to the examples in Fig. 8, we could also add dummy vertices to original task
graphs and subsequently use the standard procedure (explained in Section 2.2) to transform
them. However, this would unnecessarily increase the number of dummy vertices in the
transformed task graphs, which in turn would increase run-times for T.rbf(t) calculations.

Springer

Form Method Syst Des

Table 3 Experimental data

T v TS1 TS2 TS3 e(v) TS4 TS5 TS6 TS7 d(v)

hou c1 0 7 3 6 5 5 5 5 71
1 9 5 6 5 5 4 5 56
2 10 6 6 5 5 4 5 63
3 4 1 1 1 3 1 3 50

hou c2 0 5 4 2 2 3 4 3 80
1 8 7 6 5 5 4 5 99
2 10 9 6 5 4 6 5 99
3 10 9 5 4 3 2 2 46

hou c3 0 6 5 8 5 4 5 4 64
1 8 6 5 4 6 2 3 93
2 10 9 8 5 4 4 4 53

hou c4 0 4 4 5 4 5 6 4 78
1 8 8 5 4 5 4 4 74
2 8 7 5 3 4 3 4 57

yen1 0 1 6 6 5 5 5 4 73
1 1 1 1 1 3 1 3 72
2 6 4 6 5 5 5 4 82
3 8 6 6 5 4 4 4 82
4 8 6 6 5 4 5 4 77

yen2 0 9 7 6 6 5 4 2 80
1 9 7 6 6 4 3 3 57
2 8 6 5 5 4 4 3 66
3 8 6 6 6 4 3 3 61

yen3 0 – 4 4 4 4 2 4 53
1 – 5 5 5 4 4 4 61
2 – 2 2 2 3 1 5 89
3 – 6 6 5 5 4 5 82
4 – 1 1 1 2 1 5 97
5 – 4 4 4 3 2 3 32

dick 0 – – 4 4 4 2 3 96
1 – – 5 5 2 3 3 48
2 – – 7 6 3 4 4 59
3 – – 7 6 3 4 4 85
4 – – 3 3 1 1 1 36

hou u1 0 – – – 4 4 4 3 58
1 – – – 6 5 4 4 98
2 – – – 2 2 2 3 52
3 – – – 1 3 1 3 59
4 – – – 1 3 1 1 64
5 – – – 1 1 1 1 62
6 – – – 4 5 4 4 88
7 – – – 4 4 4 2 63
8 – – – 4 4 4 3 68
9 – – – 5 5 4 3 54

hou u2 0 – – – – 4 4 4 85
1 – – – – 3 1 1 89
2 – – – – 3 3 2 66
3 – – – – 4 4 4 78
4 – – – – 4 4 3 97

(Continue on the next page)

Springer

Form Method Syst Des

Table 3 (Continue.)

T v TS1 TS2 TS3 e(v)TS4 TS5 TS6 TS7 d(v)

5 - - - - 3 1 1 80
6 - - - - 3 3 2 74
7 - - - - 4 4 4 82
8 - - - - 4 4 4 56
9 - - - - 6 4 4 95

hou u3 0 - - - - - 4 4 72
1 - - - - - 1 1 62
2 - - - - - 4 4 92
3 - - - - - 2 1 88
4 - - - - - 4 4 81
5 - - - - - 4 3 85
6 - - - - - 4 4 86
7 - - - - - 2 1 95
8 - - - - - 3 2 70
9 - - - - - 4 4 77

hou u4 0 - - - - - - 1 71
1 - - - - - - 4 80
2 - - - - - - 4 96
3 - - - - - - 4 72
4 - - - - - - 2 78
5 - - - - - - 1 96
6 - - - - - - 4 82
7 - - - - - - 3 68
8 - - - - - - 4 97
9 - - - - - - 3 91

d d

0

2

1

3

5

4

6

(a) Case1:Task with
multiple sink vertices.

8

0

d
1

2 3

4

5

6 7

(b) Case 2: Task with multiple source
vertices.

6

1

4

0

d

2

3 5

8

7

10

9

12

11

13

d

(c) Case 3:Task with multiple source and
sink vertices.

Fig. 8 Three example transformed task graphs for tasks with multiple source and/or sink vertices. In all
transformed task graphs, dummy vertices added are labeled with “d”. (a) Transformed task graph for hou c3
which has multiple sink vertices. (b) Transformed task graph for yen2 which has multiple source vertices. (c)
Transformed task graph for yen3 which has multiple source and sink vertices

Springer

Form Method Syst Des

hou_u2hou_u1

6

8

9

7
9

6

3

0

1

2

4

5

1

2

4

5 7

8

7

4

3

2

1

6

7

5 8

9

3

0

hou_u3

0 1

2

3 4

5 6

8 9

hou_u4

0

0 1 2

hou_c4

hou_c1

0

1

3

2

hou_c2

0

1

2

3

2 4

31

0

yen1

0 2

3

4

5

yen3

1 dick 2

0

1 3

4

2

0

1

hou_c3

1 2

3

0

yen2

Fig. 9 Original task graphs taken from the literature. Some of the task graphs have multiple source and/or
sink vertices

Although not explicitly mentioned previously, it should be clear from its input that
Algorithm 2 actually operates on the original task graphs. Hence, the schedulability condition
is tested only once for all vertices (i.e. subtasks) on each iteration of the algorithm.

Finally, in Table 3 we provide values used in the experiments for each task system that
we have synthesized using tasks in Fig. 9. The values are given with respect to original task
graphs rather than transformed task graphs. In addition, we should also note that during all

Springer

Form Method Syst Des

experiments, inter-triggering separations were set equal to deadlines, i.e. p(u, v) = d(u) for
all u, v ∈ T in all task systems.

Acknowledgments This work is partly supported by the Dutch Technology Foundation STW under grant
AES 5021. We are very grateful to the anonymous reviewers and the editors Jean-Pierre Talpin and Connie
Heitmeyer for their comments and a correction in Theorem 1.

References

1 Baruah SK (1998) Feasibility analysis of recurring branching tasks. In: Proc. of the euromicro workshop
on real-time systems, pp 138–145

2 Baruah SK (1998) A general model for recurring real-time tasks. In: Proc. of the real time systems
symposium, pp 114–122

3 Baruah SK (2003) Dynamic- and static-priority scheduling of recurring real-time tasks. Real-Time Syst
24(1):93–128

4 Baruah SK, Chen D, Gorinsky S, Mok AK (1999) Generalized multiframe tasks. Real-Time Syst 17(1):5–
22

5 Baruah SK, Mok AK, Rosier LE (1990) Preemptively scheduling hard-real-time sporadic tasks on one
processor. In: Proc. of the real time systems symposium, pp 182–190

6 Chakraborty S, Erlebach T, Künzli S, Thiele L (2002) Approximate schedulability analysis. In: Proc. of
the IEEE real-time systems symposium, pp 159–168

7 Chakraborty S, Erlebach T, Künzli S, Thiele L (2002) Schedulability of event-driven code blocks in
real-time embedded systems. In: Proc. of the design automation conference, pp 616–621

8 Chakraborty S, Erlebach T, Thiele L (2001) On the complexity of scheduling conditional real-time code.
In: Proc. of the 7th Int. workshop on algorithms and data structures LNCS 2125. Springer-Verlag, pp
38–49

9 Dick RP, Jha NK (1999) MOCSYN: Multiobjective core-based single-chip system synthesis. In: Proc. of
the design, automation and test in Europe, pp 263–270

10 Hou J, Wolf W (1996) Process partitioning for distributed embedded systems. In: Proc. of the international
workshop on hardware/software codesign, pp 70–76

11 Hromkovic J (2002) Algorithmics for hard problems (introduction to combinatorial optimization, random-
ization, approximation, and heuristics). Springer-Verlag

12 Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-realtime environment. J
ACM 20(1):46–61

13 Mok AK (1983) Fundamental design problems of distributed systems for the hard-real-time environment.
PhD thesis, Massachusetts Institute of Technology, 1983

14 Mok AK, Chen D (1997) A multiframe model for real-time tasks. IEEE Trans Softw Engng 23(10):635–
645

15 Pop P, Eles P, Peng Z (2000) Schedulability analysis for systems with data and control dependencies. In:
Proc. of the euromicro conference on real-time systems, pp 201–208

16 Pop T, Eles P, Peng Z (2003) Schedulability analysis for distributed heterogeneous time/event-triggered
real-time systems. In: Proc. of the Euromicro conference on real-time systems, pp 257–266

17 Yen T, Wolf W (1996) Hardware-software co-synthesis of distributed embedded systems. Kluwer
Academic Publishers

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

