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Abstract— Modern embedded systems come with contradictory 

design constraints. On one hand, these systems often target mass 

production and battery-based devices, and therefore should be 

cheap and power efficient. On the other hand, they need to 

achieve high (real-time) performance. This wide spectrum of 

design requirements leads to complex heterogeneous system-on-

chip (SoC) architectures. The complexity of embedded systems 

forces designers to model and simulate systems and their 

components to explore the wide range of design choices. Such 

design space exploration is especially needed during the early 

design stages, where the design space is at its largest. 

Due to the exponential design space in real problems and 

multiple criteria to be considered, multi-objective evolutionary 

algorithms (MOEAs) are often used to trim down a large design 

space into a finite set of points and provide the designer a set of 

tradable solutions with respect to the design criteria. 

Interpreting the search results (e.g., where are the Pareto 

points located), understanding their relations and analyzing how 

the design space was searched by such searching algorithms is of 

invaluable importance to the designer. To this end, this paper 

presents a novel interactive visualization tool, based on tree 

visualization, to understand the search dynamics of a MOEA and 

to visualize where the optimum design points are located in the 

design space and what objective values they have.  
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I. INTRODUCTION 

The complexity of today’s embedded systems forces 
designers to start with modeling and simulating system 
components and their interactions in the very early design 
stages. It is therefore crucial to have good tools for exploring a 
wide range of design choices, especially during the early 
design stages, where the design space is at its largest. In the 
Sesame framework [1,2], a modeling and simulation 
environment is developed for the efficient design space 
exploration (DSE) of embedded systems that are based on 
heterogeneous Multi-Processor System-on-Chip (MP-SoC) 
architectures. Models in Sesame are defined at a high level of 
abstraction and capture only the most important characteristics 
of the components in the system. 

Sesame maintains independent application and architecture 
models and relies on the co-simulation of these two models. As 
a consequence, it needs an explicit mapping step which relates 
each task (i.e., process) and communication channel in the 

application model to a processor/memory component in the 
architecture model. Each mapping decision taken in this step 
corresponds to a single point in the design space (note that the 
terms point, solution and decision vector are used 
interchangeably in this paper). In order to achieve an optimal 
design, the designer should ideally evaluate and compare every 
single point in this space. However, such exhaustive search 
quickly becomes infeasible, as the design space grows 
exponentially with the size of the application(s) and the number 
of possible architecture components. 

In general, to trim down an exponential design space into a 
finite set of points, which are more interesting (or superior) 
with respect to some chosen design criteria, design space 
pruning can be used. In [3], e.g., the mapping decision problem 
is formulated as a multi-objective optimization problem in 
which three criteria are considered: the processing time, energy 
consumption and cost of the architecture. To solve this 
problem, an Evolutionary Algorithm (EA) has been used to 
achieve a set of best alternative mapping decisions under the 
aforementioned multiple criteria. As the searched design space 
still is vast, interpreting all evaluation data and understanding 
how the EA searches through or prunes the design space is 
cumbersome. Such analysis is, however, essential to the 
designer as it provides insight into the ―landscape‖ of the 
design space (e.g., indicating which design parameters are 
more important than others).  

To illustrate the need for good analysis tools, Fig. 1 shows 
a sample of raw data generated by an EA. Here, each row 
represents an evaluated design point in which the values of 
objectives (processing time, energy consumption and cost) and 
the chromosome string are comma separated. The way that 
application tasks and their communications are mapped onto 
the architecture components is encoded in a string of digits, 
which is called the chromosome. It is evident that interpreting 
and analyzing the evaluated data in this format is not possible. 

Figure 1. Example of raw data generated by an EA 



Therefore, we have developed a novel interactive visualization 
tool, VMODEX

1
, to understand how an evolutionary 

algorithm, such as presented in [3], searches the design space, 
where the optimum design points are located, how design 
parameters influence each objective, and provides insight into 
the relationship between the different objectives. The main 
challenge that needs to be addressed by such a visualization 
environment is how the raw data (as illustrated in Fig. 1) can be 
represented in a visual form such that it is possible to analyze 
the data – in a single view – from different perspectives and for 
various aspects.  To this end, this paper proposes a 
visualization approach in which we visualize the design space 
as a tree in which both design parameters and objectives are 
shown. To give a rough feeling of how such visualization looks 
like, Fig. 2 shows a screenshot of our visualization application.  

The rest of the paper is organized as follows. Section II 
describes related work. In section III, we briefly explain some 
preliminary definitions of multi-objective optimization. Section 
IV introduces techniques we have provided for visualizing 
multi-objective design space exploration. Section V presents a 
case study with a Motion-JPEG encoder application to 
illustrate the benefits of using visualization in the design space 
exploration process. Finally, section VI concludes the paper. 

II. RELATED WORK 

In the field of computer architecture simulation, and 
especially in the area of system-level design space exploration, 
little research has been undertaken on visualization of 
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simulation results in exploring alternative architectural 
solutions. Most of the visualization work in this area focuses on 
educational purposes (e.g., [4,5]), or only provides some basic 
support for the visualization of simulation results in the form of 
2D (and sometimes 3D) graphs. 

The work presented in [6,7] provides advanced and generic 
visualization support, but tries to do so for a wide range of 
computer system related information which may not 
necessarily be applicable to computer architecture simulations 
and in particular to design space exploration, with its own 
domain-specific requirements.  

In [8], an interactive visual tool is presented to visualize the 
results from system-level design space exploration 
experiments. The simulation results are visualized using a 
coordinated, multiple-view approach which enables users to 
understand the information through different perspectives. It is 
possible to compare different design points with respect to 
various characteristics and gain more insight in the 
performance landscape of the design space. But this tool does 
not provide any insight in the searching process as performed 
by e.g. a MOEA. For example, there is no way to find out 
which parts of the design space are not searched at all. 

There are only a few research efforts addressing the 
visualization of MOEAs. Most visualization approaches simply 
use standard visual representations such as bar charts, line 
graphs, scatter plots, etc. [9]. Although such diagrams show the 
quality of the solutions considered during search process, they 
do not show anything about the properties of the solutions 

Figure 2. Screenshot of the multi-objective visualization 



being searched, or the regions of the search space being 
explored.  

More complex techniques have focused on how to display 
the progress of the MOEA in variables (parameters) space or 
objectives space [10,11]. Usually they use 2D or 3D plots in 
which either variables or objectives are shown. Therefore, two 
separate views are needed to show the distribution of the 
solutions in both variables and objectives spaces. Furthermore, 
due to the large number of dimensions in practical problems, 
techniques such as Sammon Mapping [12] should be used to 
transform higher dimensional search spaces into smaller ones. 
Multi-objective visualization, as presented in this paper, 
enables us to easily visualize more than three dimensions as 
well as to show variables and objectives in one view. 

This paper proposes an extension to our previous work 
[13], in which the visualization techniques have been extended 
to show multiple objectives and provide insight into the 
―landscape‖ of the multi-objective optimization process. 
Furthermore, a detailed study of the design space exploration 
for a particular design is presented to show how the proposed 
visualization can help the designer to explore the design space. 

III. MULTI-OBJECTIVE OPTIMIZATION 

Real world design problems often are multi-objective 
optimization problems in which two or more conflicting 
objectives should be optimized simultaneously. An 
improvement in one objective often causes deteriorations in 
other objectives. Therefore, optimal decisions need to be taken 
in the presence of trade-offs between objectives. On the other 
hand, in multiple conflicting objectives problems, there cannot 
be a single optimum solution which simultaneously optimizes 
all objectives; instead, a set of optimal solutions, denoted as the 
Pareto optimal set, with a varying degree of objective values 
has to be found. 

A. Domination and Pareto optimality 

Most multi-objective optimization algorithms use the 
concept of domination. In these algorithms, two solutions are 
compared on the basis of whether one solution dominates the 
other solution or not. In this subsection we will briefly describe 
the concept of domination and Pareto optimality. 

Definition 1: A general multi-objective optimization 
problem with m decision variables (parameters) and n objective 
functions is defined as: 

Minimize  y = f(x) = (f1(x),…, fn(x)) 

Where    x = (x1,…, xm)X 

y = (y1,…,yn) Y 

The objective function f(x) maps a decision vector 
(solution) x in decision space (X) to an objective vector y in 
objective space (Y). Two different solutions are related to each 
other in two possible ways: either one dominates the other or 
none of them is dominated. 

Definition 2: A solution x1X is said to dominate the other 

solution x2X (also written as x1 x2) if and only if both of the 
following conditions are true: 

1. The solution x1 is not worse than x2 in all objectives; 

formally: i {1,…,n}: fi(x1)  ≤ fi(x2) 

2. The solution x1 is strictly better than x2 in at least one 

objective; formally:  j {1,…,n}: fj(x1)   fj(x2) 

It is intuitive that if x1 dominates the solution x2, the 
solution x1 is better than x2 in the context of multi-objective 
optimization. It is also common to say ―x2 is dominated by x1‖ 

instead of saying ―x1 dominates x2‖. 

Definition 3:  Let x1X be an arbitrary solution (decision 
vector) 

 The solution x1 is said to be non-dominated regarding a 

set XX if and only if there is no solution in X which 

dominates x1; formally: ∄ x2 X : x2 x1 

 The solution x1 is called Pareto optimal if and only if x1 
is non-dominated regarding the whole decision space X. 

Pareto-optimal solutions cannot be improved further in 
terms of a certain objective without causing a simultaneous 
degradation in at least one other objective. They represent in 
that sense globally optimum solutions. Any solution which 
does not belong to the Pareto optimal set is dominated by at 
least one Pareto optimal solution.  The set of objective vectors 
corresponding to a set of Pareto optimal solutions is called 
―Pareto optimal front‖ or ―Pareto front‖. 

IV. MULTI-OBJECTIVE VISUALIZATION 

A. Modeling the Design Space as a Tree 

As it is conceptually shown in Fig. 3, we model the design 
space as a tree.  The tree has three sections: the Parameters 
section, Cost section and Design Points section. 

In the Parameters section, each level shows one parameter 
of the design space, such as the number of processors in the 
MPSoC platform. So, the number of levels in this section is 
equal to the total number of parameters in the design space. For 
example, in the tree illustrated in Fig. 3, the design space has 
four parameters: number of processors, processor type, number 
of memories and memory type. In this example, the platform 
architecture consists of two Application Specific Integrated 
Circuits (ASICs), two microprocessors (mPs), one Static RAM 
(SRAM) and one Dynamic RAM (DRAM). 

The design points section includes the design points 
searched by the MOEA. Here, a design point is defined as a 
specific instance of the architecture platform as well as a task 
and communication mapping.  Each point is shown as a node 
which is a child of its corresponding architecture. Design 
points are distributed in three levels: main Pareto, local Pareto 
and non-Pareto.   

The main Pareto level shows the true Pareto points found 
by the MOEA. The solutions at this level are better than all 
other solutions in the entire design space but they are non-
dominated by each other. On the other hand, each point which 
is not part of the main Pareto set is dominated by at least one 
main Pareto point. At the local Pareto level, the local Pareto 
points are shown. A design point is called a local Pareto point 



if within the design points with the same architecture (but with 
different mappings), there is no point dominating that one. 
However, in the entire design space, a design point might exist 
which dominates the local Pareto point. It is clear that all the 
main Pareto points are local Pareto points as well. However, 
not all the local Pareto points are main Pareto points and 
therefore we use a relation node at the main Pareto level to 
make a connection between them and the previous level. These 
nodes are labeled with ―R‖ in Fig. 3.  

All the other design points are placed at the non-Pareto 
level. Each one becomes a child of a local Pareto point which 
dominates it. If a design point is dominated by more than one 
local Pareto point, we calculate the Euclidean distance (in the 
objective space) between the dominated point and each 
dominating local Pareto point and the design point becomes the 
child of the local Pareto point with the smallest distance. A 
smaller distance means that the points are more similar 
according to the objectives.   

For easier interpretation and better analysis of the design 
points, the children of a local Pareto point are categorized into 
three groups according to their Euclidian distance from their 
parent. The solutions which are equivalent to the local Pareto 
point with respect to all objectives are put under the ―zero‖ 
distance node. If the distance between a solution and its 
corresponding local Pareto point is more than a certain 
threshold (determined by the designer), it becomes a child of a 

―high‖ distance node, otherwise it becomes a child of a ―low‖ 
distance node. 

The color and thickness of edges show the Euclidean 
distance (in the objective space) from the nearest main Pareto 
point. The edges in the path from the root to the main Pareto 
points are the thickest and darkest since the distance is zero. As 
the distance increases the edges become thinner and lighter. 

B. Showing objectives in the tree 

In this paper, we consider three objectives: processing time, 
energy consumption (i.e., power consumption times processing 
time) and architecture cost. The cost of each design point is 
dependent on the architectural components forming it. So, all 
solutions with the same architecture have the same cost. After 
the parameters section, the architecture cost can be computed 
since all components are known. Therefore, we add an extra 
section (Figure 3) between the parameters section and design 
points section which is called the cost section and shows the 
costs of the different architectures. Since the cost is an 
objective and not a design parameter, we represent it with a 
different shape; a circle. For a better view, the size of the circle 
becomes bigger as the cost increases. The other two objectives 
are dependent on the mapping and are therefore shown in a 
design point node. The size and color of the third dimension of 
a design point node shows the energy consumption. As the 
energy consumption increases, the size of the third dimension 

Figure 3. Modeling the design space as a tree 



becomes bigger and its color becomes darker. The color of the 
node itself represents the processing time. Colors are varied 
from yellow to red with all color grades in between. Nodes 
with the lowest processing time are yellow and nodes with the 
highest processing time are red. The color legends for 
processing time and energy consumption can be seen in left 
side of Fig. 2. 

Parameter nodes, however, do not represent single design 
points and therefore do not have the direct notion of processing 
time or energy consumption. For this reason, there are some 
options to color the parameter nodes: based on the average, 
minimum, or maximum of either processing time or energy 
consumption of the design points in their sub trees. The color 
of parameter nodes that have no data node (i.e., do not have 
any DSE data) is white. In Fig. 3, the minimum processing 
time is chosen for coloring parameter nodes. 

C. Benefits of Tree Visualization 

Modeling the design space based on a tree structure, as 
presented in this paper, has the following benefits: 

 Both the design space parameters and the objective 
values can be seen in one view. Therefore, it is easy to 
understand where the optimum design points are 
located and what objectives they have. 

 There is no limitation on the number of design 
variables since each parameter is located at one level of 
the tree. Therefore, modeling the design space as a tree 
enables us to easily visualize multivariate data. It 
should be mentioned that, in principle, the designer has 
total freedom of ordering the parameters in the levels 
of the tree. However, putting more important 
parameters higher up in the tree facilitates the 
information organization in such a way that it produces 
sub trees which are more likely to show a better view 
of the design space characteristics. Because the more 
important design points (according to the design 
parameters) are clustered in only one sub tree, the 
designer can easily select that sub tree to investigate 
and compare these design points. But by putting more 
important parameters down in the tree, the design 
points with the same parameter are distributed in 
several sub trees.  

 It can easily be extended to show more than three 
objectives. Each node has some attributes like shape, 
orientation, size, color, transparency, texture, border, 
etc. Each attribute can be assigned to one objective. In 
this paper, only color and size are used to show 
objectives. 

D. Handling Large Trees 

In reality, DSE trees can become extremely large. Therefore, 
we provide the following techniques to handle large trees.  

1) Satellite View 
Satellite view, shown at the bottom of Fig. 2, gives an 

overall, smaller scale view of the entire scene, which allows the 
user to navigate quickly across the view. It also enables the 
user to zoom in on certain parts of the scene to focus on certain 

nodes in the tree without losing track of the position in the 
entire scene. 

2) Hiding Sub Trees without Exploration Data  
Since some areas of the design space are not visited by the 

searching algorithm (e.g., they are not interesting enough so we 
do not have any evaluated design points for those parts), it is 
possible to hide the sub trees of the nodes that have no data. 
This way, the designer can focus on the sub trees which are 
more important and can easily see which parts of the tree are 
searched by the EA.  

3) Hiding Uninteresting Sub Trees 
If the designer is not interested in some parts of the tree, 

then he is able to hide them in order to make the tree smaller 
and pay more attention to other nodes. By double clicking on a 
node, its sub tree becomes invisible and a blue triangle appears 
at the bottom of the node specifying that the children of the 
node are hidden. The size of the triangle represents the size of 
the sub tree. The bigger the triangle, the more nodes in the sub 
tree. By double clicking again, the sub tree becomes visible and 
the blue triangle is removed. 

It should be mentioned that by hiding a node, the entire tree 
will be redrawn, meaning that the empty space from that node 
will be used by the other nodes. We recalculate the location of 
visible nodes to optimize their fit to the screen. 

4) Filtering 
In some cases, the designer wants to consider only design 

points with some specific objective values. The value of each 
objective is controlled by a range slider bar, in which the 
designer can set upper and lower limits on that objective. 
Design points with objective values inside the selected ranges 
are visible and the others become invisible. Therefore, the 
designer has the ability to easily view only preferred design 
points. There is an option to view all design points that fall 
within the filtering conditions or to only show local Pareto 
points or only main Pareto points. 

E. Detailed information 

The DSE tree shows an overall view of the design space. 
For example, it shows where in the design space more design 
points have been evaluated or where the optimum design points 
(with respect to all objectives) are located. However, if the 
designer wants to know more about a specific design point, it is 
possible to select the design point to see more details. Two 
kinds of detailed information are provided for each design 
point: exact objective values and mapping decision. 

1) Exact Objective Values 
Instead of showing objectives with visual variables (color 

and size), this option shows the exact values of processing time 
and energy consumption. It also represents the normalized 
value of the objectives. We normalize objective values to make 
them scale independent. At the end of normalization, all design 
points get a value in the range [0, 1] for their objective values.  

Before normalization, it is not possible to compare e.g. 
processing time and energy consumption with each other since 
they have different magnitudes. However, after normalization, 
comparing them is possible. 



2) Showing Mapping Decision 
In the Sesame simulator, the application behavior is 

modeled as a process network. A process network is a 
computational model of the application and uses a directed 
graph notation, where each node represents a process and each 
edge represents a one-way FIFO communication channel 
between two processes. Fig. 4 represents an example process 
network graph which has five processes and six 
communication channels. 

 

 

We visualize the process network graph in a way that 
shows the mapping decisions as well. That means that it shows 
how the application is being mapped to the underlying 
architecture both in terms of processes and communication 
channels. The shape and the color of each node in the graph 
represent the type of the processor executing the corresponding 
process. For example, a green rectangle for one processor type 
and a blue pentagon for another type. If there are multiple 
processors of the same type in the platform architecture, then 
they are differentiated using different variants of the same color 
such as light green and dark green.  

If two communicating processes are mapped onto the same 
processor, then their communications are done internally and 
therefore communication channel(s) between them are mapped 
onto the processor in question. In the process network graph 
these internal communications are represented by a solid line 
with the same color as the corresponding processor. In the case 
that a channel is mapped onto an external memory, a dashed 
line is drawn with the color representing the memory type. 
Similar to the processors, memories with the same type are 
shown by a different variant of the same color. Fig. 5 shows 
how our visualization model shows the process network graph 
from Fig. 4. 

 

As can be seen in this figure, processes A, B, C and 
channels 1 and 2 are mapped to the same processor. Process D 
is executed on the same processor type but on a different 
processor as process A. The type of the processor executing 
process E is different from the others since it is shown with a 
blue pentagon. Channels 3,4,5 and 6 are mapped to memories 

(not processors) as they are shown with dashed lines. Channels 
3 and 4 are mapped to the same memory. Channel 6 is mapped 
to another memory but with the same type and Channel 5 is 
mapped onto a different memory type because it has a different 
color. 

 To be able to find out what objectives are achieved for a 
particular mapping, the objective values are also shown 
together with the mapping. They are represented in the same 
way as multi-objective visualization (shown in Fig. 6).  

 

 

V. A CASE STUDY 

In this section, we present a real application case study to 
illustrate the benefits of using visualization in the design space 
exploration process. In this case study, we map a Motion-JPEG 
(M-JPEG) encoder to an MP-SoC platform architecture 
consisting of a general-purpose microprocessor (mP), a 
microcontroller (mC), an application specific 
instruction processor (ASIP), two Application Specific 
Integrated Circuits (ASICs), one SRAM and two DRAMs. The 
M-JPEG encoder process network is shown in Fig. 7. 

 

 

In our case study, an mC or an mP processor can execute 
all the different processes in the M-JPEG application while an 
ASIP can execute only three processes, namely: ―dct‖, ―quant‖ 
and ―rgb2yuv‖. We also assume one ASIC is designed for 
executing the ―dct‖ process and another one is designed for the 
―v-in‖ and ―v-out‖ processes. 

Using a multi-objective evolutionary optimizer [3], we 
intend to find a set of optimal design points (in terms of 
alternative architectural solutions and mappings) under three 
criteria: processing time, energy consumption and architecture 
cost. 

For this study, we run the EA for 60 generations with 50 
individuals per population. Therefore, 3000 design points are 
searched by the EA. Fig. 8 shows a snapshot of the 
visualization of the M-JPEG case study. It should be mentioned 
that the purpose of Fig. 8 only is to show an overview of the 
entire design space and it is not meant to be readable. Just by 
looking at the depicted tree, the designer can immediately 

Figure 5. Mapping decision 

Figure 4. An example of process network graph 
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understand some general information about the design space 
searched by the EA. For example, it is obvious that there is no 
design point evaluated for single processor architecture 
platforms (node color is white). Moreover, in two processors 
platforms, there are five different combinations of processor 
components which are capable of executing the application but 
only three of those combinations are searched. However, in 
four processors platforms, all the possible combinations are 
explored.  

From this picture, we can also find out that most of the 
evaluated design points have one or two memories, and 
architectures with three memories are rarely searched. Only 
architectures consisting of all different processor types have 
some design points with three memories.  

In Fig. 8(b), parameter nodes that have no data are omitted. 
In this figure, minimum processing time is used for coloring 
the parameter nodes. From this figure, it is clear that platform 
instances with two processors are searched less than others 
since their blue triangles are small. We can also see that most 
of the design points being searched by the EA contain two 
memories; one DRAM and one SRAM because all the biggest 
blue triangles have these two memories. Moreover, as can be 
seen in this figure, all design points with the minimum 
processing time include at least one ASIP, one mC and one mP 
(node color is yellow). Another conclusion is that, by adding an 
ASIP to the architectures without an ASIP, we can get a 
significant improvement of processing time. This is illustrated 
by the designs indicated by ―A‖ and ―B‖ in Fig. 8(b). Where 
architecture A consist of one mC and one mP, in architecture B 
an ASIP is added. 

Fig. 9 shows the main Pareto points found by the EA. By 
looking at the picture, the designer can immediately recognize 
the characteristics of the main Pareto points, which are the best 
design points with respect to the design criteria. For example, 
in our case study, there is no main Pareto point with five 
processors. That means that with less processors (which is 
cheaper) the designer can get the same or better processing 
time and energy consumption. Therefore, using five processors 
is not appropriate for this application. Another interesting 
feature is that all the main Pareto points have a microcontroller 
in their underlying architecture. The slow but cheap and low-
power microcontroller apparently provides a good tradeoff for 
executing the less demanding tasks in the application. It can 
also be seen that all the main Pareto points have at least one 
DRAM memory. A few of them have one SRAM besides the 
DRAM. Thus, using three memories or two DRAMs is not an 
appropriate solution in this case study. So, by using VMODEX, 
the designer can easily find out which combinations of 
architectural components yield optimum design points. 

In the following, we carry out a more detailed analysis of 
the design space using our visualization tool. For instance, we 
want to investigate the effect of adding one SRAM memory to 
the architecture. As can be seen in Fig. 9, for every main Pareto 
point with one SRAM and one DRAM memory, there exists a 
main Pareto point with only one DRAM memory which 
basically offers the same processing time and energy 
consumption (such as the design points indicated with A and B 
in Fig. 9). By looking at their exact objective values (blue Figure 8. Screenshot of the M-JPEG case study (a) Entire design space, 

(b) Parts of the design space having DSE data 



Figure 9. Main Pareto Points 

rectangle), we find out that adding one SRAM memory to the 
architecture does not yield any improvement in processing time 
and improves energy consumption only a little bit while the 
architecture cost is increased a lot. Therefore, in our case 
study, using an additional SRAM next to a DRAM memory is 
not beneficial. 

Now, let us zoom in on the part of the design space which 
contains two or three processors and two memories. Here, we 
investigate the local Pareto points which are shown in Fig. 10. 

As we mentioned before, for each specific architecture, the 
best design points with respect to the processing time and 
energy consumption are located at the local Pareto level. 
Needless to say, local Pareto points with the same parent have 

the same cost since they use the same architectural 
components. Considering the local Pareto set indicated by ―A‖ 
in Fig. 10, we have a good tradeoff between processing time 
and energy consumption. There are some design points with 
good processing time but poor energy consumption and also 
some design points with poor processing time but good energy 
consumption. So, in the case that there is a system where 
applications can dynamically be mapped, this architecture 
could be suitable. In the case the system needs to be optimized 
for speed, the mapping with the lowest processing time can be 
selected. But when the system needs to safe energy 
consumption (e.g. in case the battery is running low), then the 
mapping with the lowest energy consumption can be selected. 

Figure 10. Local Pareto Points 



Considering two local Pareto sets indicated by ―A‖ and ―B‖ 
in Fig. 10, the architectural design points denoted by A have an 
extra ASIC and, as a result, obtain much better energy 
consumption results while the cost only increases a little bit. 

Fig. 11 shows three-processor architectures of the design 
space in which the children of only two combinations are 
visible. The processing time of all design points with one 
ASIC, one ASIP and one mC (the left sub tree) is extremely 
poor. Even with different mappings, we cannot get a good 
processing time. However, the energy consumption is 
relatively good for these design points. Therefore, if the 
designer is interested in lower processing times, this 
architecture is not a suitable solution but if he prefers low 
energy, this architecture could be a good choice. 

In the right sub tree the situation is reversed. Depending on 
the mapping, you may get a very good (e.g. the design point 
indicated by A) or a very poor (e.g. the design point indicated 
by B) processing time. However, the energy consumption of 
these design points is quite high. Therefore, this architecture is 

not appropriate for obtaining low energy but if the designer is 
interested in performance, he should take care about the 
mapping because a wrong mapping decision can make the 
difference between the best or the worst processing time. 

To investigate why the design points A and B significantly 
differ in their processing times, the mapping decisions of these 
design points are shown in Fig. 12. As can be seen in this 
figure, in design point A, tasks ―v-in‖ and ―dmux‖ are mapped 
on the mC component (brown triangle) and tasks ―vle‖ and ―v-
out‖ are mapped on the mP (violet circle) while in design point 
B this is the other way around. For all the other tasks, the 
processors executing them are the same. In design point B, the 
mC component forms a bottleneck for the application’s 
throughput. Such visualization of mapping decisions clearly 
enables the designer to study the effect of different mappings 
on the design criteria. 

To show the benefits of the filtering option described in 
section IV.D, we apply a filtering scenario to our case study. 
We are interested in those design points which are good 

Figure 11.  Design Points 

Figure 12. Mapping decision: (a) design point A, (b) design point B 



enough in all three objectives. By good enough we mean those 
design points which are better than the median in all the three 
objectives. Fig. 13 represents the design points that fall within 
this condition. As it is shown, only two architecture platforms 
provide design points that are relatively good in all objectives. 
Fig. 13 is the filtered version of Fig. 8. As it can be seen, a lot 
of design points have been omitted which can help the designer 
to focus on more important design points. 

The analysis we performed in this section would have been 
very cumbersome and time consuming to do by only looking at 
the raw data or by using traditional 2D/3D graphs. Several 
traditional graphs are needed in order to interpret the data like 
we did. However, using VMODEX, a single visualization view 
of the design space enables very powerful and rapid analysis of 
the DSE data. 

VI. CONCLUSION 

In this paper, we presented a visualization tool, VMODEX, 
which helps designers to understand the search behavior in 
MOEA based design space exploration as well as to gain 
insight into the landscape of the design space. That is, 
understanding the characteristics of the optimum design points 
with respect to the design criteria, the relationships between 
design parameters and their effects on the objectives, the 
effects of mapping decisions on the design criteria and the 
correlations among multiple objectives. In our tool, we provide 
several capabilities to be able to handle large design spaces and 
filter design points according to their objective values to see 
only preferred solutions. We have also illustrated the benefits 
of such visualization using a Motion-JPEG encoder case study. 
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