
 Visualization of Multi-Objective Design Space

Exploration for Embedded Systems

Toktam Taghavi, Andy D. Pimentel

Computer Systems Architecture Group

Informatics Institute, University of Amsterdam

Amsterdam, the Netherlands

{T.TaghaviRazaviZadeh, A.D.Pimentel}@uva.nl

Abstract— Modern embedded systems come with contradictory

design constraints. On one hand, these systems often target mass

production and battery-based devices, and therefore should be

cheap and power efficient. On the other hand, they need to

achieve high (real-time) performance. This wide spectrum of

design requirements leads to complex heterogeneous system-on-

chip (SoC) architectures. The complexity of embedded systems

forces designers to model and simulate systems and their

components to explore the wide range of design choices. Such

design space exploration is especially needed during the early

design stages, where the design space is at its largest.

Due to the exponential design space in real problems and

multiple criteria to be considered, multi-objective evolutionary

algorithms (MOEAs) are often used to trim down a large design

space into a finite set of points and provide the designer a set of

tradable solutions with respect to the design criteria.

Interpreting the search results (e.g., where are the Pareto

points located), understanding their relations and analyzing how

the design space was searched by such searching algorithms is of

invaluable importance to the designer. To this end, this paper

presents a novel interactive visualization tool, based on tree

visualization, to understand the search dynamics of a MOEA and

to visualize where the optimum design points are located in the

design space and what objective values they have.

Keywords-component; design space exploration; visualization;

multi-objective evolutionary algorithms; embedded systems

I. INTRODUCTION

The complexity of today’s embedded systems forces
designers to start with modeling and simulating system
components and their interactions in the very early design
stages. It is therefore crucial to have good tools for exploring a
wide range of design choices, especially during the early
design stages, where the design space is at its largest. In the
Sesame framework [1,2], a modeling and simulation
environment is developed for the efficient design space
exploration (DSE) of embedded systems that are based on
heterogeneous Multi-Processor System-on-Chip (MP-SoC)
architectures. Models in Sesame are defined at a high level of
abstraction and capture only the most important characteristics
of the components in the system.

Sesame maintains independent application and architecture
models and relies on the co-simulation of these two models. As
a consequence, it needs an explicit mapping step which relates
each task (i.e., process) and communication channel in the

application model to a processor/memory component in the
architecture model. Each mapping decision taken in this step
corresponds to a single point in the design space (note that the
terms point, solution and decision vector are used
interchangeably in this paper). In order to achieve an optimal
design, the designer should ideally evaluate and compare every
single point in this space. However, such exhaustive search
quickly becomes infeasible, as the design space grows
exponentially with the size of the application(s) and the number
of possible architecture components.

In general, to trim down an exponential design space into a
finite set of points, which are more interesting (or superior)
with respect to some chosen design criteria, design space
pruning can be used. In [3], e.g., the mapping decision problem
is formulated as a multi-objective optimization problem in
which three criteria are considered: the processing time, energy
consumption and cost of the architecture. To solve this
problem, an Evolutionary Algorithm (EA) has been used to
achieve a set of best alternative mapping decisions under the
aforementioned multiple criteria. As the searched design space
still is vast, interpreting all evaluation data and understanding
how the EA searches through or prunes the design space is
cumbersome. Such analysis is, however, essential to the
designer as it provides insight into the ―landscape‖ of the
design space (e.g., indicating which design parameters are
more important than others).

To illustrate the need for good analysis tools, Fig. 1 shows
a sample of raw data generated by an EA. Here, each row
represents an evaluated design point in which the values of
objectives (processing time, energy consumption and cost) and
the chromosome string are comma separated. The way that
application tasks and their communications are mapped onto
the architecture components is encoded in a string of digits,
which is called the chromosome. It is evident that interpreting
and analyzing the evaluated data in this format is not possible.

Figure 1. Example of raw data generated by an EA

Therefore, we have developed a novel interactive visualization
tool, VMODEX

1
, to understand how an evolutionary

algorithm, such as presented in [3], searches the design space,
where the optimum design points are located, how design
parameters influence each objective, and provides insight into
the relationship between the different objectives. The main
challenge that needs to be addressed by such a visualization
environment is how the raw data (as illustrated in Fig. 1) can be
represented in a visual form such that it is possible to analyze
the data – in a single view – from different perspectives and for
various aspects. To this end, this paper proposes a
visualization approach in which we visualize the design space
as a tree in which both design parameters and objectives are
shown. To give a rough feeling of how such visualization looks
like, Fig. 2 shows a screenshot of our visualization application.

The rest of the paper is organized as follows. Section II
describes related work. In section III, we briefly explain some
preliminary definitions of multi-objective optimization. Section
IV introduces techniques we have provided for visualizing
multi-objective design space exploration. Section V presents a
case study with a Motion-JPEG encoder application to
illustrate the benefits of using visualization in the design space
exploration process. Finally, section VI concludes the paper.

II. RELATED WORK

In the field of computer architecture simulation, and
especially in the area of system-level design space exploration,
little research has been undertaken on visualization of

1 Visualization of Multi-Objective Design spacE eXploration

simulation results in exploring alternative architectural
solutions. Most of the visualization work in this area focuses on
educational purposes (e.g., [4,5]), or only provides some basic
support for the visualization of simulation results in the form of
2D (and sometimes 3D) graphs.

The work presented in [6,7] provides advanced and generic
visualization support, but tries to do so for a wide range of
computer system related information which may not
necessarily be applicable to computer architecture simulations
and in particular to design space exploration, with its own
domain-specific requirements.

In [8], an interactive visual tool is presented to visualize the
results from system-level design space exploration
experiments. The simulation results are visualized using a
coordinated, multiple-view approach which enables users to
understand the information through different perspectives. It is
possible to compare different design points with respect to
various characteristics and gain more insight in the
performance landscape of the design space. But this tool does
not provide any insight in the searching process as performed
by e.g. a MOEA. For example, there is no way to find out
which parts of the design space are not searched at all.

There are only a few research efforts addressing the
visualization of MOEAs. Most visualization approaches simply
use standard visual representations such as bar charts, line
graphs, scatter plots, etc. [9]. Although such diagrams show the
quality of the solutions considered during search process, they
do not show anything about the properties of the solutions

Figure 2. Screenshot of the multi-objective visualization

being searched, or the regions of the search space being
explored.

More complex techniques have focused on how to display
the progress of the MOEA in variables (parameters) space or
objectives space [10,11]. Usually they use 2D or 3D plots in
which either variables or objectives are shown. Therefore, two
separate views are needed to show the distribution of the
solutions in both variables and objectives spaces. Furthermore,
due to the large number of dimensions in practical problems,
techniques such as Sammon Mapping [12] should be used to
transform higher dimensional search spaces into smaller ones.
Multi-objective visualization, as presented in this paper,
enables us to easily visualize more than three dimensions as
well as to show variables and objectives in one view.

This paper proposes an extension to our previous work
[13], in which the visualization techniques have been extended
to show multiple objectives and provide insight into the
―landscape‖ of the multi-objective optimization process.
Furthermore, a detailed study of the design space exploration
for a particular design is presented to show how the proposed
visualization can help the designer to explore the design space.

III. MULTI-OBJECTIVE OPTIMIZATION

Real world design problems often are multi-objective
optimization problems in which two or more conflicting
objectives should be optimized simultaneously. An
improvement in one objective often causes deteriorations in
other objectives. Therefore, optimal decisions need to be taken
in the presence of trade-offs between objectives. On the other
hand, in multiple conflicting objectives problems, there cannot
be a single optimum solution which simultaneously optimizes
all objectives; instead, a set of optimal solutions, denoted as the
Pareto optimal set, with a varying degree of objective values
has to be found.

A. Domination and Pareto optimality

Most multi-objective optimization algorithms use the
concept of domination. In these algorithms, two solutions are
compared on the basis of whether one solution dominates the
other solution or not. In this subsection we will briefly describe
the concept of domination and Pareto optimality.

Definition 1: A general multi-objective optimization
problem with m decision variables (parameters) and n objective
functions is defined as:

Minimize y = f(x) = (f1(x),…, fn(x))

Where x = (x1,…, xm)X

y = (y1,…,yn) Y

The objective function f(x) maps a decision vector
(solution) x in decision space (X) to an objective vector y in
objective space (Y). Two different solutions are related to each
other in two possible ways: either one dominates the other or
none of them is dominated.

Definition 2: A solution x1X is said to dominate the other

solution x2X (also written as x1 x2) if and only if both of the
following conditions are true:

1. The solution x1 is not worse than x2 in all objectives;

formally: i {1,…,n}: fi(x1) ≤ fi(x2)

2. The solution x1 is strictly better than x2 in at least one

objective; formally: j {1,…,n}: fj(x1) fj(x2)

It is intuitive that if x1 dominates the solution x2, the
solution x1 is better than x2 in the context of multi-objective
optimization. It is also common to say ―x2 is dominated by x1‖

instead of saying ―x1 dominates x2‖.

Definition 3: Let x1X be an arbitrary solution (decision
vector)

 The solution x1 is said to be non-dominated regarding a

set XX if and only if there is no solution in X which

dominates x1; formally: ∄ x2 X : x2 x1

 The solution x1 is called Pareto optimal if and only if x1
is non-dominated regarding the whole decision space X.

Pareto-optimal solutions cannot be improved further in
terms of a certain objective without causing a simultaneous
degradation in at least one other objective. They represent in
that sense globally optimum solutions. Any solution which
does not belong to the Pareto optimal set is dominated by at
least one Pareto optimal solution. The set of objective vectors
corresponding to a set of Pareto optimal solutions is called
―Pareto optimal front‖ or ―Pareto front‖.

IV. MULTI-OBJECTIVE VISUALIZATION

A. Modeling the Design Space as a Tree

As it is conceptually shown in Fig. 3, we model the design
space as a tree. The tree has three sections: the Parameters
section, Cost section and Design Points section.

In the Parameters section, each level shows one parameter
of the design space, such as the number of processors in the
MPSoC platform. So, the number of levels in this section is
equal to the total number of parameters in the design space. For
example, in the tree illustrated in Fig. 3, the design space has
four parameters: number of processors, processor type, number
of memories and memory type. In this example, the platform
architecture consists of two Application Specific Integrated
Circuits (ASICs), two microprocessors (mPs), one Static RAM
(SRAM) and one Dynamic RAM (DRAM).

The design points section includes the design points
searched by the MOEA. Here, a design point is defined as a
specific instance of the architecture platform as well as a task
and communication mapping. Each point is shown as a node
which is a child of its corresponding architecture. Design
points are distributed in three levels: main Pareto, local Pareto
and non-Pareto.

The main Pareto level shows the true Pareto points found
by the MOEA. The solutions at this level are better than all
other solutions in the entire design space but they are non-
dominated by each other. On the other hand, each point which
is not part of the main Pareto set is dominated by at least one
main Pareto point. At the local Pareto level, the local Pareto
points are shown. A design point is called a local Pareto point

if within the design points with the same architecture (but with
different mappings), there is no point dominating that one.
However, in the entire design space, a design point might exist
which dominates the local Pareto point. It is clear that all the
main Pareto points are local Pareto points as well. However,
not all the local Pareto points are main Pareto points and
therefore we use a relation node at the main Pareto level to
make a connection between them and the previous level. These
nodes are labeled with ―R‖ in Fig. 3.

All the other design points are placed at the non-Pareto
level. Each one becomes a child of a local Pareto point which
dominates it. If a design point is dominated by more than one
local Pareto point, we calculate the Euclidean distance (in the
objective space) between the dominated point and each
dominating local Pareto point and the design point becomes the
child of the local Pareto point with the smallest distance. A
smaller distance means that the points are more similar
according to the objectives.

For easier interpretation and better analysis of the design
points, the children of a local Pareto point are categorized into
three groups according to their Euclidian distance from their
parent. The solutions which are equivalent to the local Pareto
point with respect to all objectives are put under the ―zero‖
distance node. If the distance between a solution and its
corresponding local Pareto point is more than a certain
threshold (determined by the designer), it becomes a child of a

―high‖ distance node, otherwise it becomes a child of a ―low‖
distance node.

The color and thickness of edges show the Euclidean
distance (in the objective space) from the nearest main Pareto
point. The edges in the path from the root to the main Pareto
points are the thickest and darkest since the distance is zero. As
the distance increases the edges become thinner and lighter.

B. Showing objectives in the tree

In this paper, we consider three objectives: processing time,
energy consumption (i.e., power consumption times processing
time) and architecture cost. The cost of each design point is
dependent on the architectural components forming it. So, all
solutions with the same architecture have the same cost. After
the parameters section, the architecture cost can be computed
since all components are known. Therefore, we add an extra
section (Figure 3) between the parameters section and design
points section which is called the cost section and shows the
costs of the different architectures. Since the cost is an
objective and not a design parameter, we represent it with a
different shape; a circle. For a better view, the size of the circle
becomes bigger as the cost increases. The other two objectives
are dependent on the mapping and are therefore shown in a
design point node. The size and color of the third dimension of
a design point node shows the energy consumption. As the
energy consumption increases, the size of the third dimension

Figure 3. Modeling the design space as a tree

becomes bigger and its color becomes darker. The color of the
node itself represents the processing time. Colors are varied
from yellow to red with all color grades in between. Nodes
with the lowest processing time are yellow and nodes with the
highest processing time are red. The color legends for
processing time and energy consumption can be seen in left
side of Fig. 2.

Parameter nodes, however, do not represent single design
points and therefore do not have the direct notion of processing
time or energy consumption. For this reason, there are some
options to color the parameter nodes: based on the average,
minimum, or maximum of either processing time or energy
consumption of the design points in their sub trees. The color
of parameter nodes that have no data node (i.e., do not have
any DSE data) is white. In Fig. 3, the minimum processing
time is chosen for coloring parameter nodes.

C. Benefits of Tree Visualization

Modeling the design space based on a tree structure, as
presented in this paper, has the following benefits:

 Both the design space parameters and the objective
values can be seen in one view. Therefore, it is easy to
understand where the optimum design points are
located and what objectives they have.

 There is no limitation on the number of design
variables since each parameter is located at one level of
the tree. Therefore, modeling the design space as a tree
enables us to easily visualize multivariate data. It
should be mentioned that, in principle, the designer has
total freedom of ordering the parameters in the levels
of the tree. However, putting more important
parameters higher up in the tree facilitates the
information organization in such a way that it produces
sub trees which are more likely to show a better view
of the design space characteristics. Because the more
important design points (according to the design
parameters) are clustered in only one sub tree, the
designer can easily select that sub tree to investigate
and compare these design points. But by putting more
important parameters down in the tree, the design
points with the same parameter are distributed in
several sub trees.

 It can easily be extended to show more than three
objectives. Each node has some attributes like shape,
orientation, size, color, transparency, texture, border,
etc. Each attribute can be assigned to one objective. In
this paper, only color and size are used to show
objectives.

D. Handling Large Trees

In reality, DSE trees can become extremely large. Therefore,
we provide the following techniques to handle large trees.

1) Satellite View
Satellite view, shown at the bottom of Fig. 2, gives an

overall, smaller scale view of the entire scene, which allows the
user to navigate quickly across the view. It also enables the
user to zoom in on certain parts of the scene to focus on certain

nodes in the tree without losing track of the position in the
entire scene.

2) Hiding Sub Trees without Exploration Data
Since some areas of the design space are not visited by the

searching algorithm (e.g., they are not interesting enough so we
do not have any evaluated design points for those parts), it is
possible to hide the sub trees of the nodes that have no data.
This way, the designer can focus on the sub trees which are
more important and can easily see which parts of the tree are
searched by the EA.

3) Hiding Uninteresting Sub Trees
If the designer is not interested in some parts of the tree,

then he is able to hide them in order to make the tree smaller
and pay more attention to other nodes. By double clicking on a
node, its sub tree becomes invisible and a blue triangle appears
at the bottom of the node specifying that the children of the
node are hidden. The size of the triangle represents the size of
the sub tree. The bigger the triangle, the more nodes in the sub
tree. By double clicking again, the sub tree becomes visible and
the blue triangle is removed.

It should be mentioned that by hiding a node, the entire tree
will be redrawn, meaning that the empty space from that node
will be used by the other nodes. We recalculate the location of
visible nodes to optimize their fit to the screen.

4) Filtering
In some cases, the designer wants to consider only design

points with some specific objective values. The value of each
objective is controlled by a range slider bar, in which the
designer can set upper and lower limits on that objective.
Design points with objective values inside the selected ranges
are visible and the others become invisible. Therefore, the
designer has the ability to easily view only preferred design
points. There is an option to view all design points that fall
within the filtering conditions or to only show local Pareto
points or only main Pareto points.

E. Detailed information

The DSE tree shows an overall view of the design space.
For example, it shows where in the design space more design
points have been evaluated or where the optimum design points
(with respect to all objectives) are located. However, if the
designer wants to know more about a specific design point, it is
possible to select the design point to see more details. Two
kinds of detailed information are provided for each design
point: exact objective values and mapping decision.

1) Exact Objective Values
Instead of showing objectives with visual variables (color

and size), this option shows the exact values of processing time
and energy consumption. It also represents the normalized
value of the objectives. We normalize objective values to make
them scale independent. At the end of normalization, all design
points get a value in the range [0, 1] for their objective values.

Before normalization, it is not possible to compare e.g.
processing time and energy consumption with each other since
they have different magnitudes. However, after normalization,
comparing them is possible.

2) Showing Mapping Decision
In the Sesame simulator, the application behavior is

modeled as a process network. A process network is a
computational model of the application and uses a directed
graph notation, where each node represents a process and each
edge represents a one-way FIFO communication channel
between two processes. Fig. 4 represents an example process
network graph which has five processes and six
communication channels.

We visualize the process network graph in a way that
shows the mapping decisions as well. That means that it shows
how the application is being mapped to the underlying
architecture both in terms of processes and communication
channels. The shape and the color of each node in the graph
represent the type of the processor executing the corresponding
process. For example, a green rectangle for one processor type
and a blue pentagon for another type. If there are multiple
processors of the same type in the platform architecture, then
they are differentiated using different variants of the same color
such as light green and dark green.

If two communicating processes are mapped onto the same
processor, then their communications are done internally and
therefore communication channel(s) between them are mapped
onto the processor in question. In the process network graph
these internal communications are represented by a solid line
with the same color as the corresponding processor. In the case
that a channel is mapped onto an external memory, a dashed
line is drawn with the color representing the memory type.
Similar to the processors, memories with the same type are
shown by a different variant of the same color. Fig. 5 shows
how our visualization model shows the process network graph
from Fig. 4.

As can be seen in this figure, processes A, B, C and
channels 1 and 2 are mapped to the same processor. Process D
is executed on the same processor type but on a different
processor as process A. The type of the processor executing
process E is different from the others since it is shown with a
blue pentagon. Channels 3,4,5 and 6 are mapped to memories

(not processors) as they are shown with dashed lines. Channels
3 and 4 are mapped to the same memory. Channel 6 is mapped
to another memory but with the same type and Channel 5 is
mapped onto a different memory type because it has a different
color.

 To be able to find out what objectives are achieved for a
particular mapping, the objective values are also shown
together with the mapping. They are represented in the same
way as multi-objective visualization (shown in Fig. 6).

V. A CASE STUDY

In this section, we present a real application case study to
illustrate the benefits of using visualization in the design space
exploration process. In this case study, we map a Motion-JPEG
(M-JPEG) encoder to an MP-SoC platform architecture
consisting of a general-purpose microprocessor (mP), a
microcontroller (mC), an application specific
instruction processor (ASIP), two Application Specific
Integrated Circuits (ASICs), one SRAM and two DRAMs. The
M-JPEG encoder process network is shown in Fig. 7.

In our case study, an mC or an mP processor can execute
all the different processes in the M-JPEG application while an
ASIP can execute only three processes, namely: ―dct‖, ―quant‖
and ―rgb2yuv‖. We also assume one ASIC is designed for
executing the ―dct‖ process and another one is designed for the
―v-in‖ and ―v-out‖ processes.

Using a multi-objective evolutionary optimizer [3], we
intend to find a set of optimal design points (in terms of
alternative architectural solutions and mappings) under three
criteria: processing time, energy consumption and architecture
cost.

For this study, we run the EA for 60 generations with 50
individuals per population. Therefore, 3000 design points are
searched by the EA. Fig. 8 shows a snapshot of the
visualization of the M-JPEG case study. It should be mentioned
that the purpose of Fig. 8 only is to show an overview of the
entire design space and it is not meant to be readable. Just by
looking at the depicted tree, the designer can immediately

Figure 5. Mapping decision

Figure 4. An example of process network graph

v-in

rgb2

yuv

dct

quant vle v-out

q-

cont.

dmux

Figure 6. Representing Objective values

Figure 7. M-JPEG process network

understand some general information about the design space
searched by the EA. For example, it is obvious that there is no
design point evaluated for single processor architecture
platforms (node color is white). Moreover, in two processors
platforms, there are five different combinations of processor
components which are capable of executing the application but
only three of those combinations are searched. However, in
four processors platforms, all the possible combinations are
explored.

From this picture, we can also find out that most of the
evaluated design points have one or two memories, and
architectures with three memories are rarely searched. Only
architectures consisting of all different processor types have
some design points with three memories.

In Fig. 8(b), parameter nodes that have no data are omitted.
In this figure, minimum processing time is used for coloring
the parameter nodes. From this figure, it is clear that platform
instances with two processors are searched less than others
since their blue triangles are small. We can also see that most
of the design points being searched by the EA contain two
memories; one DRAM and one SRAM because all the biggest
blue triangles have these two memories. Moreover, as can be
seen in this figure, all design points with the minimum
processing time include at least one ASIP, one mC and one mP
(node color is yellow). Another conclusion is that, by adding an
ASIP to the architectures without an ASIP, we can get a
significant improvement of processing time. This is illustrated
by the designs indicated by ―A‖ and ―B‖ in Fig. 8(b). Where
architecture A consist of one mC and one mP, in architecture B
an ASIP is added.

Fig. 9 shows the main Pareto points found by the EA. By
looking at the picture, the designer can immediately recognize
the characteristics of the main Pareto points, which are the best
design points with respect to the design criteria. For example,
in our case study, there is no main Pareto point with five
processors. That means that with less processors (which is
cheaper) the designer can get the same or better processing
time and energy consumption. Therefore, using five processors
is not appropriate for this application. Another interesting
feature is that all the main Pareto points have a microcontroller
in their underlying architecture. The slow but cheap and low-
power microcontroller apparently provides a good tradeoff for
executing the less demanding tasks in the application. It can
also be seen that all the main Pareto points have at least one
DRAM memory. A few of them have one SRAM besides the
DRAM. Thus, using three memories or two DRAMs is not an
appropriate solution in this case study. So, by using VMODEX,
the designer can easily find out which combinations of
architectural components yield optimum design points.

In the following, we carry out a more detailed analysis of
the design space using our visualization tool. For instance, we
want to investigate the effect of adding one SRAM memory to
the architecture. As can be seen in Fig. 9, for every main Pareto
point with one SRAM and one DRAM memory, there exists a
main Pareto point with only one DRAM memory which
basically offers the same processing time and energy
consumption (such as the design points indicated with A and B
in Fig. 9). By looking at their exact objective values (blue Figure 8. Screenshot of the M-JPEG case study (a) Entire design space,

(b) Parts of the design space having DSE data

Figure 9. Main Pareto Points

rectangle), we find out that adding one SRAM memory to the
architecture does not yield any improvement in processing time
and improves energy consumption only a little bit while the
architecture cost is increased a lot. Therefore, in our case
study, using an additional SRAM next to a DRAM memory is
not beneficial.

Now, let us zoom in on the part of the design space which
contains two or three processors and two memories. Here, we
investigate the local Pareto points which are shown in Fig. 10.

As we mentioned before, for each specific architecture, the
best design points with respect to the processing time and
energy consumption are located at the local Pareto level.
Needless to say, local Pareto points with the same parent have

the same cost since they use the same architectural
components. Considering the local Pareto set indicated by ―A‖
in Fig. 10, we have a good tradeoff between processing time
and energy consumption. There are some design points with
good processing time but poor energy consumption and also
some design points with poor processing time but good energy
consumption. So, in the case that there is a system where
applications can dynamically be mapped, this architecture
could be suitable. In the case the system needs to be optimized
for speed, the mapping with the lowest processing time can be
selected. But when the system needs to safe energy
consumption (e.g. in case the battery is running low), then the
mapping with the lowest energy consumption can be selected.

Figure 10. Local Pareto Points

Considering two local Pareto sets indicated by ―A‖ and ―B‖
in Fig. 10, the architectural design points denoted by A have an
extra ASIC and, as a result, obtain much better energy
consumption results while the cost only increases a little bit.

Fig. 11 shows three-processor architectures of the design
space in which the children of only two combinations are
visible. The processing time of all design points with one
ASIC, one ASIP and one mC (the left sub tree) is extremely
poor. Even with different mappings, we cannot get a good
processing time. However, the energy consumption is
relatively good for these design points. Therefore, if the
designer is interested in lower processing times, this
architecture is not a suitable solution but if he prefers low
energy, this architecture could be a good choice.

In the right sub tree the situation is reversed. Depending on
the mapping, you may get a very good (e.g. the design point
indicated by A) or a very poor (e.g. the design point indicated
by B) processing time. However, the energy consumption of
these design points is quite high. Therefore, this architecture is

not appropriate for obtaining low energy but if the designer is
interested in performance, he should take care about the
mapping because a wrong mapping decision can make the
difference between the best or the worst processing time.

To investigate why the design points A and B significantly
differ in their processing times, the mapping decisions of these
design points are shown in Fig. 12. As can be seen in this
figure, in design point A, tasks ―v-in‖ and ―dmux‖ are mapped
on the mC component (brown triangle) and tasks ―vle‖ and ―v-
out‖ are mapped on the mP (violet circle) while in design point
B this is the other way around. For all the other tasks, the
processors executing them are the same. In design point B, the
mC component forms a bottleneck for the application’s
throughput. Such visualization of mapping decisions clearly
enables the designer to study the effect of different mappings
on the design criteria.

To show the benefits of the filtering option described in
section IV.D, we apply a filtering scenario to our case study.
We are interested in those design points which are good

Figure 11. Design Points

Figure 12. Mapping decision: (a) design point A, (b) design point B

enough in all three objectives. By good enough we mean those
design points which are better than the median in all the three
objectives. Fig. 13 represents the design points that fall within
this condition. As it is shown, only two architecture platforms
provide design points that are relatively good in all objectives.
Fig. 13 is the filtered version of Fig. 8. As it can be seen, a lot
of design points have been omitted which can help the designer
to focus on more important design points.

The analysis we performed in this section would have been
very cumbersome and time consuming to do by only looking at
the raw data or by using traditional 2D/3D graphs. Several
traditional graphs are needed in order to interpret the data like
we did. However, using VMODEX, a single visualization view
of the design space enables very powerful and rapid analysis of
the DSE data.

VI. CONCLUSION

In this paper, we presented a visualization tool, VMODEX,
which helps designers to understand the search behavior in
MOEA based design space exploration as well as to gain
insight into the landscape of the design space. That is,
understanding the characteristics of the optimum design points
with respect to the design criteria, the relationships between
design parameters and their effects on the objectives, the
effects of mapping decisions on the design criteria and the
correlations among multiple objectives. In our tool, we provide
several capabilities to be able to handle large design spaces and
filter design points according to their objective values to see
only preferred solutions. We have also illustrated the benefits
of such visualization using a Motion-JPEG encoder case study.

REFERENCES

[1] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra. A Framework
for System-level Modeling and Simulation of Embedded Systems
Architectures, EURASIP Journal on Embedded Systems, 2007, DOI
10.1155/2007/82123.

[2] A.D. Pimentel, C. Erbas, and S. Polstra. A Systematic Approach to
Exploring Embedded System Architectures at Multiple Abstraction
Levels, IEEE Transactions on Computers, vol. 55, no. 2, pp. 99-
112,(2006).

[3] C. Erbas, S. Cerav-Erbas and A.D. Pimentel. Multiobjective
Optimization and Evolutionary Algorithms for the Application Mapping
Problem in Multiprocessor System-on-Chip Design, IEEE Transactions
on Evolutionary Computation, pp. 358-374, Vol. 10 (No. 3), June 2006.

[4] P. Marwedel, B. Sirocic. Multimedia components for the visualization of
dynamic behavior in computer architectures, in the Proc. of the
Workshop of Computer Architecture Education, 2003.

[5] C. Yehezkel, W. Yurcik, M. Pearson, D. Armstrong. Three simulator
tools for teaching computer architecture: Easycpu, little man computer,
and rtlsim, Journal on Educational Resources in Computing, vol. 1, no.
4, pp. 60-80, 2001.

[6] R. Bosch, et al, Rivet: A flexible environment for computer systems
visualization, SIGGRAPH Computer Graphics, vol. 34, no. 1, pp. 68-73,
2000.

[7] R.P. Bosch. Using Visualization to Understand the Behavior of
Computer Systems, PhD thesis, Stanford University, 2001.

[8] T. Taghavi, A. D. Pimentel, and M. Thompson. Visualization of
Computer Architecture Simulation Data for System-level Design Space
Exploration, in the Proc. of Int. Symposium on Systems, Architectures,
Modeling and Simulation (SAMOS '09), July 2009.

[9] E. Hart and P. Ross. GAVEL - A New Tool for Genetic Algorithm
Visualization, IEEE Trans on Evolutionary Computation, Vol. 5, No. 4,
pp. 335-348, August 2001.

[10] H. Pohlheim. Visualization of evolutionary algorithms — set of standard
techniques and multidimensional visualization, in the Proceedings of the
1999 Genetic and Evolutionary Computation Conference GECCO’99,
Morgan Kaufmann, Los Altos, CA, 1999, pp. 533–540.

[11] T.D. Collins. Applying software visualization technology to support the
use of evolutionary algorithms, Journal of Visual Language and
Computing 14 (2003), 123-150.

[12] Sammon, J. W. jr. A Nonlinear Mapping for Data Structure Analysis.
IEEE Transactions on Computers, vol. C-18, no. 5, pp. 401-409, 1969.

[13] T. Taghavi, A.D. Pimentel, M. Thompson, "System-level MP-SoC
Design Space Exploration using Tree Visualization", in the Proc. of the
IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time
Multimedia (ESTIMedia '09), Grenoble, France, Oct. 2009.

Figure 13. Filtering

	Introduction
	related work
	multi-objective optimization
	Domination and Pareto optimality

	MULTI-OBJECTIVE VISUALIZATION
	Modeling the Design Space as a Tree
	Showing objectives in the tree
	Benefits of Tree Visualization
	Handling Large Trees
	Satellite View
	Hiding Sub Trees without Exploration Data
	Hiding Uninteresting Sub Trees
	Filtering

	Detailed information
	Exact Objective Values
	Showing Mapping Decision

	A CASE STUDY
	CONCLUSION
	References

