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Abstract—The problem of optimally mapping a set of tasks
onto a set of given heterogeneous processors for maximal through-
put has been known, in general, to be NP-complete. Previous
research has shown that Genetic Algorithms (GA) typically are
a good choice to solve this problem when the solution space is
relatively small. However, when the size of the problem space
increases, classic genetic algorithms still suffer from the problem
of long evolution times. To address this problem, this paper
proposes a novel bias-elitist genetic algorithm that is guided
by domain-specific heuristics to speed up the evolution process.
Experimental results reveal that our proposed algorithm is able
to handle large scale task mapping problems and produces high-
quality mapping solutions in only a short time period.

I. INTRODUCTION

Heterogeneous MPSoC platforms have in recent years
received much attention due to their capability of providing
good performance and energy consumption trade-offs [9]. For
heterogeneous MPSoC systems, the task mapping problem –
consisting of assigning a set of application tasks to processors
and binding communications between tasks to communication
channels or memories in the system – plays a crucial role
in achieving high performance. Many heuristic algorithms
exist for this task mapping problem, which can roughly be
divided into two categories: the ones that assign one task at
a time like Minimum Execution Time (MET) or Minimum
Completion Time (MCT) [3] and the algorithms that map all
the tasks at once like Simulated Annealing [11] or Genetic
Algorithms [1]. Comparing these two classes of algorithms, the
former category of algorithms usually has lower algorithmic
complexity, which means a shorter computing time, but they
also produce poorer results. For the second category of task
mapping algorithms, several investigations [3], [4], [13], [6]
have shown that Genetic Algorithms (GA) can consistently
generate efficient mapping solutions, also in comparison to
alternative heuristic search methods like Simulated Annealing
(SA), in a relatively short time period. However, for large prob-
lem sizes (i.e., search spaces), GAs will typically suffer from
large computational costs as a significant number of solution
evaluations are needed to find good solutions [16]. Therefore,
it is essential to develop effective pruning techniques that
can optimize the search process, allowing the design space
exploration (DSE) algorithms to explore larger design spaces.

This paper introduces a new GA-based mapping DSE
algorithm that allows for effectively pruning the search space
in order to reduce the search time. To this end, the algorithm
aims at optimizing the genetic operators in the GA that take
care of deriving new individuals – representing design points
– from the old individuals during search iterations. If the
operators can be optimized such that they only generate a small
set of chromosomes that has a high probability of containing

the optimal or near optimal solutions, then the search time
for a good result can be greatly reduced. In this paper, we
hypothesize that such an optimization of the genetic operators
is possible through the exploitation of domain knowledge as
captured by means of heuristics.

Based on this hypothesis, we propose a novel bias-elitist
genetic algorithm in which the genetic operators have been
optimized using application domain knowledge as captured by
means of heuristics. We will show that our algorithm is able
to find high-quality mapping solutions for applications that
contain a large number of tasks, and it will do so in much
shorter time frames as compared to a range of other well-
known algorithms.

The remainder of this paper is organized as follows. Section
II gives some prerequisites for this paper. Section III provides
a detailed description of our bias-elitist genetic algorithm. Sec-
tion IV introduces the experimental environment and presents
the results of our experiments. Section V discusses related
work, after which Section VI concludes the paper.

II. PREREQUISITES

A. Target Applications and Architectures
In this paper, we target the multimedia application domain.

For this reason, we use the Kahn Process Network (KPN)
model of computation [8] to specify application behaviour
since this model of computation fits well to the streaming
behaviour of multimedia applications. Under this model, an ap-
plication can be represented as a directed graph KPN = (P,F)
where P is the set of processes (tasks) pi in the application and
fi j ∈ F represents the FIFO channel between two processes pi
and p j.

The target architectures of this work are heterogeneous
MPSoC systems in which each processor may have differ-
ent computational characteristics, making the task mapping
problem more complex. The architecture can be modeled as
a graph MPSoC = (PE,C), where PE is the set of processing
elements used in the architecture and C is a multiset of
pairs ci j = (pei, pe j)∈ PE×PE representing a communication
channel (like Bus, NOC, etc.) between processors pei and pe j.

Combining the definition of application and architecture
models, the computation cost of task (process) pi on processing
element pe j is expressed as T j

i and the communication cost
between tasks pi and p j on channel cxy is Ccxy

i j . Here, cxy
represents the communication channel between processor pex
and pey where tasks pi and p j are mapped onto respectively.

B. Simulation Framework
In our work, we deploy the open-source Sesame system-

level MPSoC simulator [14] to evaluate the fitness of map-



pings. The Sesame modeling and simulation environment
facilitates efficient performance analysis of embedded (media)
systems architectures.

Although a Sesame-based simulation of each individual
mapping to evaluate its fitness only takes a few seconds, the
total evaluation time for solving large task mapping problems
may grow to an unacceptable level. This underlines the need
of reducing the evolution time of the genetic algorithm that
searches the mapping space.

III. BIAS-ELITIST GENETIC ALGORITHM

Our bias-elitist GA combines a form of elitism as found
in classic elitist GAs with the concept of a domain knowledge
guided GA such as from [1]. It tries to find a task mapping
for the target application(s) on a heterogeneous MPSoC system
with the objective of maximizing the throughput. The details
of our domain knowledge guided GA will be explained in the
following subsections.

A. Encoding
Each mapping solution is encoded as a string of inte-

gers. The tasks of the target application(s) are arranged in
the chromosome according to the topological order in the
application KPN. Each gene in the chromosome represents a
unique identifier of the processors in the MPSoC system (i.e.,
denoting the processor the task is mapped on).

B. Fitness Function
In our task mapping problem, as analytical fitness eval-

uation approaches typically are not capable of accurately
evaluating the throughput of applications when both resource
contention and task communication are considered, we deploy
the open-source Sesame system-level MPSoC simulator [14]
to accurately evaluate the fitness of each chromosome, i.e.,
mapping, in the population.

C. Selection
During each successive generation of the GA, a proportion

of the existing population is selected to breed a new generation.
Our algorithm uses a roulette wheel selection method in which
the best chromosomes are more likely to be selected but the
poorer chromosomes also have a small chance to be picked.

To control the population size in each generation, we use
a strategy in which the best chromosome from the current
population and n−1 chromosomes from the newly generated
population are selected as the n survived individuals to breed
the next new generation. The rationale behind this is that we
aim at increasing the diversity of chromosomes in the mapping
space that will be searched by keeping as few as possible old
individuals in the new population. Therefore, in contrast to a
general elitist GA, where the elitists in each generation will
survive in the next generation, our GA only preserves the best
individual in each generation.

D. Genetic operators
To generate a new generation from the selected chromo-

somes, two genetic operators – crossover and mutation – are
applied. In our algorithm, we have improved the mutation
operator so that the algorithm can more quickly find better
solutions. For the crossover operator, which produces a new
pair of chromosomes from a selected pair of chromosomes,
we apply a standard one-point crossover. We have chosen

input : C (old chromosome)
output : C∗ (new chromosome)

1 PU = pusage(C);
2 x = index of processor with max(PU);
3 for task pi mapped onto processor pex do
4 for processor pey different than pex do
5 C′ = migrate pi from processor pex to pey;
6 PU ′ = pusage(C′);
7 if max(PU ′)<= max(PU) then
8 MBF.append(Bxy

i );
9 end

10 end
11 end
12 if array MBF is not empty then
13 pk , pek = task and target processor with maximal migration benefit

(max(MBF));
14 C∗ = migrate pk from processor pex to pek ;
15 goto step 1, start with the new mapping C∗;
16 else
17 if no new mapping found in the previous steps then
18 for processor pey different than pex do
19 C′ = switch the tasks mapped onto pex and pey;
20 PU ′ = pusage(C′);
21 if max(PU ′)<= max(PU) then
22 SBF.append(max(PU ′));
23 end
24 end
25 if array SBF is not empty then
26 pek = processor with min(SBF);
27 C∗ = switch the tasks mapped onto pex and pek ;
28 else
29 shuffle the order of tasks in chromosome;
30 C∗ = generate new mapping using the MCT algorithm based on

the shuffled task order;
31 end
32 end
33 end
34 return C∗

Algorithm 1: Heuristic guided mutation

this operator because it is simple and produces similar results
compared with other crossover operators.

The mutation operator is an essential part of our GA. It
allows the GA to search new areas in the solution space.
In our algorithm, we deploy a heuristic guided mutation
operator that optimizes the mappings using domain knowledge.
More specifically, the mutation operator considers the affinity
of tasks with respect to processors, the communication cost
between tasks, and the differences of processor workloads. The
details of our mutation operator are outlined in Algorithm 1.
By applying the mutation operation, a new chromosome will
be derived through one of the following three approaches: task
migration (lines 1-15), processor switching (lines 18-27) or a
Minimum Completion Time (MCT) algorithm (lines 29-30).

At the beginning of the mutation, the task migration method
will be used to find a new chromosome based on the input
chromosome. In this process, the usage of each processor Uk
under a given task mapping is calculated by equation 1 in the
function at line 1. Lines 3-11 of Algorithm 1 try to find a
task (among the tasks mapped onto the most heavily loaded
processor) that has a maximal ”migration benefit” under the
condition of line 7. This task migration benefit, with regard to
task pi migrated from processor pex to pey, is labeled as Bxy

i .
It is calculated by equation 2 where Mx

i and My
i represent the

cost of pi on pex and pey respectively. Here, the cost not only
considers the task computation time but also the accumulated
communication costs of the task in question.

Uk = ∑
pi 7→pek,p j 7→pey

(T k
i +C

cky
i j ) (1)

where a 7→ b implies that a is mapped onto b.

Bxy
i = Mx

i −My
i (2a)



Mt
i = T t

i + ∑
fi j∈F,ctk∈C

pi 7→pet ,p j 7→pek, fi j 7→ctk

Cctk
i j (2b)

If a task can be found for migration after the steps in
lines 3-11, lines 13-14 in Algorithm 1 will generate a new
mapping by migrating this task to the corresponding target
processor. Subsequently, the above process is repeated – using
the new mapping as input – until no new mapping can be
found anymore.

However, if the above task migration approach cannot find
a new chromosome, then the processor switching method will
be applied to the input chromosome. As shown in lines 18-
27 in Algorithm 1, the new chromosome will be generated
by exchanging the tasks mapped onto the heaviest loaded
processor with the tasks mapped onto the processor which
satisfies the conditions on line 21 and line 26 (the processor
that will maximally reduce the value of max(PU) by processor
switching).

In the case that no new mapping can be found by using
any of the two previous approaches, a heuristic-based random
mutation operator will be applied. A totally new chromosome,
which means all the genes in the chromosome are different
from the ones in the input chromosome, might be generated
in this approach. The heuristic used for generating a new
chromosome is the Minimum Completion Time (MCT) al-
gorithm. The MCT algorithm assigns each task, in arbitrary
order, to the processor with the minimum expected completion
time for that task [2]. Different task assignment orders will
produce different mapping results. Therefore, each time before
generating a new chromosome using MCT, the task order in the
chromosome is shuffled. Consequently, different well-balanced
chromosomes will be added to the new population of our GA.
This helps our GA to explore the mapping space with more
gene diversity and prevents our GA from getting stuck in a
local minimum.

E. Termination
With respect to the stopping conditions for our GA, two

conditions are used: (1) if the best solution has not changed
after a pre-defined number of generations, then our GA will
terminate automatically and (2) a maximum number of gener-
ations is adopted to guarantee that the evolution process will
stop.

IV. EXPERIMENTS

For our experiments, we have selected a real multi-media
application to investigate various aspects of our GA: a MP3
decoder consisting of 27 application processes (tasks). The
target architecture considered in our experiments consists of
5 heterogeneous processors and 1 IO processor (for IO tasks).
These processors are connected via a bus to a shared memory.
In the MP3 task mapping problem, the total number of possible
mapping solutions is 2.98 ∗ 1017. Our Bias-Elitist Genetic
algorithm (BEG) and several other algorithms will be used
to explore this vast solution space to find the (near) optimal
mapping with the objective to maximize the throughput.

For the purpose of comparison, two other GA-based map-
ping algorithms are studied as well: a general Elitist Genetic
(EG) algorithm [5] and a Genetic Algorithm with a 3-Step
Mutation (GA3SM) [1]. For those genetic algorithms (BEG,

Table I: Parameters of genetic algorithms

Parameter Experiment 1 Experiment 2
all GAs all GAs

Initial pop. size 8 128
Generation pop. size 8 128

Crossover prob. 0.7 0.7
Mutation prob. 0.8 0.8

Max. # of generations 128 128
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Figure 1: The convergence behavior of each GA with a small
population size.

EG and GA3SM), the parameters in the experiments of single-
application task mapping are listed in Table I. The parameters
of each GA are optimized for each experiment. Notice that
the parameter of mutation probability used in our experiments
is a chromosome-level concept1. It differs from the mutation
probability used in typical GAs which is considered at the gene
level2 and is usually small (< 0.1). In our experiments, the
gene-level mutation probability only exists in the EG algorithm
and its value is 0.05. For the purpose of a fair comparison, the
same randomly generated initial population is provided to the
EG and BEG algorithms. For the GA3SM algorithm, the initial
population is derived by replacing the worst individual in the
randomly generated initial population with the result of the
Min-Min heuristic. This is according to the original GA3SM
algorithm. The results of all experiments have been averaged
over 10 execution runs to deal with the stochastic behaviour
of the GAs. For all experiments, we have used a PC with a
2.93GHz Intel Core i7 CPU.

In the first experiment, we compare our BEG algorithm
to the (Sesame-based) EG and GA3SM algorithms on three
aspects: (1) the quality (frame execution time) of the final
mapping solution, (2) the algorithm execution time and (3)
the convergence behavior of an algorithm.

Table II shows the quality of the final mappings derived
from the different algorithms as well as the algorithm execution
cost of the search algorithms. From the results of Experiment
1 in Table II, we can see that our BEG algorithm can produce
much better solutions than the other GAs. Our BEG algorithm
also takes less time to find the final mapping solution as
compared to the other two algorithms. The reason for this is
that our BEG algorithm can converge much faster than the
other two GAs, as shown in Figure 1. This graph shows the
convergence behavior of the execution run for each algorithm
that produced the best final solution out of 10 runs.

In the second experiment, we studied the behaviour of each

1Chromosome-level mutation probability: the likelihood of mutating a
particular chromosome.

2Gene-level mutation probability: the likelihood of mutating each gene (bit)
of a chromosome in mutation.



GA using a larger search space by increasing the population
size. The results are shown in Table II of Experiment 2.
From the results, we can see that our BEG algorithm again
outperforms the other algorithms with respect to the quality of
the final mapping solution. Compared with the first experiment,
each algorithm produces better mapping results. However,
these mapping solution improvements come at the expense of
a higher exploration time.

Considering this and the previous experiment together,
we can see that our BEG algorithm always yields the best
solutions, and on top of this, it can already find a good mapping
result in a relatively short time by reducing the population size.
The EG and GA3SM algorithms, on the other hand, require
algorithm execution times that are about an order of magnitude
higher to find similar good mapping results as our algorithm.
The interested reader is referred to [15] for a more extensive
explanation and a more rigorous experimental evaluation of
our BEG.

V. RELATED RESEARCH

In recent years, much research has been performed in the
area of task mapping for embedded systems.

In the context of static mapping performance optimiza-
tion, some classic algorithms such as Simulated Annealing
(SA) [12], Genetic Algorithm (GA) [4], [1], [13], Tabu
Search [10] and Integer Linear Programming (ILP) [7] have
been proposed. Among these algorithms, the GA is considered
to be a good mapping algorithm because it can obtain a good
result in a short time period [3]. There are different forms of
GAs that can be used to obtain a better solution. For instance,
[13] uses eight heuristics to initialize the GA population for
getting better solutions. Alexandrescu et al. [1] propose a
GA with a 3-Step Mutation which aims at increasing the
solution’s convergence rate by using a combination of methods
to mutate a chromosome. In contrast to these GAs, our domain-
knowledge guided GA is proposed to solve the large scale
task mapping problems on the heterogeneous MPSoC systems
where the computation and communication cost of tasks and
resource contention in the system are carefully considered in
the evolution process.

VI. CONCLUSION

Even though genetic algorithms have a proven track record
in solving such problems, these algorithms still need to be
carefully designed in order to obtain high-quality solutions in
an acceptable time. In this paper, we have proposed a bias-
elitism genetic (BEG) algorithm where the mutation operator
has been optimized for our task mapping problem. More
specifically, we have added domain-specific heuristics as well
as a Minimum Completion Time heuristic to the mutation

Table II: Comparison of final mapping quality in Frame
Execution Time (cycles, the smaller the better) and algorithm
execution cost (seconds) of GAs.

Experiment 1 Experiment 2
EG GA3SM BEG EG GA3SM BEG

Max. FET 2342502 2218522 1979684 2030686 1953746 1821842
Min. FET 2022538 1911142 1784318 1862988 1768808 1762048

Average FET 2197809 2064753 1885810 1943892 1847738 1779620
Max. cost 4897 3074 2160 42729 55002 47824
Min. cost 2145 1637 875 21342 27814 29778

Average cost 3217 2245 1567 33381 43274 39496

operator. In addition, the selection method in our genetic
algorithm has also been tailored for the purpose of finding a
good mapping in a short time period. In various experiments,
different state-of-the-art algorithms have been compared to our
BEG algorithm. These experiment results clearly confirm the
effectiveness of our algorithm.

REFERENCES
[1] A. Alexandrescu, I. Agavriloaei, and M. Craus. A genetic algorithm for

mapping tasks in heterogeneous computing systems. In System Theory,
Control, and Computing (ICSTCC), 2011 15th International Conference
on, pages 1–6, 2011.

[2] R. Armstrong, D. Hensgen, and T. Kidd. The relative performance of
various mapping algorithms is independent of sizable variances in run-
time predictions. In In 7th IEEE Heterogeneous Computing Workshop,
pages 79–87, 1998.

[3] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
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