
NASA: A Generic Infrastructure for System-level
 MP-SoC Design Space Exploration

Zai Jian Jia1, Andy D. Pimentel2, Mark Thompson2, Tomás Bautista1 and Antonio Núñez1
1Research Institute for Applied Microelectronics

University of Las Palmas de Gran Canaria
Spain

{cjia, bautista, nunez}@iuma.ulpgc.es

2Computer Systems Architecture Group, Informatics Institute
University of Amsterdam

The Netherlands
{A.D.Pimentel, M.Thompson}@uva.nl

Abstract— System-level simulation and design space exploration
(DSE) are key ingredients for the design of multiprocessor
system-on-chip (MP-SoC) based embedded systems. The efforts
in this area, however, typically use ad-hoc software
infrastructures to facilitate and support the system-level DSE
experiments. In this paper, we present a new, generic system-
level MP-SoC DSE infrastructure, called NASA (Non Ad-hoc
Search Algorithm). This highly modular framework uses well-
defined interfaces to easily integrate different system-level
simulation tools as well as different combinations of search
strategies in a simple plug-and-play fashion. Moreover, NASA
deploys a so-called dimension-oriented DSE approach, allowing
designers to configure the appropriate number of, possibly
different, search algorithms to simultaneously co-explore the
various design space dimensions. As a result, NASA provides a
flexible and re-usable framework for the systematic exploration
of the multi-dimensional MP-SoC design space, starting from a
set of relatively simple user specifications. To demonstrate the
distinct aspects of NASA, we also present several DSE
experiments in which we, e.g., compare NASA configurations
using a single search algorithm for all design space dimensions to
configurations using a separate search algorithm per dimension.
These experiments indicate that the latter multi-dimensional co-
exploration can find better design points and evaluates a higher
diversity of design alternatives as compared to the more
traditional approach of using a single search algorithm for all
dimensions.

Keywords- System-level design space exploration; MP-SoC
design

I. INTRODUCTION
Today’s embedded systems are increasingly based on

multi-processor system-on-chip (MP-SoC) architectures. These
MP-SoCs often are heterogeneous, consisting of a (potentially
large) number of programmable processors for flexible
application support as well as dedicated processing elements
for achieving power and performance goals [1]. To cope with
the design complexity of such systems, system-level design
raises the abstraction level of the design process. Design Space
Exploration (DSE) is a key ingredient of such system-level
design, during which a wide range of design choices need to be
explored, especially during the early design stages. Such early
DSE is of paramount importance as early design choices
heavily influence the success or failure of the final product.

The process of system-level DSE logically consists of two
components [2]: 1) the evaluation of a single design point in
the design space using e.g. analytical models or simulation, and
2) the search mechanism to systematically travel through the
design space. Both DSE components have received significant
research attention during the last decades [3,4,5,6]. For
example, system-level simulation is a popular method for
evaluating single design points [2]. These simulation tools
usually operate at a high level of abstraction and are often
based on the Y-chart principle [7,8]. The latter means that they
decouple application from architecture by recognizing two
distinct models for them. An application model – derived from
a target application domain – describes the functional behavior
of an application in an architecture-independent manner.
Subsequently, an architecture model – defined with the
application domain in mind – defines architecture resources
and captures their performance constraints. Finally, an explicit
mapping step maps an application model onto an architecture
model for co-simulation, after which the system performance
can be evaluated quantitatively.

These simulation tools only provide a partial solution since
an overall framework is needed to systematically search the
design space (using a simulator to evaluate the selected design
points). Such a system-level DSE framework should allow for
exploring a wide variety of system parameters and design
choices, including the number and type of processing elements
in the MP-SoC platform, the type of on-chip network, the
memory organization, the mapping of application tasks and
communications onto architecture resources, scheduling
policies, and so on. Evidently, the more details or dimensions
are taken into account, the larger the design space that needs to
be searched and therefore the more costly the analysis is.
Although many DSE approaches, based on a large variety of
search techniques, have been proposed, three common factors
can be identified in all of them: 1) DSE frameworks are usually
targeted to a specific system-level simulation tool (or analytical
evaluation method), where each effort typically uses a different
kind of simulator. Consequently, it is hard to re-use (elements
of) these DSE frameworks; 2) most of the DSE experiments in
these efforts focus on a particular (class of) MP-SoC
architecture(s); 3) setting up the DSE experiments can be very
labor intensive. It is often the case that for every experiment,
control scripts need to be (re-)written to manipulate the
simulation parameters and configuration files (specifying the

The work described in this paper was funded by the Spanish Ministry for
Science and Technology, grant AP2006-02986.

design instance to evaluate) according to the algorithm that
searches through the design space. These scripts often are
inflexible and hard to re-use for different types of DSE
experiments (i.e., assessing different parameters or parameter
ranges). To summarize, ad-hoc solutions are dominant in most
of these efforts. To the best of our knowledge, there does not
exist any generic supporting infrastructure to facilitate and
support system-level MP-SoC DSE experiments, and to foster
the re-use of software in the context of system-level MP-SoC
DSE.

To address this problem, this paper presents a new, generic
system-level DSE infrastructure implemented in C++, called
NASA (Non Ad-hoc Search Algorithm). Its main goal is to
provide a single, common, and modular framework for system-
level DSE experiments. NASA allows for incorporating
different (existing) system-level simulation tools as well as
different combinations of search strategies by means of a
simple plug-in mechanism. As a consequence, it provides a
flexible and re-usable environment to systematically explore
the multidimensional MP-SoC design space, starting from a set
of relatively simple user specifications. NASA’s output
includes information about all explored design points as well as
a set of Pareto-optimal design points within the explored
design space, which best meet the users constraints such as
real-time application constraints, number and types of available
components in the platform architecture, costs/area, etc.

The remainder of the paper is organized as follows. In the
next section, related work is discussed. Section III provides
some preliminaries on system-level DSE. In the Section IV,
we provide an overview of NASA, in which its main properties
are introduced. Section V subsequently describes various
implementation aspects of NASA. In Section VI, we present a
range of experimental results, demonstrating NASA’s
capabilities. Finally, Section VII concludes the paper.

II. RELATED WORK
Performing DSE in a time efficient and accurate way is not

a new problem and there exists a large body of related work in
this area. Most of the approaches in the embedded systems
domain are targeted to the system-level exploration of
heterogeneous MP-SoCs [3,4,9,10,11]. Although these efforts
are fairly efficient to explore, e.g., the various alternatives for
mapping a specific application onto a target MP-SoC
architecture, they typically still require significant efforts to
(re-)write the scripts that control the evaluation mechanism
(analytical model or simulator) during the search through the
design space. In reality, this often means that there exists a
repetitive effort to build customized scripts for every different
kind of DSE experiment.

Several proposals to integrate external design-point
evaluation tools in the DSE environment can also be found in
literature. In [12], a hierarchical and three-phase DSE
methodology is presented. It facilitates the integration of
simulators by using a set of tool-dependent interpreters or
adapters. Angiolini et al. [13] present a framework that
integrates an ASIP tool-chain within a virtual platform to
explore a number of axes of the MP-SoC configuration space.
However, unlike our work, these efforts do not target
integration of external search methods. Moreover, in these
efforts, human intervention is still necessary in the feedback

loop to the searching and optimization process.
The MultiCube project [14] has similar objectives as the

work presented in this paper, but it targets the exploration of
the configuration space of homogeneous chip multiprocessors
rather than system-level MP-SoC platform DSE. This implies
that it has limited or no capabilities to explore different
application to architecture mappings, heterogeneous processing
elements, different interconnects, etc.

Several efforts also have developed a modular interface-
based system-level MP-SoC DSE framework [15,16]. In both
cases, different search algorithms can be plugged in, but the
resulting DSE is limited in terms of target MP-SoC platforms
that can be explored. This last aspect has been addressed in
[17], in which the PISA library [18] is used to create a multi-
objective DSE framework. Different mapping alternatives can
be evaluated for a fixed or flexible platform during the
exploring process. However, this work uses analytical models
to evaluate design points (so, it cannot incorporate external
simulation tools). Also, the chosen representation formats for
internal interfaces in [17] are problem specific, which means
that they should be modified for each particular problem. In our
case, these are dynamically and automatically updated
according to an input constraints file. Finally, the kind of
platforms generated in [17] is limited to hierarchical bus
topologies, while our approach is not restricted to analyzing a
particular architecture.

III. PRELIMINARIES
We define the design space as a set of design points for a

given set of user constraints. A feasible design point is a
system design that meets the user constraints both in terms of
mapping and architectural implementation. This means that, for
example, only the available number and types of architectural
components (processors, memories, networks, etc.) can be used
to create a feasible architecture. Moreover, each task of an
application has to be mapped onto a processing resource that is
capable of performing this task (in term of functionality), while
communications between application tasks must be mapped
onto communication resources that actually connect the
processors onto which the communicating tasks are mapped. If
at least one of above conditions is not satisfied, then the
resulting design is classified as an infeasible one.

In this context, a design point is a point p in D, where D is
the design space defined as:

kd...ddD ×××= 21 (1)

Here, dk refers to the design options in a particular
dimension k, and × is a Cartesian product. Typically, a
dimension could represent design decisions that are orthogonal
to each other such as mapping application tasks onto
processing elements, number and types of processing elements,
number and types of memories, network type and/or topology,
etc. This way, finding the optimal or near-to optimal design
point consists of a multi-dimensional exploration process,
searching for the best combination of values in all dimensions
of D that optimizes all the imposed objectives (e.g.,
performance, power, cost, etc.). This, however, means that the
size of the design space is equal to the product of the
cardinalities of the set di, ∀i=1..k:

| | | | | | | |kddd=D ××× ...21 (2)

Consequently, the more dimensions or the larger each di,
the larger the resulting design space is. To illustrate how large
such design spaces can become, we provide an approximation
of the size of the design space we address in the results section
of this paper. To this end, we use the expression presented in
[2] to calculate the size of one dimension, while the size of the
multi-dimensional design space would be the product of all
dimensions. As a result, the expression of the size of a 3D
design space which considers mapping, architectural
components and platform topologies, can be roughly
approximated as follows:

| | () tcbd bfegw=D ×∗∗× (3)

Here, t is the number of the tasks of the application, b is the
number of processing elements, c is the number of memory
elements, d is the number of networks, e, f, g are the types of
processing elements, memory elements and networks,
respectively, and w represents the number of different
platforms or topologies the designer wants to explore. In order
to simplify the estimation, the mapping of the application’s
communication channels onto memory elements has not been
taken into account. Using equation (3), 1.3*1012 alternatives
would have to be evaluated for the following (fairly moderate)
set of values: t=7, b=6, c=3, d=4, e=3, f=3, g=3 and w=3.
This means that, even when operating at a high level of
abstraction, it is infeasible to exhaustively evaluate all these
design points. Therefore, heuristic search methods like
evolutionary algorithms, simulated annealing, or ant colony
algorithms are typically deployed because such search
algorithms only need to visit a limited number of design points
to provide a convergence path toward an optimal solution.

IV. THE NASA FRAMEWORK
 With NASA, we aim to provide a generic infrastructure for

performing system-level MP-SoC DSE experiments. To this
end, four key properties have been taken into account in the
design of NASA:

• Modularity. NASA is a highly modular framework in
which the interaction between its modules is
established by well-defined interfaces, allowing each
module to act like an independent black box inside the
framework. As a result, different search algorithms,
feasibility checkers, and system-level simulators can be
easily integrated in a plug-and-play fashion.

• Flexibility. According to the designer’s needs, different
experiments to explore different aspects of the design
space can be performed using NASA. For example, as
will be explained in more detail later, a key element in
NASA is its hierarchical DSE approach in which the
exploration dimensions are explicitly separated into
three levels: platform exploration, architecture
exploration, and mapping exploration. Subsequently,
the designer can choose to simultaneously explore at
all of these levels, or to fix one or more of these levels
(e.g., a fixed platform) and to focus the exploration on
one or two levels (e.g., mapping exploration only).

• Reusability. For a given set of user constraints, NASA
is capable of searching the design space in a systematic
and automatic way, and to evaluate selected design
points. As a result, there is no need in preparing
experiment-customized scripts. A new DSE
experiment only requires the changing of the constraint
values.

• Extensibility. Due to the modularity and the well-
defined interfaces, new modules or functionalities can
be easily plugged in the NASA framework. These new
modules could, for instance, handle additional
dimensions in the design space, without the need to
modify other modules.

The infrastructure of NASA is shown in Figure 1.
Essentially, six main modules can be distinguished in the
framework: the Search module, Feasibility Checker,
Architectural Platform Generator, Translator, Simulator and
Evaluator. These modules work as independent black boxes,
using well-defined interfaces or text files (represented by the
numbered arrows) to interact with each other.

In the Search module, the design space is explored in an
iterative fashion. By means of plug-ins, such exploration can
be done exhaustively, randomly, or using a heuristic search
algorithm such as evolutionary algorithms, simulated
annealing, or ant colony algorithms. Moreover, as mentioned
before, the DSE approach is hierarchical and currently
distinguishes three levels: platform, architectural components
and mapping levels. These levels are co-explored
simultaneously, possibly using different search algorithms.
This means that different (tailored) search algorithms can be
used for each level. At the platform level, the platform
structure – defining the number of architectural elements and
their topological interconnection – is explored. The
architectural components level explores the types of
architectural components (processor types, memory types, etc.)
inside a platform architecture. Finally, at the mapping level,
different mappings of application tasks and communications
onto the underlying architecture are explored.

Because the search algorithms may try to assess infeasible
design points during the DSE process, a feasibility checking
module is necessary to analyze the feasibility of design points
according to the user constraints files. If infeasible design

Figure 1. The NASA infrastructure.

points are detected, then NASA’s repair mechanisms can be
applied to convert them to feasible ones with only a minimum
influence on the run-time of the framework.

Subsequently, the Architectural Platform Generator and
Translator modules allow for evaluating selected design points
using system-level simulation. To this end, the Architectural
Platform Generator combines the design decisions on platform
and architectural components to compose complete architecture
descriptions. Subsequently, the Translator translates this
internal representation of design point (i.e., architecture,
application and mapping description) into a file-based system
model as required by the (external) system-level simulator. So,
integrating a new system-level simulator simply requires a new
Translator module that generates the simulator-specific
configuration file(s) that specify a design point. This is why
two kinds of module colors can be identified in Figure 1:
simulation-tool-dependent (black) and simulation-tool-
independent (gray) modules.

Using the design specifications generated by the Translator
modules, the system-level simulator is used to obtain different
system metrics, like performance, energy consumption, etc.
The simulation results are used by NASA’s Evaluator module
to evaluate the “fitness” of design points, providing feedback to
the Search module and guiding it in a systematic way through
the design space. In the next section, we provide more details
about the implementation of each of the aforementioned
modules.

V. IMPLEMENTATION OF NASA
Before explaining the different modules in detail, the

interfaces used in the NASA framework are briefly presented
first.

A. Interfaces
The file-based interfaces (represented by the numbered

arrows in Figure 1) in NASA, which allow its modules to
operate as black boxes, are an essential element to yield a
flexible and extensible framework. Three kinds of interfaces
are used in NASA: the architectural intermediate file (arrows
with number 2) is used for communication between the
Generator and Translator, the fitness file (arrow with number 3)
links the Evaluator with the Search module, and the design-
options file (arrows with number 1) is used in all sub-modules
of both the Search module and the Feasibility Checker. In our
current implementation, the information in all these files is
syntactically described in a proprietary format, although an
XML-based format will be used in our future work.

In NASA, both the design-options and fitness files share the
same format. They use a dynamically sized, string-based
representation format to describe a specific design point. Such
a description specifies the platform instance, the architecture
instance of that specific platform, and the mapping of the
application onto the specific architecture. For a 3-level design
space exploration (i.e., exploration at platform, architectural
components and mapping levels), the designer can configure
the number of the search algorithms to use, i.e., using a single
one for all levels (dimensions) or a separate one for each
dimension. The default option in NASA is to use one search
algorithm per dimension. For this reason, the design-options
and fitness files use one descriptive string per design space

dimension (i.e., separate strings to describe the platform
instance, architecture instance, and mapping). If the designer
decides to use less than one search algorithm per dimension,
then adapter modules will automatically translate the input and
output of the Search module to match the string per dimension
format. An example of the descriptive strings is shown in
Figure 2, for three (Figure 2a) and one (Figure 2b) search
algorithms (SA) in the Search module.

The length of the descriptive string for each dimension may
also vary. Using the example shown in Figure 2, it is evident
that the length of the string describing the mapping depends on
the number of tasks and communication channels in the
application. Similarly, the length of the string describing the
architecture instance is dependent on the number of processors
and memories in the platform.

Finally, the values inside the descriptive strings do not
hard-code absolute values but are indirections to table entries
(also illustrated in Figure 2a). This means that, for example, in
the case of the mapping dimension, the string elements do not
directly hard-code the processors (including their exact type)
onto which application tasks are mapped. Instead, the string
elements point to entries in a processor table. Hence, this
allows the designer to e.g. change the types of processors or
add a new type without the need to adapt any module
implementation. Clearly, this makes the approach more re-
usable and extensible.

The last important interface in NASA is the architectural
intermediate file. It describes an architecture instance in a
single file, which it is gradually constructed using the platform
and architectural components strings. Moreover, it is also used
to check mapping feasibility. Note that platforms are not fixed
entities in NASA but often are also part of the exploration.
Therefore, the Feasibility Checker requires, e.g. connectivity
information, specifying which and how processing elements
are connected, and which memories are shared by which

Figure 2. Search Algorithms (SA) and search strings in NASA.

(a)

(b)

processing elements. This information is needed to detect and
repair infeasible mappings, as will be explained in Section 5.3.
Finally, the architectural intermediate file and the checked
mapping string (which defines the mapping of application tasks
and communication channels onto the specified architecture
instance) are used by the Translator to generate a simulation-
specific description of the design point in question.

B. Search module
This module performs the actual search through the design

space, iteratively pinpointing (a set of) design instances that
need to be evaluated by means of system-level simulation. As
mentioned before, NASA applies a dimension-oriented design
space exploration approach. This means that each dimension
(platform, architectural components, and mapping) can be co-
explored simultaneously using a single search algorithm, or
using multiple and possibly different search algorithms for the
various dimensions. The designer simply selects and configures
the appropriate number and type of search algorithms to be
used in the exploration process, according to the characteristics
of the design space or each of its dimensions.

In practice, a multitude of search algorithms can be used
(via a simple plug-in mechanism) for searching one or more
design space dimensions: from exhaustive search or random
search, to heuristic search methods. In this paper, we focus on a
Search module implementation based on genetic algorithms
(GA). GA-based DSE has been widely studied in the domain of
system-level design [6,9,17,18], and it has been demonstrated
to yield good results.

At this point, we would like to highlight the advantages of
NASA’s dimension-oriented design space exploration
approach. First of all, it provides flexibility as it allows DSE
experiments to fix one or more levels of exploration if needed.
For example, to find an optimal platform configuration, one
could fix the platform level and perform exploration at the
architectural components and mapping levels. A second
advantage is that one can tailor the search algorithms for the
given dimension (level) they explore, according to the
characteristics of that dimension. It should be noted, however,
that despite of using one search algorithm per dimension, we
do not perform the system-level design space exploration as
multiple independent explorations. Decisions in the Search
module should be made by simultaneously taking into account
the results from all dimensions. This feedback information is
provided by the Evaluator module, which will be explained in
Section V-G.

C. Feasibility Checker
Independent of the number of search algorithms used in

NASA, the Feasibility Checker always receives x sets of design
decisions in the form of descriptive strings from the Search
module, where x is equal to the number of dimensions of the
explored design space (x=3 for our platform, architectural
components and mapping dimensions). For example, in the
case of a single search algorithm is used in the Search module,
adapter modules will be automatically plugged in to translate
the inputs and outputs of the Search module to comply to the x-
strings interface, as is illustrated in Figure 2b.

The main task of the Feasibility Checker is to detect
infeasible design points and to repair those design points using
heuristic algorithms. During this checking process, all sets of

design decisions (strings) are checked in a hierarchical fashion.
For example, for our 3-level exploration as shown in Figure 2a,
the platform string is checked first to determine whether or not
the specified platform template (to be discussed in more detail
in the next section) contains a valid topology, and e.g. does not
contain isolated islands of components. Next, the architectural
components string is checked to determine whether or not the
number and types of selected architectural components in the
platform template comply with the constraints provided by the
user (e.g., if a design point deploys 4 ARM processors while
the user has specified that there are only 2 ARM processors
available, then we have an infeasible design point). Finally, the
mapping string is checked for infeasibility, e.g., when
application tasks are mapped onto processing elements that
have not been allocated in the platform, or in the case there is
no shared memory to map a logical communication channel
between two tasks that have been assigned to different
processing elements. So, each design point is globally checked,
i.e., taking all dimensions of the design point into account.

If an infeasible design point is detected, then different kinds
of repair mechanisms can be applied, dependent on the
dimension where the problem occurs. Note that different repair
techniques can also produce different feasible solutions from
the same infeasible design option. In our current
implementation, we use heuristic minimum-distance repair
techniques, which introduce a minimum number of
modifications to an infeasible design point string in order to
obtain a feasible one. As a consequence, our repair techniques
only have a minimal effect on the run-time of the framework.
In the aforementioned infeasible mapping example (i.e., no
reachable memory for two communicating tasks), only one of
those two application tasks should be relocated if a feasible
mapping can be derived from such a repair.

D. Architectural Platform Generator
The architecture description of a design point is created in

two steps: platform or topological template generation and
architecture instance generation, as illustrated in Figure 3.

The basic building block of these descriptions is the so-
called Basic Topology Unit (BTU). A BTU is a logical
“pattern” consisting of a network container (the gray
component) and a variable number of element containers (the
white blocks). These element containers can, in a later stadium,
be instantiated as architectural components such as processors
and memories. As shown in Figure 3, the number of element
containers in a BTU is dependent on the specified user
constraints, like the maximum number of processors and
memories in a platform.

The BTU is replicated a number of times to form a meta-
platform. Here, the number of BTU replications is dependent
on the maximum number of networks, as specified by the user.
The meta-platform basically is capable of describing all
allowed platform instances. The generation of the BTU and the
meta-platform is performed statically (but automatically),
before the actual DSE process. During the platform
exploration, the meta-platform is used to generate topological
template instances. To this end, the search algorithm used in
platform dimension makes a number of decisions to instantiate
a topological template: it sets the number of element and
network containers in the platform. Moreover, the network
type(s) in the platform is/are also determined, and a type-

classification of the element containers is made. The latter
means that for each allocated element container in the BTUs, it
is indicated whether it contains a processor element (PE) or a
memory element (ME).

During the architecture exploration, the topological
templates are further refined. At this stage, the actual
component types of the element containers in a template are
added. In Figure 3, this means that, e.g., a processor element
allocated in an element container either becomes an ARM or
MIPS processor, and the memory elements either SDRAM or
DDRAM.

Finally, in order to obtain the complete specification of the
design point, the different application tasks and communication
channels are bound to the processing and memory elements of
the architecture instance in the third step, which is done in the
Translator module.

E. Translator
The output obtained from the Architectural Platform

Generator module and the feasible mapping strings (checked in
the Feasibility Checker module) are used to produce the input
files for the system-level simulator that is plugged into the
framework. To this end, the Translator module converts
NASA’s internal format of a design point to a simulator-
specific format. This implies that the integration of a new
system-level simulator in NASA only requires the adaptation
of the Translator module, while all other modules remain
unaffected.

F. Simulator
At this moment, we have integrated a SystemC-based

system-level simulation environment, called CASSE [3], in
NASA. Another system-level simulator, called Sesame [4], is
in the process of being integrated. Both simulation tools focus
on facilitating efficient system-level DSE of embedded
multimedia systems, allowing rapid performance evaluation of
different architectural designs, application to architecture

mappings, and hardware and software partitioning.
In order to integrate a system-level simulator in NASA, it is

required that the simulator allows for explicitly describing the
design points that need to be simulated using some kind of file
format. For example, for both CASSE and Sesame, three kinds
of input files are used: an architecture description file, an
application description file, and a mapping file. Obviously,
these can be perfectly generated by a customized Translator
module, as it was explained in section V-E.

Two key properties could be highlighted for both tools. In
first place, the above mentioned specification files are parsed
by CASSE and Sesame at runtime to simulate a specific design
point. So, changes in the description files do not require any
recompilation effort. Evidently, this allows for evaluating
design alternatives during the exploration process in a
completely automatic way, without any human intervention.
Secondly, both tools ensure deadlock-free task mappings and
schedules for feasible design points. The interested reader is
referred to [2] for an overview of existing system-level
simulators, and to [3,4] for more detailed information about
CASSE and Sesame.

G. Evaluator
System-level simulators can provide a variety of metrics,

such as performance, cost/area, and power/energy
consumption. All these metrics, or objectives, can be used in
system-level DSE, which then yields a multi-objective
optimization problem.

The essence of the Evaluator component is to provide the
feedback about the quality of a set of evaluated design points to
the Search module, thereby influencing the search decisions
taken by the latter during the exploration process.

Separating the Evaluator from the Search component again
provides flexibility and enhanced reusability of the components
in NASA. It allows for easily changing the optimization
objectives or the function that quantifies the quality of a design
point – using the various metrics such as performance, power

Figure 3. Generating topological templates and architecture instances.

and cost – without affecting the other components. Such a
function is typically referred to as the fitness function. The
Evaluator also provides the flexibility to, e.g., use a single
fitness function for all search algorithms in the Search Module,
or to deploy a different, and possibly tailored, fitness function
per search algorithm. Clearly, if multiple fitness functions are
used, then these should be defined in a coherent way with
respect to each other (i.e., avoiding conflicting fitness
functions) in order to safeguard convergence.

VI. EXPERIMENTAL RESULTS

A. Experimental setup
To demonstrate the NASA framework and illustrate its

distinct aspects, we present a number of DSE experiments in
this section. In Table I, the most important user constraints and
parameters for these experiments are listed. The studied MP-
SoCs may consist of up to 6 processor elements (PE) of the
types ARM, PowerPC, or MIPS, up to 3 memory elements
(ME) of either single or double data-rate type, and up to 4
networks of three types (bus, fully connected, or a customized
network consisting of a bus and point-to-point links). A real-
life multimedia application is used to be mapped onto the target
MP-SoC. This application is an optimized version of the
computer vision algorithm presented in [11]. Basically, this
visual tracking algorithm has a real-time requirement (25
frames/sec), and applies a correlation or block matching
technique to continuously track a specific target in the
incoming image frames. This application consists of 7 tasks
and 12 communication channels. The block or pattern size and
frames size used in our experiments are 24×24 and 320×240,
respectively.

With respect to the search algorithm(s) we use for
exploration, we focus on implementations based on genetic
algorithms (GAs). We use a proprietary implementation of the
GAs, but any existing GA such as SPEA2 or NSGA-II [9]
could also have been used. Our DSE experiments were
performed using a single GA for the platform, architectural
components and mapping dimensions, which is a traditional
form of system-level DSE, as well as using a GA per
dimension (i.e., 3 GAs in total).

The crossover and mutation operators in our GAs are
performed at the granularity of entire sub-strings (see Figure 2)
in a string that describes the topological platform, architectural
components or mapping. These operators are applied according
to their associated probabilities (pc: probability of crossover,
and pm: probability of mutation). Further, the GA can perform
either a 1-point or a 2-point crossover, and supports two types
of mutation. In “simultaneous” mutation (M=1), a single
random position is simultaneously changed in every sub-string.
In “independent” mutation (M=6), the mutation probability is
used for every of the six sub-strings to determine whether it is
mutated or not. In the case of three GAs are used for
exploration, different and customized values for the
probabilities pc and pm can be used within each GA.

Moreover, when using three GAs, there also are many ways
of linking the individuals of each dimension to form a design
point to be simulated. For example, using a pyramidal
technique, all (or some) of the individuals in the mapping
dimension are linked with each of the individuals in the

architectural components dimension, while the latter are again
all linked with each of the individuals in the platform
dimension. However, this means that the number of design
points to be evaluated in each search iteration grows
exponentially with the population size of each dimension.

The other extreme is a pure one-to-one individual linking
technique. This means that each individual in each dimension
is linked to only one individual in the other dimensions.
Clearly, this significantly reduces the number of required
evaluations. However, this approach may suffer from a
possible convergence problem due to under-exploration. For
example, let A be a design point formed by platform Ap,
architectural components Ac and mapping Am, while B is
another design point formed by platform Bp, architectural
components Bc and mapping Bm. If it turns out after a single
simulation that the fitness value of A is better than that of B,
then it clearly does not mean that platform Ap or architectural
components Ac are always a better choice than Bp and Bc. Thus,
to avoid such an under-exploration problem, more evaluation
data should be collected for the platform and architecture
dimensions before discarding any of their individuals.

To address the under-exploration problem in hierarchical
design space explorations with multiple search algorithms, we
use a variant of one-to-one individual linking technique. In this
technique, an individual from each dimension is again linked to
a single individual in the other dimensions. But unlike the pure
one-to-one technique, only the individuals from the dimension
of the lowest abstraction level (i.e., the mapping dimension in
our case) are evaluated and updated during every search

TABLE I. PARAMETER SETTINGS IN OUR EXPERIMENTS.

Parameter Nr. Types Values

PE ≤ 6 3 ARM, PPC, MIPS

ME ≤ 3 2 DDR, SDR

Networks ≤ 4 3 Bus, Fully-connected,
Customized-network

App. Tasks 7 - -

App. Channels 12 - -

Dimensions (β) 3 - Platform, architectural
components and mapping

Search algs. (SA) 1 or 3 1 Genetic algorithms

GA Selection (S) 1 1 Proportional with elitism

GA Crossover (C) 1 2 1-point and 2-point

C probability (pc) 5 - [0.1,0.3,0.5,0.8,1.0]

GA Mutation (M) 1 2 Simultaneous (M=1) and
Independent (M=6)

M probability (pm) 5 - [0.1,0.3,0.5,0.8,1.0]

Collecting iterations
(δarc)

1 - 2, architectural components
dimension

Collecting iterations
(δpla)

1 - 4, platform dimension

Search iterations (I) 41 - -

Population size 10 - Nr. of individuals per iteration

Simulation tool 1 - CASSE

iteration. The search algorithms for the higher-level dimensions
(i.e., the platform and architectural components dimensions)
keep collecting the fitness values of their individuals (for
different mappings) without actually changing their individuals
during a specified number of iterations, referred to as the
collecting iterations (δ). Only when the search has reached δ
iterations, the individuals are updated, after which the process
starts again. Obviously, as explained in section V-B, the higher
the abstraction level, the more design alternatives can be
derived for a single design point (e.g., a multitude of
architecture instances can be obtained from a single platform),
and consequently, the higher the value of δ should be. From the
above we can conclude that there exists a tight connection
between the different search algorithms and their respective
fitness functions. Formally, these relations can be defined as
follows:

where
iLy is the fitness value of an individual of the lowest-

level dimension (the mapping dimension in our case) in the
iteration i, I is the total number of search iterations, xk
represents the value of the metric k used in the fitness function
f,

ijy is the fitness value of an individual in any dimension

other than the lowest one, and δj represents the collecting
iterations for the individuals of dimension j. Moreover, for a
given range of dimensions β, the number of the iterations
needed for collecting fitness information for dimension z (e.g.,
platform) should be bigger than the number of iterations
needed for dimension w (e.g., architecture) if z has a higher
abstraction level than w.

If all the GA parameters in Table I are taken into account, a
large number of experimental combinations can be performed.
Due to space limitations, however, we can only present a
selection of four NASA configurations in this paper. The
nomenclature used to denote these configurations is
“SAgaCxM”, where the meaning of each capital letter is
defined in Table I. For example, “3ga1x6” refers to the
configuration with 3 GAs that simultaneously explore the
platform, architectural components and mapping dimensions, a
1-point crossover, and an “independent” mutation (M=6).

B. Results
In a first experiment, all possible combinations of the pc

and pm values, as listed in Table I, have been evaluated. This
results in 25 experiments for each of the four mentioned NASA
configurations, where a maximum of 410 simulations (41
iterations x 10 individuals per iteration) have been performed
for each experiment. The CASSE simulator – which dominates
the execution time of our DSE experiments – requires on
average 40 seconds to simulate a single design point on a PC,
with a Pentium IV processor at 1,6 GHz and 2 GB main
memory, running Linux. Moreover, each experiment has been
executed twenty times using different sets of initial
populations. To simplify the graphic representation of the

results and the explanation of the examples in this section, the
fitness value in our experiments only takes a single system
metric into account, namely performance. We would like to
stress, however, that multi-objective optimization can also be
perfectly addressed with NASA.

The results of the above experiment are shown in Figure 4.
It shows a scatter-plot with the average number of different
explored design points on the x-axis and the average of the best
fitness values (in terms of processed data packets/sec) on the y-
axis for each of the above mentioned experiments. If a
minimum of 1250 packets/sec has to be processed to satisfy the
real-time requirements (25 frames/sec) of the studied
application, then using a 3 GA-based searching approach in
NASA not only provides the design alternatives with the best
fitness values but the diversity of the explored design points is
also largest. Exploring the same design space with a traditional,
single GA approach, optimal and near-to-optimal architectures
are less often found. This is mainly due to a smaller diversity of
explored design points.

Figure 5 zooms in on a particular set of experiments, where
all configurations use the values pc=0.8 and pm=0.3. With
these probabilities, the “3ga2x6” configuration finds the design
point with the best overall fitness value (see Figure 4). The bars
in Figure 5 represent the average accumulated number of
different design points explored (i.e., the aggregated diversity
of the population), while the lines show the average of the best
fitness values obtained in each iteration. Investigating the
fitness values, it can be seen that the 3 GA-based experiments
gradually but progressively reach the best fitness values. In the
1 GA-based experiments, on the other hand, mostly design

⎪⎩

⎪
⎨

⎧

⊃=∀>

≠∀=∀==

=∀=

∑
=

wzandwz

LjandIiyxxxfy

Iixxxfy

wz

jj
q

Lkjj

kLL

j

qi

i

βδδ

δδ
δ

..1,;

..2,,1;),...,,(

..1);,...,,(

1
21

21

Figure 4. DSE results for six NASA configurations.

Figure 5. Best fitness values and diversity per iteration.

points of a lower fitness are reached, and they often do not
improve anymore after the twentieth iteration. The latter could
indicate that the GA is trapped in a local optimum. In that case,
the lower diversity of the populations in the 1 GA-based
experiments prevents the search algorithms to escape from
such local optima. In Figure 5, it can also clearly be seen that
the 1 GA-based experiments, and especially those with
“simultaneous” mutation (M=1), have a much lower
aggregated diversity than the 3 GA-based experiments. At this
point, we also would like to mention that although the size of
the design space (approximately 1012 alternatives, as mentioned
in Section III) is much bigger than the number of individuals
actually evaluated (maximum 410) in these experiments, the
results in Figure 5 clearly indicate that the GA-based DSE in
our experiments converges to a (local or global) optimum after
only a relatively small number of iterations.

A proper population diversity not only helps in avoiding the
above mentioned local optimum problem, but it also allows
designers to more easily compare the architectural
characteristics of the evaluated design points. That is, it can be
very useful for a designer to distinguish the architectural
similarities of the design alternatives with good fitness values.
Obviously, at this point, the higher the population diversity
during the exploration, the more information can be extracted
from the explored design space.

To illustrate the above, please consider Figures 6 and 7.
Note that the typical NASA output after each experiment is a
set of simulated design points, which form a surface that
approximates the landscape of the design space. Since our
experiments are based on 3D exploration, we present two 2D

views of the resulting surface. Figure 6 shows the fitness values
when only considering the architectural components dimension
and platform dimension of design points. The x and y axes of
Figure 6 contain the explored instance numbers of the
architectural components and platform dimensions. So, for
example, 17 different platform instances have been explored.
The fitness value is color coded, ranging from red (high fitness
value) to blue (low fitness value). In a similar fashion, Figure 7
shows the fitness values for the mapping dimension and
architectural components dimension of design points.

In Figures 6 and 7, the dark red areas clearly pinpoint the
design points with the higher fitness values. For example, three
of these design points (A, B, C) have been marked in both
Figures 6 and 7, and their respective architectures and
mappings are shown in Figure 8. From Figure 8, it can
immediately be seen that design points A and C share the same
underlying platform architecture, but the application mapping
of A (achieving 1321 packets/sec) is more efficient than the
mapping of C (achieving 1202 packets/sec). Moreover, it can
be seen that design points A and C are over-dimensioned in the
sense that not all resources are actually used by the application.
This is also illustrated by the very similar performance of
design point B (1289 packets/sec), which only uses a subset of
the resources in design points A and C. Evidently, design point
B can also be further optimized, both in terms of platform
architecture (it is still slightly over-dimensioned) and in terms
of mapping. Such refined optimization can be performed in a
next, more detailed phase of exploration experiments where,
e.g., the platform is fixed and/or additional objectives (such as
cost) are taken into account. Note, however, that these

Figure 6. Explored design space in 2D view (architectural components vs.
platform).

Figure 7. Explored design space in 2D view (mapping vs. architectural
components).

Figure 8. Examples of design points found by 3ga2x6 DSE with pc=0.8, pm=0.3.

experiments focus on demonstrating NASA’s DSE process
with various processing and network element types having
different computational and communication characteristics,
rather than performing a real DSE experiment for a certain
target system. Moreover, although not studied in our
experiments, we also note that NASA as well as the
incorporated simulators (i.e., CASSE and Sesame) support
dedicated hardware components as processing elements in DSE
experiments.

To summarize, even when exploring a relatively small
number of design points, NASA’s output (Figures 6 and 7) can
provide a good insight of where the sweet spots in the design
space are, which can then be further explored in more detail by,
e.g., fixing one or more search dimensions in the exploration.
Finally, we would like to stress that all these experiments have
been performed in a fully automatic fashion, only providing
parameter settings and constraints such as shown in Table I.

VII. CONCLUSIONS
In this paper, we addressed the lack of a generic, flexible,

and re-usable infrastructure to facilitate and support system-
level MP-SoC design space exploration (DSE) experiments. To
this end, we have presented a system-level MP-SoC DSE
support infrastructure, called NASA. This highly modular
framework uses well-defined interfaces to easily integrate
different system-level simulation tools as well as different
combinations of search strategies in a simple plug-and-play
fashion. Moreover, we described NASA’s dimension-oriented
DSE approach, allowing designers to configure the appropriate
number of, possibly different and tailored, search algorithms to
simultaneously co-explore the various design space
dimensions. The result is a flexible and re-usable framework
for the systematic exploration of the multi-dimensional MP-
SoC design space, starting from just a set of relatively simple
user specifications. We have also demonstrated several distinct
aspects of NASA by presenting a number of DSE experiments
in which we, e.g., compared NASA configurations using a
single search algorithm for all design space dimensions to
configurations using a separate search algorithm per
dimension. These experiments have shown that the latter multi-
dimensional co-exploration can find better design points and
evaluates a higher diversity of design alternatives as compared
to the more traditional approach of using a single search
algorithm for all dimensions. As future work, we plan to
integrate other types of search algorithms into NASA, e.g.,
through the integration of the PISA optimization framework
[18], as well as to perform additional deployment case studies
of NASA.

REFERENCES
[1] G. Martin, “Overview of the MPSoC Design Challenge”, Proc. of

Design Automation Conference (DAC'06), Jul. 2006.
[2] M. Gries, “Methods for evaluating and covering the design space during

early design development”, Integration, the VLSI Journal, Vol. 38, no.
2, pp. 131-183, Dec. 2004.

[3] V. Reyes, T. Bautista, G. Marrero, P. P. Carballo and W. Kruijtzer,
"CASSE: A System-Level Modeling and Design-Space Exploration
Tool for Multiprocessor Systems-on-Chip", Euromicro Symposium on
Digital System Design (DSD'04), pp. 476-483, 2004.

[4] C. Erbas, A.D. Pimentel, M. Thompson and S. Polstra, “A framework
for system-level modeling and simulation of embedded systems
architectures”, EURASIP Journal on Embedded Systems, no. 1, pp. 2-2,
Jan. 2007.

[5] C. Lee, S. Kim and S. Ha, “A Systematic Design Space Exploration of
MPSoC Based on Synchronous Data Flow Specification”, Journal of
Signal Processing System, Vol. 58, no. 2, pp. 193-213, Feb. 2010.

[6] M. Palesi and T. Givargis, “Multi-objective Design Space Exploration
Using Genetic Algorithms”, Proc. of the international symposium on
Hardware/software codesign (CODES'02), pp. 67-72, May. 2002.

[7] K. Keutzer, S. Malik, A. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns and
Platform-Based Design”, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. 19, no. 12, pp. 1523-1543, Dec.
2000.

[8] B. Kienhuis, E. Deprettere, K. Vissers and P. van der Wolf, “An
Approach for Quantitative Analysis of Application-Specific Dataflow
Architectures”, Proc. of the IEEE Int. Conference on Application-
Specific Systems, Architectures and Processors, pp.338, Jul. 1997.

[9] C. Erbas, S. Cerav-Erbas and A.D. Pimentel, "Multiobjective
Optimization and Evolutionary Algorithms for the Application Mapping
Problem in Multiprocessor System-on-Chip Design'', in IEEE
Transactions on Evolutionary Computation, pp. 358-374, Vol. 10, no. 3,
Jun. 2006.

[10] Z. J. Jia, T. Bautista and A. Nuñez, “Real-Time Application to
Multiprocessor-System-on-Chip Mapping Strategy for a System-Level
Design Tool”, IEE Electronic Letters, Vol. 45, no. 12, pp. 613-615,
2009.

[11] Z. J. Jia, T. Bautista, A. Nuñez, C. Guerra and M. Hernandez, “Design
space exploration and performance analysis for the modular design of
CVS in a heterogeneous MPSoC”, Proc. of the Conference on
Reconfigurable Computing and FPGA (ReConFig 2008), pp. 193-198,
Dec. 2008.

[12] S. Mohanty, V. K. Prasanna, S. Neema and J. Davis, “Rapid design
space exploration of heterogeneous embedded systems using symbolic
search and multi-granular simulation”, Proc. of Languages, compilers
and tools for embedded systems: software and compilers for embedded
systems (LCTES'02-SCOPES'02), Jun. 2002.

[13] F. Angiolini, J. Ceng, R. Leupers, F. Ferrari, C. Ferri and L. Benini, “An
integrated open framework for heterogeneous MPSoC design space
exploration”, Proc. of the Design, Automation and Test in Europe
(DATE'06), pp. 1145-1150, Mar. 2006.

[14] www.multicube.eu
[15] L. Thiele, I. Bacivarov, W. Haid and K. Huang, “Mapping Applications

to Tiled Multiprocessor Embedded Systems”, Proc. 7th Intl Conference
on Application of Concurrency to System Design (ACSD 2007), pp. 29-
40, Jul. 2007.

[16] G. Palermo, C. Silvano and V. Zaccaria, “A Flexible Framework for
Fast Multi-objective Design Space Exploration of Embedded Systems”,
PATMOS 2003, Vol. 2799, pp. 249-258, Sep. 2003.

[17] J. Madsen, T.K. Stidsen, P. Kjarulf and S. Mahadevan, “Multi-Objective
Design Space Exploration of Embedded System Platforms”, IFIP, Vol.
225, pp. 185-194, 2006.

[18] S. Künzli, L. Thiele and E. Zitzler, “A Modular Design Space
Exploration Framework for Embedded Systems”, IEE Proc. Computers
& Digital Techniques, pp. 183-192, 2005.

