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Abstract— System-level simulation and design space exploration 
(DSE) are key ingredients for the design of multiprocessor 
system-on-chip (MP-SoC) based embedded systems. The efforts 
in this area, however, typically use ad-hoc software 
infrastructures to facilitate and support the system-level DSE 
experiments. In this paper, we present a new, generic system-
level MP-SoC DSE infrastructure, called NASA (Non Ad-hoc 
Search Algorithm). This highly modular framework uses well-
defined interfaces to easily integrate different system-level 
simulation tools as well as different combinations of search 
strategies in a simple plug-and-play fashion. Moreover, NASA 
deploys a so-called dimension-oriented DSE approach, allowing 
designers to configure the appropriate number of, possibly 
different, search algorithms to simultaneously co-explore the 
various design space dimensions. As a result, NASA provides a 
flexible and re-usable framework for the systematic exploration 
of the multi-dimensional MP-SoC design space, starting from a 
set of relatively simple user specifications. To demonstrate the 
distinct aspects of NASA, we also present several DSE 
experiments in which we, e.g., compare NASA configurations 
using a single search algorithm for all design space dimensions to 
configurations using a separate search algorithm per dimension. 
These experiments indicate that the latter multi-dimensional co-
exploration can find better design points and evaluates a higher 
diversity of design alternatives as compared to the more 
traditional approach of using a single search algorithm for all 
dimensions. 

Keywords- System-level design space exploration; MP-SoC 
design 

I.  INTRODUCTION 
Today’s embedded systems are increasingly based on 

multi-processor system-on-chip (MP-SoC) architectures. These 
MP-SoCs often are heterogeneous, consisting of a (potentially 
large) number of programmable processors for flexible 
application support as well as dedicated processing elements 
for achieving power and performance goals [1]. To cope with 
the design complexity of such systems, system-level design 
raises the abstraction level of the design process. Design Space 
Exploration (DSE) is a key ingredient of such system-level 
design, during which a wide range of design choices need to be 
explored, especially during the early design stages. Such early 
DSE is of paramount importance as early design choices 
heavily influence the success or failure of the final product.  

The process of system-level DSE logically consists of two 
components [2]: 1) the evaluation of a single design point in 
the design space using e.g. analytical models or simulation, and 
2) the search mechanism to systematically travel through the 
design space. Both DSE components have received significant 
research attention during the last decades [3,4,5,6]. For 
example, system-level simulation is a popular method for 
evaluating single design points [2]. These simulation tools 
usually operate at a high level of abstraction and are often 
based on the Y-chart principle [7,8]. The latter means that they 
decouple application from architecture by recognizing two 
distinct models for them. An application model – derived from 
a target application domain – describes the functional behavior 
of an application in an architecture-independent manner. 
Subsequently, an architecture model – defined with the 
application domain in mind – defines architecture resources 
and captures their performance constraints. Finally, an explicit 
mapping step maps an application model onto an architecture 
model for co-simulation, after which the system performance 
can be evaluated quantitatively. 

These simulation tools only provide a partial solution since 
an overall framework is needed to systematically search the 
design space (using a simulator to evaluate the selected design 
points). Such a system-level DSE framework should allow for 
exploring a wide variety of system parameters and design 
choices, including the number and type of processing elements 
in the MP-SoC platform, the type of on-chip network, the 
memory organization, the mapping of application tasks and 
communications onto architecture resources, scheduling 
policies, and so on. Evidently, the more details or dimensions 
are taken into account, the larger the design space that needs to 
be searched and therefore the more costly the analysis is. 
Although many DSE approaches, based on a large variety of 
search techniques, have been proposed, three common factors 
can be identified in all of them: 1) DSE frameworks are usually 
targeted to a specific system-level simulation tool (or analytical 
evaluation method), where each effort typically uses a different 
kind of simulator. Consequently, it is hard to re-use (elements 
of) these DSE frameworks; 2) most of the DSE experiments in 
these efforts focus on a particular (class of) MP-SoC 
architecture(s); 3) setting up the DSE experiments can be very 
labor intensive. It is often the case that for every experiment, 
control scripts need to be (re-)written to manipulate the 
simulation parameters and configuration files (specifying the 
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design instance to evaluate) according to the algorithm that 
searches through the design space. These scripts often are 
inflexible and hard to re-use for different types of DSE 
experiments (i.e., assessing different parameters or parameter 
ranges). To summarize, ad-hoc solutions are dominant in most 
of these efforts. To the best of our knowledge, there does not 
exist any generic supporting infrastructure to facilitate and 
support system-level MP-SoC DSE experiments, and to foster 
the re-use of software in the context of system-level MP-SoC 
DSE. 

To address this problem, this paper presents a new, generic 
system-level DSE infrastructure implemented in C++, called 
NASA (Non Ad-hoc Search Algorithm). Its main goal is to 
provide a single, common, and modular framework for system-
level DSE experiments. NASA allows for incorporating 
different (existing) system-level simulation tools as well as 
different combinations of search strategies by means of a 
simple plug-in mechanism. As a consequence, it provides a 
flexible and re-usable environment to systematically explore 
the multidimensional MP-SoC design space, starting from a set 
of relatively simple user specifications. NASA’s output 
includes information about all explored design points as well as 
a set of Pareto-optimal design points within the explored 
design space, which best meet the users constraints such as 
real-time application constraints, number and types of available 
components in the platform architecture, costs/area, etc. 

The remainder of the paper is organized as follows. In the 
next section, related work is discussed. Section III provides 
some preliminaries on system-level DSE.  In the Section IV, 
we provide an overview of NASA, in which its main properties 
are introduced. Section V subsequently describes various 
implementation aspects of NASA. In Section VI, we present a 
range of experimental results, demonstrating NASA’s 
capabilities. Finally, Section VII concludes the paper. 

II. RELATED WORK 
Performing DSE in a time efficient and accurate way is not 

a new problem and there exists a large body of related work in 
this area. Most of the approaches in the embedded systems 
domain are targeted to the system-level exploration of 
heterogeneous MP-SoCs [3,4,9,10,11]. Although these efforts 
are fairly efficient to explore, e.g., the various alternatives for 
mapping a specific application onto a target MP-SoC 
architecture, they typically still require significant efforts to 
(re-)write the scripts that control the evaluation mechanism 
(analytical model or simulator) during the search through the 
design space. In reality, this often means that there exists a 
repetitive effort to build customized scripts for every different 
kind of DSE experiment. 

Several proposals to integrate external design-point 
evaluation tools in the DSE environment can also be found in 
literature. In [12], a hierarchical and three-phase DSE 
methodology is presented. It facilitates the integration of 
simulators by using a set of tool-dependent interpreters or 
adapters. Angiolini et al. [13] present a framework that 
integrates an ASIP tool-chain within a virtual platform to 
explore a number of axes of the MP-SoC configuration space. 
However, unlike our work, these efforts do not target 
integration of external search methods. Moreover, in these 
efforts, human intervention is still necessary in the feedback 

loop to the searching and optimization process. 
The MultiCube project [14] has similar objectives as the 

work presented in this paper, but it targets the exploration of 
the configuration space of homogeneous chip multiprocessors 
rather than system-level MP-SoC platform DSE. This implies 
that it has limited or no capabilities to explore different 
application to architecture mappings, heterogeneous processing 
elements, different interconnects, etc. 

Several efforts also have developed a modular interface-
based system-level MP-SoC DSE framework [15,16]. In both 
cases, different search algorithms can be plugged in, but the 
resulting DSE is limited in terms of target MP-SoC platforms 
that can be explored. This last aspect has been addressed in 
[17], in which the PISA library [18] is used to create a multi-
objective DSE framework. Different mapping alternatives can 
be evaluated for a fixed or flexible platform during the 
exploring process. However, this work uses analytical models 
to evaluate design points (so, it cannot incorporate external 
simulation tools). Also, the chosen representation formats for 
internal interfaces in [17] are problem specific, which means 
that they should be modified for each particular problem. In our 
case, these are dynamically and automatically updated 
according to an input constraints file. Finally, the kind of 
platforms generated in [17] is limited to hierarchical bus 
topologies, while our approach is not restricted to analyzing a 
particular architecture. 

III. PRELIMINARIES 
We define the design space as a set of design points for a 

given set of user constraints. A feasible design point is a 
system design that meets the user constraints both in terms of 
mapping and architectural implementation. This means that, for 
example, only the available number and types of architectural 
components (processors, memories, networks, etc.) can be used 
to create a feasible architecture. Moreover, each task of an 
application has to be mapped onto a processing resource that is 
capable of performing this task (in term of functionality), while 
communications between application tasks must be mapped 
onto communication resources that actually connect the 
processors onto which the communicating tasks are mapped. If 
at least one of above conditions is not satisfied, then the 
resulting design is classified as an infeasible one. 

In this context, a design point is a point p in D, where D is 
the design space defined as: 

kd...ddD ×××= 21     (1) 

Here, dk refers to the design options in a particular 
dimension k, and ×  is a Cartesian product. Typically, a 
dimension could represent design decisions that are orthogonal 
to each other such as mapping application tasks onto 
processing elements, number and types of processing elements, 
number and types of memories, network type and/or topology, 
etc. This way, finding the optimal or near-to optimal design 
point consists of a multi-dimensional exploration process, 
searching for the best combination of values in all dimensions 
of D that optimizes all the imposed objectives (e.g., 
performance, power, cost, etc.). This, however, means that the 
size of the design space is equal to the product of the 
cardinalities of the set di, ∀i=1..k: 



| | | | | | | |kddd=D ××× ...21    (2) 

Consequently, the more dimensions or the larger each di, 
the larger the resulting design space is. To illustrate how large 
such design spaces can become, we provide an approximation 
of the size of the design space we address in the results section 
of this paper. To this end, we use the expression presented in 
[2] to calculate the size of one dimension, while the size of the 
multi-dimensional design space would be the product of all 
dimensions. As a result, the expression of the size of a 3D 
design space which considers mapping, architectural 
components and platform topologies, can be roughly 
approximated as follows: 

| | ( ) tcbd bfegw=D ×∗∗×    (3) 

Here, t is the number of the tasks of the application, b is the 
number of processing elements, c is the number of memory 
elements, d is the number of networks, e, f, g are the types of 
processing elements, memory elements and networks, 
respectively, and w represents the number of different 
platforms or topologies the designer wants to explore. In order 
to simplify the estimation, the mapping of the application’s 
communication channels onto memory elements has not been 
taken into account. Using equation (3), 1.3*1012 alternatives 
would have to be evaluated for the following (fairly moderate) 
set of values: t=7, b=6, c=3, d=4, e=3, f=3, g=3 and w=3. 
This means that, even when operating at a high level of 
abstraction, it is infeasible to exhaustively evaluate all these 
design points. Therefore, heuristic search methods like 
evolutionary algorithms, simulated annealing, or ant colony 
algorithms are typically deployed because such search 
algorithms only need to visit a limited number of design points 
to provide a convergence path toward an optimal solution. 

IV. THE NASA FRAMEWORK 
 With NASA, we aim to provide a generic infrastructure for 

performing system-level MP-SoC DSE experiments.  To this 
end, four key properties have been taken into account in the 
design of NASA: 

• Modularity. NASA is a highly modular framework in 
which the interaction between its modules is 
established by well-defined interfaces, allowing each 
module to act like an independent black box inside the 
framework. As a result, different search algorithms, 
feasibility checkers, and system-level simulators can be 
easily integrated in a plug-and-play fashion. 

• Flexibility. According to the designer’s needs, different 
experiments to explore different aspects of the design 
space can be performed using NASA. For example, as 
will be explained in more detail later, a key element in 
NASA is its hierarchical DSE approach in which the 
exploration dimensions are explicitly separated into 
three levels: platform exploration, architecture 
exploration, and mapping exploration. Subsequently, 
the designer can choose to simultaneously explore at 
all of these levels, or to fix one or more of these levels 
(e.g., a fixed platform) and to focus the exploration on 
one or two levels (e.g., mapping exploration only).  

• Reusability. For a given set of user constraints, NASA 
is capable of searching the design space in a systematic 
and automatic way, and to evaluate selected design 
points. As a result, there is no need in preparing 
experiment-customized scripts. A new DSE 
experiment only requires the changing of the constraint 
values. 

• Extensibility. Due to the modularity and the well-
defined interfaces, new modules or functionalities can 
be easily plugged in the NASA framework. These new 
modules could, for instance, handle additional 
dimensions in the design space, without the need to 
modify other modules. 

The infrastructure of NASA is shown in Figure 1. 
Essentially, six main modules can be distinguished in the 
framework: the Search module, Feasibility Checker, 
Architectural Platform Generator, Translator, Simulator and 
Evaluator. These modules work as independent black boxes, 
using well-defined interfaces or text files (represented by the 
numbered arrows) to interact with each other. 

In the Search module, the design space is explored in an 
iterative fashion. By means of plug-ins, such exploration can 
be done exhaustively, randomly, or using a heuristic search 
algorithm such as evolutionary algorithms, simulated 
annealing, or ant colony algorithms. Moreover, as mentioned 
before, the DSE approach is hierarchical and currently 
distinguishes three levels: platform, architectural components 
and mapping levels. These levels are co-explored 
simultaneously, possibly using different search algorithms. 
This means that different (tailored) search algorithms can be 
used for each level. At the platform level, the platform 
structure – defining the number of architectural elements and 
their topological interconnection – is explored. The 
architectural components level explores the types of 
architectural components (processor types, memory types, etc.) 
inside a platform architecture. Finally, at the mapping level, 
different mappings of application tasks and communications 
onto the underlying architecture are explored. 

Because the search algorithms may try to assess infeasible 
design points during the DSE process, a feasibility checking 
module is necessary to analyze the feasibility of design points 
according to the user constraints files. If infeasible design 

Figure 1. The NASA infrastructure. 



points are detected, then NASA’s repair mechanisms can be 
applied to convert them to feasible ones with only a minimum 
influence on the run-time of the framework. 

Subsequently, the Architectural Platform Generator and 
Translator modules allow for evaluating selected design points 
using system-level simulation. To this end, the Architectural 
Platform Generator combines the design decisions on platform 
and architectural components to compose complete architecture 
descriptions. Subsequently, the Translator translates this 
internal representation of design point (i.e., architecture, 
application and mapping description) into a file-based system 
model as required by the (external) system-level simulator. So, 
integrating a new system-level simulator simply requires a new 
Translator module that generates the simulator-specific 
configuration file(s) that specify a design point. This is why 
two kinds of module colors can be identified in Figure 1: 
simulation-tool-dependent (black) and simulation-tool-
independent (gray) modules. 

Using the design specifications generated by the Translator 
modules, the system-level simulator is used to obtain different 
system metrics, like performance, energy consumption, etc. 
The simulation results are used by NASA’s Evaluator module 
to evaluate the “fitness” of design points, providing feedback to 
the Search module and guiding it in a systematic way through 
the design space. In the next section, we provide more details 
about the implementation of each of the aforementioned 
modules. 

V. IMPLEMENTATION OF NASA 
Before explaining the different modules in detail, the 

interfaces used in the NASA framework are briefly presented 
first. 

A. Interfaces 
The file-based interfaces (represented by the numbered 

arrows in Figure 1) in NASA, which allow its modules to 
operate as black boxes, are an essential element to yield a 
flexible and extensible framework. Three kinds of interfaces 
are used in NASA: the architectural intermediate file (arrows 
with number 2) is used for communication between the 
Generator and Translator, the fitness file (arrow with number 3) 
links the Evaluator with the Search module, and the design-
options file (arrows with number 1) is used in all sub-modules 
of both the Search module and the Feasibility Checker. In our 
current implementation, the information in all these files is 
syntactically described in a proprietary format, although an 
XML-based format will be used in our future work. 

In NASA, both the design-options and fitness files share the 
same format. They use a dynamically sized, string-based 
representation format to describe a specific design point. Such 
a description specifies the platform instance, the architecture 
instance of that specific platform, and the mapping of the 
application onto the specific architecture. For a 3-level design 
space exploration (i.e., exploration at platform, architectural 
components and mapping levels), the designer can configure 
the number of the search algorithms to use, i.e., using a single 
one for all levels (dimensions) or a separate one for each 
dimension. The default option in NASA is to use one search 
algorithm per dimension. For this reason, the design-options 
and fitness files use one descriptive string per design space 

dimension (i.e., separate strings to describe the platform 
instance, architecture instance, and mapping). If the designer 
decides to use less than one search algorithm per dimension, 
then adapter modules will automatically translate the input and 
output of the Search module to match the string per dimension 
format. An example of the descriptive strings is shown in 
Figure 2, for three (Figure 2a) and one (Figure 2b) search 
algorithms (SA) in the Search module. 

The length of the descriptive string for each dimension may 
also vary. Using the example shown in Figure 2, it is evident 
that the length of the string describing the mapping depends on 
the number of tasks and communication channels in the 
application. Similarly, the length of the string describing the 
architecture instance is dependent on the number of processors 
and memories in the platform. 

Finally, the values inside the descriptive strings do not 
hard-code absolute values but are indirections to table entries 
(also illustrated in Figure 2a). This means that, for example, in 
the case of the mapping dimension, the string elements do not 
directly hard-code the processors (including their exact type) 
onto which application tasks are mapped. Instead, the string 
elements point to entries in a processor table. Hence, this 
allows the designer to e.g. change the types of processors or 
add a new type without the need to adapt any module 
implementation. Clearly, this makes the approach more re-
usable and extensible. 

The last important interface in NASA is the architectural 
intermediate file. It describes an architecture instance in a 
single file, which it is gradually constructed using the platform 
and architectural components strings. Moreover, it is also used 
to check mapping feasibility. Note that platforms are not fixed 
entities in NASA but often are also part of the exploration. 
Therefore, the Feasibility Checker requires, e.g. connectivity 
information, specifying which and how processing elements 
are connected, and which memories are shared by which 

Figure 2. Search Algorithms (SA) and search strings in NASA. 
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processing elements. This information is needed to detect and 
repair infeasible mappings, as will be explained in Section 5.3. 
Finally, the architectural intermediate file and the checked 
mapping string (which defines the mapping of application tasks 
and communication channels onto the specified architecture 
instance) are used by the Translator to generate a simulation-
specific description of the design point in question. 

B. Search module 
This module performs the actual search through the design 

space, iteratively pinpointing (a set of) design instances that 
need to be evaluated by means of system-level simulation. As 
mentioned before, NASA applies a dimension-oriented design 
space exploration approach. This means that each dimension 
(platform, architectural components, and mapping) can be co-
explored simultaneously using a single search algorithm, or 
using multiple and possibly different search algorithms for the 
various dimensions. The designer simply selects and configures 
the appropriate number and type of search algorithms to be 
used in the exploration process, according to the characteristics 
of the design space or each of its dimensions. 

In practice, a multitude of search algorithms can be used 
(via a simple plug-in mechanism) for searching one or more 
design space dimensions: from exhaustive search or random 
search, to heuristic search methods. In this paper, we focus on a 
Search module implementation based on genetic algorithms 
(GA). GA-based DSE has been widely studied in the domain of 
system-level design [6,9,17,18], and it has been demonstrated 
to yield good results. 

At this point, we would like to highlight the advantages of 
NASA’s dimension-oriented design space exploration 
approach. First of all, it provides flexibility as it allows DSE 
experiments to fix one or more levels of exploration if needed. 
For example, to find an optimal platform configuration, one 
could fix the platform level and perform exploration at the 
architectural components and mapping levels. A second 
advantage is that one can tailor the search algorithms for the 
given dimension (level) they explore, according to the 
characteristics of that dimension. It should be noted, however, 
that despite of using one search algorithm per dimension, we 
do not perform the system-level design space exploration as 
multiple independent explorations. Decisions in the Search 
module should be made by simultaneously taking into account 
the results from all dimensions. This feedback information is 
provided by the Evaluator module, which will be explained in 
Section V-G. 

C. Feasibility Checker 
Independent of the number of search algorithms used in 

NASA, the Feasibility Checker always receives x sets of design 
decisions in the form of descriptive strings from the Search 
module, where x is equal to the number of dimensions of the 
explored design space (x=3 for our platform, architectural 
components and mapping dimensions). For example, in the 
case of a single search algorithm is used in the Search module, 
adapter modules will be automatically plugged in to translate 
the inputs and outputs of the Search module to comply to the x-
strings interface, as is illustrated in Figure 2b. 

The main task of the Feasibility Checker is to detect 
infeasible design points and to repair those design points using 
heuristic algorithms. During this checking process, all sets of 

design decisions (strings) are checked in a hierarchical fashion. 
For example, for our 3-level exploration as shown in Figure 2a, 
the platform string is checked first to determine whether or not 
the specified platform template (to be discussed in more detail 
in the next section) contains a valid topology, and e.g. does not 
contain isolated islands of components. Next, the architectural 
components string is checked to determine whether or not the 
number and types of selected architectural components in the 
platform template comply with the constraints provided by the 
user (e.g., if a design point deploys 4 ARM processors while 
the user has specified that there are only 2 ARM processors 
available, then we have an infeasible design point). Finally, the 
mapping string is checked for infeasibility, e.g., when 
application tasks are mapped onto processing elements that 
have not been allocated in the platform, or in the case there is 
no shared memory to map a logical communication channel 
between two tasks that have been assigned to different 
processing elements. So, each design point is globally checked, 
i.e., taking all dimensions of the design point into account. 

If an infeasible design point is detected, then different kinds 
of repair mechanisms can be applied, dependent on the 
dimension where the problem occurs. Note that different repair 
techniques can also produce different feasible solutions from 
the same infeasible design option. In our current 
implementation, we use heuristic minimum-distance repair 
techniques, which introduce a minimum number of 
modifications to an infeasible design point string in order to 
obtain a feasible one. As a consequence, our repair techniques 
only have a minimal effect on the run-time of the framework. 
In the aforementioned infeasible mapping example (i.e., no 
reachable memory for two communicating tasks), only one of 
those two application tasks should be relocated if a feasible 
mapping can be derived from such a repair. 

D. Architectural Platform Generator 
The architecture description of a design point is created in 

two steps: platform or topological template generation and 
architecture instance generation, as illustrated in Figure 3.  

The basic building block of these descriptions is the so-
called Basic Topology Unit (BTU). A BTU is a logical 
“pattern” consisting of a network container (the gray 
component) and a variable number of element containers (the 
white blocks). These element containers can, in a later stadium, 
be instantiated as architectural components such as processors 
and memories. As shown in Figure 3, the number of element 
containers in a BTU is dependent on the specified user 
constraints, like the maximum number of processors and 
memories in a platform.  

The BTU is replicated a number of times to form a meta-
platform. Here, the number of BTU replications is dependent 
on the maximum number of networks, as specified by the user. 
The meta-platform basically is capable of describing all 
allowed platform instances. The generation of the BTU and the 
meta-platform is performed statically (but automatically), 
before the actual DSE process. During the platform 
exploration, the meta-platform is used to generate topological 
template instances. To this end, the search algorithm used in 
platform dimension makes a number of decisions to instantiate 
a topological template: it sets the number of element and 
network containers in the platform. Moreover, the network 
type(s) in the platform is/are also determined, and a type-



classification of the element containers is made. The latter 
means that for each allocated element container in the BTUs, it 
is indicated whether it contains a processor element (PE) or a 
memory element (ME). 

During the architecture exploration, the topological 
templates are further refined. At this stage, the actual 
component types of the element containers in a template are 
added. In Figure 3, this means that, e.g., a processor element 
allocated in an element container either becomes an ARM or 
MIPS processor, and the memory elements either SDRAM or 
DDRAM. 

Finally, in order to obtain the complete specification of the 
design point, the different application tasks and communication 
channels are bound to the processing and memory elements of 
the architecture instance in the third step, which is done in the 
Translator module. 

E. Translator 
The output obtained from the Architectural Platform 

Generator module and the feasible mapping strings (checked in 
the Feasibility Checker module) are used to produce the input 
files for the system-level simulator that is plugged into the 
framework. To this end, the Translator module converts 
NASA’s internal format of a design point to a simulator-
specific format. This implies that the integration of a new 
system-level simulator in NASA only requires the adaptation 
of the Translator module, while all other modules remain 
unaffected. 

F. Simulator 
At this moment, we have integrated a SystemC-based 

system-level simulation environment, called CASSE [3], in 
NASA.  Another system-level simulator, called Sesame [4], is 
in the process of being integrated. Both simulation tools focus 
on facilitating efficient system-level DSE of embedded 
multimedia systems, allowing rapid performance evaluation of 
different architectural designs, application to architecture 

mappings, and hardware and software partitioning. 
In order to integrate a system-level simulator in NASA, it is 

required that the simulator allows for explicitly describing the 
design points that need to be simulated using some kind of file 
format. For example, for both CASSE and Sesame, three kinds 
of input files are used: an architecture description file, an 
application description file, and a mapping file. Obviously, 
these can be perfectly generated by a customized Translator 
module, as it was explained in section V-E. 

Two key properties could be highlighted for both tools. In 
first place, the above mentioned specification files are parsed 
by CASSE and Sesame at runtime to simulate a specific design 
point. So, changes in the description files do not require any 
recompilation effort. Evidently, this allows for evaluating 
design alternatives during the exploration process in a 
completely automatic way, without any human intervention. 
Secondly, both tools ensure deadlock-free task mappings and 
schedules for feasible design points. The interested reader is 
referred to [2] for an overview of existing system-level 
simulators, and to [3,4] for more detailed information about 
CASSE and Sesame. 

G. Evaluator 
System-level simulators can provide a variety of metrics, 

such as performance, cost/area, and power/energy 
consumption. All these metrics, or objectives, can be used in 
system-level DSE, which then yields a multi-objective 
optimization problem. 

The essence of the Evaluator component is to provide the 
feedback about the quality of a set of evaluated design points to 
the Search module, thereby influencing the search decisions 
taken by the latter during the exploration process. 

Separating the Evaluator from the Search component again 
provides flexibility and enhanced reusability of the components 
in NASA. It allows for easily changing the optimization 
objectives or the function that quantifies the quality of a design 
point – using the various metrics such as performance, power 

Figure 3. Generating topological templates and architecture instances.



and cost – without affecting the other components. Such a 
function is typically referred to as the fitness function. The 
Evaluator also provides the flexibility to, e.g., use a single 
fitness function for all search algorithms in the Search Module, 
or to deploy a different, and possibly tailored, fitness function 
per search algorithm. Clearly, if multiple fitness functions are 
used, then these should be defined in a coherent way with 
respect to each other (i.e., avoiding conflicting fitness 
functions) in order to safeguard convergence. 

VI. EXPERIMENTAL RESULTS 

A. Experimental setup 
To demonstrate the NASA framework and illustrate its 

distinct aspects, we present a number of DSE experiments in 
this section. In Table I, the most important user constraints and 
parameters for these experiments are listed. The studied MP-
SoCs may consist of up to 6 processor elements (PE) of the 
types ARM, PowerPC, or MIPS, up to 3 memory elements 
(ME) of either single or double data-rate type, and up to 4 
networks of three types (bus, fully connected, or a customized 
network consisting of a bus and point-to-point links). A real-
life multimedia application is used to be mapped onto the target 
MP-SoC. This application is an optimized version of the 
computer vision algorithm presented in [11]. Basically, this 
visual tracking algorithm has a real-time requirement (25 
frames/sec), and applies a correlation or block matching 
technique to continuously track a specific target in the 
incoming image frames. This application consists of 7 tasks 
and 12 communication channels. The block or pattern size and 
frames size used in our experiments are 24×24 and 320×240, 
respectively. 

With respect to the search algorithm(s) we use for 
exploration, we focus on implementations based on genetic 
algorithms (GAs). We use a proprietary implementation of the 
GAs, but any existing GA such as SPEA2 or NSGA-II [9] 
could also have been used. Our DSE experiments were 
performed using a single GA for the platform, architectural 
components and mapping dimensions, which is a traditional 
form of system-level DSE, as well as using a GA per 
dimension (i.e., 3 GAs in total). 

The crossover and mutation operators in our GAs are 
performed at the granularity of entire sub-strings (see Figure 2) 
in a string that describes the topological platform, architectural 
components or mapping. These operators are applied according 
to their associated probabilities (pc: probability of crossover, 
and pm: probability of mutation). Further, the GA can perform 
either a 1-point or a 2-point crossover, and supports two types 
of mutation. In “simultaneous” mutation (M=1), a single 
random position is simultaneously changed in every sub-string. 
In “independent” mutation (M=6), the mutation probability is 
used for every of the six sub-strings to determine whether it is 
mutated or not. In the case of three GAs are used for 
exploration, different and customized values for the 
probabilities pc and pm can be used within each GA. 

Moreover, when using three GAs, there also are many ways 
of linking the individuals of each dimension to form a design 
point to be simulated. For example, using a pyramidal 
technique, all (or some) of the individuals in the mapping 
dimension are linked with each of the individuals in the 

architectural components dimension, while the latter are again 
all linked with each of the individuals in the platform 
dimension. However, this means that the number of design 
points to be evaluated in each search iteration grows 
exponentially with the population size of each dimension. 

The other extreme is a pure one-to-one individual linking 
technique. This means that each individual in each dimension 
is linked to only one individual in the other dimensions. 
Clearly, this significantly reduces the number of required 
evaluations. However, this approach may suffer from a 
possible convergence problem due to under-exploration. For 
example, let A be a design point formed by platform Ap, 
architectural components Ac and mapping Am, while B is 
another design point formed by platform Bp, architectural 
components Bc and mapping Bm. If it turns out after a single 
simulation that the fitness value of A is better than that of B, 
then it clearly does not mean that platform Ap or architectural 
components Ac are always a better choice than Bp and Bc. Thus, 
to avoid such an under-exploration problem, more evaluation 
data should be collected for the platform and architecture 
dimensions before discarding any of their individuals. 

To address the under-exploration problem in hierarchical 
design space explorations with multiple search algorithms, we 
use a variant of one-to-one individual linking technique. In this 
technique, an individual from each dimension is again linked to 
a single individual in the other dimensions. But unlike the pure 
one-to-one technique, only the individuals from the dimension 
of the lowest abstraction level (i.e., the mapping dimension in 
our case) are evaluated and updated during every search 

TABLE I.  PARAMETER SETTINGS IN OUR EXPERIMENTS. 

Parameter Nr. Types Values 

PE ≤ 6 3 ARM, PPC, MIPS 

ME ≤ 3 2 DDR, SDR 

Networks ≤ 4 3 Bus, Fully-connected, 
Customized-network 

App. Tasks 7 - - 

App. Channels 12 - - 

Dimensions (β) 3 - Platform, architectural 
components and mapping 

Search algs. (SA) 1 or 3 1 Genetic algorithms 

GA Selection (S) 1 1 Proportional with elitism  

GA Crossover (C)  1 2 1-point and 2-point 

C probability (pc) 5 - [0.1,0.3,0.5,0.8,1.0] 

GA Mutation (M) 1 2 Simultaneous (M=1) and 
Independent (M=6) 

M probability (pm) 5 - [0.1,0.3,0.5,0.8,1.0] 

Collecting iterations 
(δarc) 

1 - 2, architectural components 
dimension 

Collecting iterations 
(δpla) 

1 - 4, platform dimension 

Search iterations (I) 41 - - 

Population size 10 - Nr. of individuals per iteration 

Simulation tool 1 - CASSE 



iteration. The search algorithms for the higher-level dimensions 
(i.e., the platform and architectural components dimensions) 
keep collecting the fitness values of their individuals (for 
different mappings) without actually changing their individuals 
during a specified number of iterations, referred to as the 
collecting iterations (δ). Only when the search has reached δ 
iterations, the individuals are updated, after which the process 
starts again. Obviously, as explained in section V-B, the higher 
the abstraction level, the more design alternatives can be 
derived for a single design point (e.g., a multitude of 
architecture instances can be obtained from a single platform), 
and consequently, the higher the value of δ should be. From the 
above we can conclude that there exists a tight connection 
between the different search algorithms and their respective 
fitness functions. Formally, these relations can be defined as 
follows:  

where
iLy is the fitness value of an individual of the lowest-

level dimension (the mapping dimension in our case) in the 
iteration i, I is the total number of search iterations, xk 
represents the value of the metric k used in the fitness function 
f, 

ijy is the fitness value of an individual in any dimension 

other than the lowest one, and δj represents the collecting 
iterations for the individuals of dimension j. Moreover, for a 
given range of dimensions β, the number of the iterations 
needed for collecting fitness information for dimension z (e.g., 
platform) should be bigger than the number of iterations 
needed for dimension w (e.g., architecture) if z has a higher 
abstraction level than w.  

If all the GA parameters in Table I are taken into account, a 
large number of experimental combinations can be performed. 
Due to space limitations, however, we can only present a 
selection of four NASA configurations in this paper. The 
nomenclature used to denote these configurations is 
“SAgaCxM”, where the meaning of each capital letter is 
defined in Table I. For example, “3ga1x6” refers to the 
configuration with 3 GAs that simultaneously explore the 
platform, architectural components and mapping dimensions, a 
1-point crossover, and an “independent” mutation (M=6). 

B. Results 
In a first experiment, all possible combinations of the pc 

and pm values, as listed in Table I, have been evaluated. This 
results in 25 experiments for each of the four mentioned NASA 
configurations, where a maximum of 410 simulations (41 
iterations x 10 individuals per iteration) have been performed 
for each experiment. The CASSE simulator – which dominates 
the execution time of our DSE experiments – requires on 
average 40 seconds to simulate a single design point on a PC, 
with a Pentium IV processor at 1,6 GHz and 2 GB main 
memory, running Linux. Moreover, each experiment has been 
executed twenty times using different sets of initial 
populations. To simplify the graphic representation of the 

results and the explanation of the examples in this section, the 
fitness value in our experiments only takes a single system 
metric into account, namely performance. We would like to 
stress, however, that multi-objective optimization can also be 
perfectly addressed with NASA. 

The results of the above experiment are shown in Figure 4. 
It shows a scatter-plot with the average number of different 
explored design points on the x-axis and the average of the best 
fitness values (in terms of processed data packets/sec) on the y-
axis for each of the above mentioned experiments. If a 
minimum of 1250 packets/sec has to be processed to satisfy the 
real-time requirements (25 frames/sec) of the studied 
application, then using a 3 GA-based searching approach in 
NASA not only provides the design alternatives with the best 
fitness values but the diversity of the explored design points is 
also largest. Exploring the same design space with a traditional, 
single GA approach, optimal and near-to-optimal architectures 
are less often found. This is mainly due to a smaller diversity of 
explored design points. 

Figure 5 zooms in on a particular set of experiments, where 
all configurations use the values pc=0.8 and pm=0.3. With 
these probabilities, the “3ga2x6” configuration finds the design 
point with the best overall fitness value (see Figure 4). The bars 
in Figure 5 represent the average accumulated number of 
different design points explored (i.e., the aggregated diversity 
of the population), while the lines show the average of the best 
fitness values obtained in each iteration. Investigating the 
fitness values, it can be seen that the 3 GA-based experiments 
gradually but progressively reach the best fitness values. In the 
1 GA-based experiments, on the other hand, mostly design 
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Figure 4. DSE results for six NASA configurations. 

Figure 5. Best fitness values and diversity per iteration. 



points of a lower fitness are reached, and they often do not 
improve anymore after the twentieth iteration. The latter could 
indicate that the GA is trapped in a local optimum. In that case, 
the lower diversity of the populations in the 1 GA-based 
experiments prevents the search algorithms to escape from 
such local optima. In Figure 5, it can also clearly be seen that 
the 1 GA-based experiments, and especially those with 
“simultaneous” mutation (M=1), have a much lower 
aggregated diversity than the 3 GA-based experiments. At this 
point, we also would like to mention that although the size of 
the design space (approximately 1012 alternatives, as mentioned 
in Section III) is much bigger than the number of individuals 
actually evaluated (maximum 410) in these experiments, the 
results in Figure 5 clearly indicate that the GA-based DSE in 
our experiments converges to a (local or global) optimum after 
only a relatively small number of iterations.  

A proper population diversity not only helps in avoiding the 
above mentioned local optimum problem, but it also allows 
designers to more easily compare the architectural 
characteristics of the evaluated design points. That is, it can be 
very useful for a designer to distinguish the architectural 
similarities of the design alternatives with good fitness values. 
Obviously, at this point, the higher the population diversity 
during the exploration, the more information can be extracted 
from the explored design space.  

To illustrate the above, please consider Figures 6 and 7. 
Note that the typical NASA output after each experiment is a 
set of simulated design points, which form a surface that 
approximates the landscape of the design space. Since our 
experiments are based on 3D exploration, we present two 2D 

views of the resulting surface. Figure 6 shows the fitness values 
when only considering the architectural components dimension 
and platform dimension of design points. The x and y axes of 
Figure 6 contain the explored instance numbers of the 
architectural components and platform dimensions. So, for 
example, 17 different platform instances have been explored. 
The fitness value is color coded, ranging from red (high fitness 
value) to blue (low fitness value). In a similar fashion, Figure 7 
shows the fitness values for the mapping dimension and 
architectural components dimension of design points. 

In Figures 6 and 7, the dark red areas clearly pinpoint the 
design points with the higher fitness values. For example, three 
of these design points (A, B, C) have been marked in both 
Figures 6 and 7, and their respective architectures and 
mappings are shown in Figure 8. From Figure 8, it can 
immediately be seen that design points A and C share the same 
underlying platform architecture, but the application mapping 
of A (achieving 1321 packets/sec) is more efficient than the 
mapping of C (achieving 1202 packets/sec). Moreover, it can 
be seen that design points A and C are over-dimensioned in the 
sense that not all resources are actually used by the application. 
This is also illustrated by the very similar performance of 
design point B (1289 packets/sec), which only uses a subset of 
the resources in design points A and C. Evidently, design point 
B can also be further optimized, both in terms of platform 
architecture (it is still slightly over-dimensioned) and in terms 
of mapping. Such refined optimization can be performed in a 
next, more detailed phase of exploration experiments where, 
e.g., the platform is fixed and/or additional objectives (such as 
cost) are taken into account. Note, however, that these 

Figure 6. Explored design space in 2D view (architectural components vs. 
platform). 

Figure 7. Explored design space in 2D view (mapping vs. architectural 
components). 

Figure 8. Examples of design points found by 3ga2x6 DSE with pc=0.8, pm=0.3. 



experiments focus on demonstrating NASA’s DSE process 
with various processing and network element types having 
different computational and communication characteristics, 
rather than performing a real DSE experiment for a certain 
target system. Moreover, although not studied in our 
experiments, we also note that NASA as well as the 
incorporated simulators (i.e., CASSE and Sesame) support 
dedicated hardware components as processing elements in DSE 
experiments. 

To summarize, even when exploring a relatively small 
number of design points, NASA’s output (Figures 6 and 7) can 
provide a good insight of where the sweet spots in the design 
space are, which can then be further explored in more detail by, 
e.g., fixing one or more search dimensions in the exploration. 
Finally, we would like to stress that all these experiments have 
been performed in a fully automatic fashion, only providing 
parameter settings and constraints such as shown in Table I. 

VII. CONCLUSIONS 
In this paper, we addressed the lack of a generic, flexible, 

and re-usable infrastructure to facilitate and support system-
level MP-SoC design space exploration (DSE) experiments. To 
this end, we have presented a system-level MP-SoC DSE 
support infrastructure, called NASA. This highly modular 
framework uses well-defined interfaces to easily integrate 
different system-level simulation tools as well as different 
combinations of search strategies in a simple plug-and-play 
fashion. Moreover, we described NASA’s dimension-oriented 
DSE approach, allowing designers to configure the appropriate 
number of, possibly different and tailored, search algorithms to 
simultaneously co-explore the various design space 
dimensions. The result is a flexible and re-usable framework 
for the systematic exploration of the multi-dimensional MP-
SoC design space, starting from just a set of relatively simple 
user specifications. We have also demonstrated several distinct 
aspects of NASA by presenting a number of DSE experiments 
in which we, e.g., compared NASA configurations using a 
single search algorithm for all design space dimensions to 
configurations using a separate search algorithm per 
dimension. These experiments have shown that the latter multi-
dimensional co-exploration can find better design points and 
evaluates a higher diversity of design alternatives as compared 
to the more traditional approach of using a single search 
algorithm for all dimensions. As future work, we plan to 
integrate other types of search algorithms into NASA, e.g., 
through the integration of the PISA optimization framework 
[18], as well as to perform additional deployment case studies 
of NASA. 
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