
A Multiobjective Optimization Model for Exploring
Multiprocessor Mappings of Process Networks

Cagkan Erbas
Dept. of Computer Science

University of Amsterdam
Kruislaan 403, 1098 SJ

Amsterdam, The Netherlands

cagkan@science.uva.nl

Selin C. Erbas
Dept. of Stochastics

Aachen Univ. of Technology
Wüllnerstrasse 3, 52056

Aachen, Germany

Andy D. Pimentel
Dept. of Computer Science

University of Amsterdam
Kruislaan 403, 1098 SJ

Amsterdam, The Netherlands

ABSTRACT
In the Sesame framework, we develop a modeling and simulation
environment for the efficient design space exploration of hetero-
geneous embedded systems. Since Sesame recognizes separate
application and architecture models within a single system simu-
lation, it needs an explicit mapping step to relate these models for
co-simulation. So far in Sesame, the mapping decision has been
assumed to be made by an experienced designer, intuitively. How-
ever, this assumption is increasingly becoming inappropriate for the
following reasons: already the realistic systems are far too complex
for making intuitive decisions at an early design stage where the de-
sign space is very large. Likely, these systems will even get more
complex in the near future. Besides, there exist multiple criteria to
consider, like processing times, power consumption and cost of the
architecture, which make the decision problem even harder.

In this paper, the mapping decision problem is formulated as a
multiobjective combinatorial optimization problem. For a solution
approach, an optimization software tool, implementing an evolu-
tionary algorithm from the literature, has been developed to achieve
a set of best alternative mapping decisions under multiple criteria.
In a case study, we have used our optimization tool to obtain a set
of mapping decisions, some of which were further evaluated by the
Sesame simulation framework.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Modeling tech-
niques; C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems, Signal processing systems; G.1.6
[Optimization]: Integer programming

General Terms
Performance, Design

Keywords
Design space exploration, Performance estimation with simulation,
Evolutionary multiobjective optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

1. INTRODUCTION
In the context of the Artemis project [6], we are developing

the Sesame [1], [7] framework which provides modeling and sim-
ulation methods and tools for the efficient design space exploration
of heterogeneous embedded multimedia systems. This framework
should allow for rapid performance evaluation of different archi-
tecture designs, application to architecture mappings, and hard-
ware/software partitionings. In addition, it should do so at mul-
tiple levels of abstraction and for a wide range of multimedia ap-
plications. To achieve this flexibility, the Sesame environment
recognizes separate application and architecture models within a
single system simulation. The application model defines the func-
tional behavior of an application, including both computation and
communication behavior. The architecture model defines architec-
ture resources and captures their performance constraints. An ex-
plicit mapping step maps an application model onto an architecture
model for co-simulation.

So far in Sesame, the mapping step is assumed to be performed
by an experienced designer, intuitively. However, this assumption
is increasingly becoming inappropriate for efficient design space
exploration. First of all, the Sesame environment targets explo-
ration at an early design stage where the design space is very large.
At this stage, it is very hard to make critical decisions such as map-
ping without using any analytical method or a design tool, since
these decisions seriously affect the rest of the design process, and
in turn, the success of the final design. Besides, modern embedded
systems are already quite complicated, generally having a hetero-
geneous combination of hardware and software parts possibly with
dynamic behavior. It is also very likely that these embedded sys-
tems will become even more complex in the near future, and intu-
itive mapping decisions will eventually become obsolete for future
designs. Moreover, coping with the design constraints of embedded
systems, there exist multiple criteria to consider, like the process-
ing times, power consumption and cost of the architecture, all of
which further complicate the mapping decision.

In this paper, we develop a mathematical model to capture the
trade-offs faced during the mapping stage in Sesame. In our model,
these trade-offs, namely the maximum processing time, power con-
sumption and total cost of the architecture, are formulated as the
multiple conflicting objectives of the mapping decision problem.
Then using our optimization software tool, which is based on a
widely-known evolutionary algorithm, we solve the mapping deci-
sion problem for a multimedia application. Finally, choosing two
conflicting solutions from our optimization results, we simulate
their performance consequences for validation using the Sesame
simulation framework.

Architecture Model

Mapping Function

Application ModelA B C

P1 P2

M

f

Figure 1: The mapping problem on a simple example.

The rest of the paper is organized as follows: we model the map-
ping decision in Sesame as a multiobjective combinatorial opti-
mization problem in the next section. Section 3 introduces the mul-
tiobjective optimization theory and presents our solution approach.
In Section 4, we study an M-JPEG encoder application and explore
its design space. Section 5 discusses related work. Finally, Sec-
tion 6 concludes the paper.

2. PROBLEM AND MODEL DEFINITION
In the Sesame framework, applications are modeled using the

Kahn Process Network (KPN) [4] model of computation in which
parallel processes – implemented in a high level language – com-
municate with each other via unbounded FIFO channels. By ex-
ecuting the application model, each process records its actions in
order to generate its own trace of application events which is nec-
essary for driving an architecture model. There are three types of
application events in two groups: execute for computation events
and read and write for communication events.

The architecture models in Sesame, simulate the performance
consequences of the computation and communication events gener-
ated by an application model. They solely account for performance
constraints and only model timing behavior, since the functional
behavior is already captured in the application model. An architec-
ture model is constructed from generic building blocks provided by
a library which contains template models for processing cores and
various types of memory.

Since Sesame makes a distinction between application and ar-
chitecture models, it needs an explicit mapping step to relate these
models for co-simulation. In this step, the designer decides for
each application process and FIFO channel a destination architec-
ture model component to simulate its workload. Thus, this step is
one of the most important stages in the design process, since the
final success of the design is highly dependent on these mapping
choices. In Figure 1, we illustrate this mapping step on a very sim-
ple example. In this example, the application model consists of
three Kahn processes and FIFO channels. The architecture model
contains two processors and one shared memory. To decide on an
optimum mapping, there exist multiple criteria to consider: max-
imum processing time in the system, power consumption and the
total cost. This section aims at defining a mapping function, shown
with f in Figure 1, to supply the designer with a set of best alterna-
tive mappings under the mentioned system criteria.

2.1 Application Modeling
The application models in Sesame are represented by a graph

KPN = (VK , EK) where the set VK and EK refer to the Kahn
nodes and the directed FIFO channels between these nodes, respec-
tively. For each node a ∈ VK , we define Ba ⊆ EK to be the set
of FIFO channels connected to node a, Ba = {ba1, . . . , ban}. For
each Kahn node, we define a computation requirement, shown with
αa, representing the computational workload imposed by that Kahn
node onto a particular component in the architecture model. The
communication requirement of a Kahn node is not defined explic-
itly, rather it is derived from the channels attached to it. We have
chosen this type of definition for the following reason: if the Kahn
node and one of its channels are mapped onto the same architec-
ture component, the communication overhead experienced by the
Kahn node due to that specific channel is simply neglected. For the
communication workload imposed by the Kahn node, only those
channels that are mapped onto different architecture components
are taken into account. So our model neglects internal communi-
cations and only considers external communications. Formally, we
denote the communication requirement of the channel b with βb. To
include memory1 latencies into our model, we require that mapping
a channel onto a specific memory asks computation tasks from the
memory. To express this, we define the computational requirement
of the channel b from the memory as αb. The formulation of our
model ensures that the parameters βb and αb are only taken into
account, when the channel b is mapped onto an external memory.

2.2 Architecture Modeling
Similarly to the application model, the architecture model is also

represented by a graph ARC = (VA, EA) where the sets VA and
EA denote the architecture components and the connections be-
tween the architecture components, respectively. In our model,
the set of architecture components consists of two disjoint sub-
sets: the set of processors (P) and the set of memories (M), VA =
P ∪ M and P ∩ M = ∅. For each processor p ∈ P , the set
Mp = {mp1, . . . , mpj} represents the memories which are reach-
able from the processor p. We define processing capacities for both
the processors and the memories as cp and cm, respectively. These
parameters are set such that they reflect processing capabilities for
processors, and memory access latencies for memories.

One of the key considerations in the design of embedded systems
is the power consumption. In our model, we consider two types of
power consumption for the processors. We represent the power dis-
sipation of the processor p during execution with wpe, while wpc

represents its power dissipation during communication with the ex-
ternal memories. For the memories, we only define wme, the power
dissipation during execution. For both processors and memories,
we neglect the power dissipation during idle times. In our model,
we also consider the fixed costs associated with the architecture
model components. Using an architecture component in the system
adds a fixed amount to the total cost. We represent the fixed costs
as up and um for the processors and the memories, respectively.

2.3 The Mapping Problem
We have the following decision variables in the model: xap = 1

if Kahn node a is mapped onto processor p, xbm = 1 if channel b
is mapped onto memory m, xbp = 1 if channel b is mapped onto
processor p, yp = 1 if processor p is used in the system, ym = 1
if memory m is used in the system. All the decision variables get a
value of zero in all other cases. The constraints in the model are:

1In this paper, memory refers to any kind of hardware that can be
used for data transfer. Buses, FIFOs, RAMs, etc. are all memories.

• Each Kahn node has to be mapped onto a single processor,

∑

p∈P

xap = 1 for all a ∈ VK . (1)

• Each channel in the application model has to be mapped onto
a processor or a memory,

∑

p∈P

xbp +
∑

m∈M

xbm = 1 for all b ∈ EK . (2)

• If two communicating Kahn nodes are mapped onto the same
processor, then the communication channel(s) between these
nodes have to be mapped onto the same processor.

If ∃ b = (ai, aj) ∈ EK with xaip = 1 and xajp = 1,

then xbp = 1. (3)

• The constraint given below ensures that when two communi-
cating Kahn nodes are mapped onto two separate processors,
the channel(s) between these nodes are to be mapped onto an
external memory.

Let pk 6= pl ∈ P, ai, aj ∈ VK and b ∈ Bai ∩ Baj .

If xaipk
= 1 and xajpl

= 1 then xbm = 1

for an m ∈ Mpk
∩ Mpl

. (4)

• The following constraints are used to settle the values of yp

and ym’s in the model. We multiply the right-hand side of the
first equation series by the total number of Kahn nodes and
FIFO channels, since this gives an upper bound on the num-
ber of application model components that can be mapped to
any processor. Similar logic is applied to the equations re-
lated with memory.

∑

a∈VK

xap +
∑

b∈EK

xbp ≤ (| VK | + | EK |)yp

for all p ∈ P , (5)

∑

b∈EK

xbm ≤ | EK | ym for all m ∈ M . (6)

Three conflicting objective functions exist in the optimization
problem:

• The first objective function tries to minimize the maximum
processing time in the system. For each processor and mem-
ory, fp and fm represent the total processing time in the pro-
cessor and memory, respectively. We also show the total time
spent by the processor for the execution events as f e

p and for
the communication events as f c

p .

fp = fe
p + fc

p , (7)

fe
p =

1

cp

∑

a∈VK

αaxap, (8)

fc
p =

1

cp

∑

a∈VK

xap

∑

b∈Ba,m∈Mp

βbxbm, (9)

fm =
1

cm

∑

b∈EK

αbxbm. (10)

So the objective function is expressed as

min max
i∈VA

fi. (11)

• The second objective function tries to minimize the power
consumption of the whole system. Similarly, gp and gm de-
note the total power consumption of processor p and memory
m.

gp = fe
pwpe + fc

pwpc, (12)

gm = fmwme. (13)

min
∑

i∈VA

gi. (14)

• The last objective function aims at minimizing the total cost
of the architecture model.

min
∑

p∈P

upyp +
∑

m∈M

umym. (15)

DEFINITION 1. The Multiprocessor Mappings of KPNs Prob-
lem is the following multiobjective integer optimization problem:

minimize f = (max
i∈VA

fi,
∑

i∈VA

gi,
∑

p∈P

upyp +
∑

m∈M

umym),

subject to (1) – (10), (12) and (13).

3. MULTIOBJECTIVE OPTIMIZATION

DEFINITION 2. A general multiobjective optimization problem
is defined as:

minimize f(x) = (f1(x), . . . , fk(x))

subject to x ∈ X

where x represents a solution and X is a set of feasible solutions.
The objective function vector f(x) maps a solution vector x in de-
cision space to a point in objective space.

In general, in a multiobjective optimization problem, it is not
possible to find a single solution that minimizes all objectives, si-
multaneously. Therefore, one is interested to explore a set of so-
lutions, called the Pareto optimal set, which are not dominated by
any other solution in the feasible set. The corresponding objective
vectors of these Pareto optimal points, named efficient points, form
the Pareto front on the objective space.

DEFINITION 3. We say x dominates x
∗ iff ∀i ∈ {1, . . . , k}

fi(x) ≤ fi(x
∗) and there exists at least one i ∈ {1, . . . , k} such

that fi(x) < fi(x
∗).

The most traditional approach to solve a multiobjective opti-
mization problem is to aggregate the objectives into a single objec-
tive by using a weighting mean. However this approach has major
drawbacks. It is not possible to locate the non-convex parts of the
Pareto front [3] and it requires several consecutive runs of the opti-
mization program with different weights. Recently, there has been
an increasing interest in evolutionary multiobjective optimization.
This is because of the fact that evolutionary algorithms (EAs) seem
well-suited for this type of problems, as they deal simultaneously
with a set of possible solutions called population. This allows us
to find several members of the Pareto optimal set in a single run of
the algorithm.

To solve the mapping problem given by Definition 1 in Sec-
tion 2.3, we use the Strength Pareto Evolutionary Algorithm (SPEA)
[11] which maintains an external set to preserve the nondominated
solutions encountered so far besides the original population. It uses
the concept of dominance in order to assign fitness values to indi-
viduals. Distinct fitness assignment schemes are defined for the

selection

initialization

clustering

repair

check
indiv.

size
check

recombination

individual

and population
external set

combine

calculation
fitness

external set
update

evaluate
feasible

infeasible

mutation

Figure 2: Overview of SPEA.

population and the external set to always ensure that better fitness
values are assigned to individuals in the latter. Additionally, SPEA
performs clustering to limit the number of individuals in the exter-
nal set while also maintaining diversity among them. For selection,
it uses binary tournament with replacement. Finally, both popula-
tion and the external nondominated set take part in selection. In our
SPEA implementation, we have introduced a repair mechanism to
handle infeasibility. The repair takes place before the individuals
enter evaluation to make sure that only valid individuals are evalu-
ated. The details of our repair mechanism will be explained later.
Figure 2 gives an overview of SPEA which also includes the repair
mechanism. The big loop in the figure is performed for a certain
number of generations.

3.1 Individual Coding
Each genotype consists of two main parts: a part for Kahn pro-

cess nodes and a part for FIFO channels. Each gene in the chro-
mosome has its own allele set which is determined by the type of
the gene and the constraints of the problem. For genes representing
Kahn process nodes, only the set of processors at the architecture
model form the allele set, while for genes representing the FIFO
channels, both the set of processors and the set of memories con-
stitute the allele set. The constraints of the problem may include

/2 3 1 5 6 1 3 1

kahn process part fifo channel part

index arch. comp. index arch. comp.

0

1
2

3

4

0

1

2

3

4

5

6

mP

SRAM

RISC

DSP1

DSP2

DRAM

ASICASIC

mP

DSP1

DSP2

RISC

Figure 3: An example individual coding.

some limitations which should be considered in individual coding.
For example, if there exists a dedicated architecture component for
a specific Kahn process, then this architecture component has to be
included only in the allele set of this Kahn process.

In Figure 3, an example chromosome is given. The first three
genes are those for Kahn process nodes, and the rest are those for
FIFO channels. For this gene, the second Kahn process is mapped
onto DSP2 while the second FIFO channel is mapped onto DRAM.
We also see that the allele sets for these two genes are different.

3.2 Constraint Violation
We have developed a repair mechanism to deal with the con-

straint violations. The encoding of the individual ensures that the
constraints (1) and (2) are never violated. However, due to random-
ness in SPEA (in initialization, crossover and mutation steps), the
constraints (3) and (4) are prone to violation. The repair mecha-
nism given in Algorithm 1 only considers the FIFO channel part
of the individuals, since constraints (3) and (4) ensure correct map-
ping of the FIFO channels. Our repair algorithm simply checks for
each FIFO channel whether the Kahn processes it is connected to
are mapped onto the same processor. If this condition holds, then
it ensures that the FIFO channel is also mapped onto that proces-
sor. If the condition does not hold, which means that the Kahn
processes are mapped onto different processors (say, P1 and P2),
it finds the set of memories reachable from both P1 and P2 (math-
ematically, MP1

∩ MP2
). Then it selects a memory from this set

randomly and maps the FIFO channel onto that memory. However,
if MP1

∩MP2
= ∅, then it maps the Kahn processes and the FIFO

channel between them onto the processor P1. We have adapted our
repair algorithm in SPEA such that it is applied before the evalua-
tion step to make sure that only valid individuals are evaluated.

Algorithm 1 Individual Repair Algorithm
input: I (individual)
output: I (individual)

for all FIFO channel genes do
get Kahn nodes connected by this FIFO channel: K1 and K2.
if K1 and K2 are mapped onto the same processor then

repair: map FIFO channel onto the same processor.
else if FIFO channel is mapped onto a processor then

get processors K1 and K2 are mapped onto: P1 and P2.
if MP1

∩ MP2
6= ∅ then

choose randomly a memory from MP1
∩ MP2

: M .
repair: map FIFO channel on M .

else
repair: map FIFO channel and K2 on P1.

end if
end if

end for

4. CASE STUDY
We have chosen a modified M-JPEG encoder application, re-

ferred as M-JPEG*, to explore its design space. It differs from
traditional M-JPEG encoders in three main ways: M-JPEG* only
supports lossy encoding while M-JPEG supports both lossless and
lossy encodings, M-JPEG* can operate on YUV and RGB video
data whereas M-JPEG usually operates on YUV format, and finally
M-JPEG* can change quantization and Huffman tables dynami-
cally while M-JPEG has no such behavior. In Figure 4, we give
the Kahn process network model of our M-JPEG* application. In
our simulations, the frame size is 128x128 with 8 bits/pixel. The
frame format is RGB. A more detailed discussion of the M-JPEG*
application can be found in [7].

In Figure 5, we present a target platform architecture for the
M-JPEG* application. The architecture model consists of a gen-
eral purpose microprocessor (mP), two DSPs, two ASICs (VIP and

Video In DMUX

RGB2YUV

DCT

Quantizer

Q−Control

VLE Video Out

Figure 4: M-JPEG* encoder application model.

VOP), an SRAM and a DRAM. For these architecture components,
realistic latency values from [7] have been used to calculate their
processing capacities: cp and cm. Similarly, for the Kahn pro-
cesses and FIFO channels in Figure 4, computational and commu-
nicational requirements (namely the parameters αa for the nodes
and the parameters αb and βb for the FIFO channels) have been
calculated using statistics obtained from the C++ implementation
code of this Kahn process network.

VIP mP DSP1 DSP2

SRAM DRAM

bus

VOP

Figure 5: M-JPEG* encoder platform architecture model.
We have implemented the SPEA algorithm in C++ to solve our

mapping problem given by Definition 1 in Section 2.3. Our soft-
ware is based on GAlib2 [10], a C++ library of genetic algorithm
components. We have chosen a population size of 100, crossover
probability of 0.5 and a mutation rate3 of 0.056. The size of the
external set is chosen as 20. In Figure 6, we show the nondomi-

 140
 160

 180
 200

 220
 240

 260
 280

 900
 940

 980
 1020

 1060
 40000

 60000

 80000

 100000

 120000

 140000

 160000

Maximum Processing Time

Architecture CostPower Consumption

efficient point

Figure 6: Nondominated front for the M-JPEG* case study.
nated front (approximated Pareto front) obtained by our optimiza-
tion software after 300 generations in a single run. In the fig-
ure, there exist two distinct points where the maximum processing
time attains its peak values. When we compare these two extreme
points, we observe that with a slight increase of cost from 160 to
180, we obtain a big gain in power consumption (drops from 1003
to 919). On the other hand, one can also see that the compromise
points are around the middle of the nondominated front.

2Originally, GAlib solves optimization problems with a single ob-
jective. We modified it to solve problems with multiple objectives.
3We calculated this with 1/(chromosome length) = 0.056.

Table 1: Two nondominated solutions chosen for simulation.

Solution Max. Processing Time Power Cons. Cost

P1 50762 981 200
P2 140808 1003 160

Two solutions have been selected for further evaluation by the
Sesame framework. In Table 1, the chosen solutions P1 and P2,
and their objective function values are given. P1 is one of the
compromise solutions while P2 has its maximum processing time
close to maxima. Our aim is to demonstrate the performance con-
sequences of these two conflicting design decisions via simulation.

Figures 7 and 8 show the utilization details of components in
the architecture models of the mappings P1 and P2, respectively.
In both architecture models, only a subset of the available compo-
nents are used, so actually these mappings are different instances of
the platform architecture. For example, for storing data P1 utilizes
SRAM while P2 uses DRAM. When we compare the architecture
models of P1 and P2, we observe a dramatic difference between
systems throughput. The former one has a video throughput of
154.2 frames/sec while the latter is only at 82.9 frames/sec. We
can explain the reason behind this as follows: when we examine
both Figures 7 and 8, we observe that the M-JPEG* application is
quite sensitive to communication between the components. This is
demonstrated by the large I/O times of mP and DSP1 in Figure 7
and DSP2 in Figure 8. This makes choosing a fast memory very
critical for good system performance, so using an SRAM instead of
a DRAM in the first architecture dramatically improves the overall
performance. This fact is also noticed by the large busy times of the

idle

I/O

busy
 0

 20

 40

 60

 80

 100

mP DSP1 VOP SRAMVIP

Pe
rc

en
ta

ge
 o

f
Pr

oc
es

si
ng

 T
im

e

Figure 7: Simulation results showing the utilization of architec-
ture components in P1. The throughput is 154.2 frames/sec.

idle

I/O

busy
 0

 20

 40

 60

 80

 100

VIP DSP1 DSP2 VOP DRAM

Pe
rc

en
ta

ge
 o

f
Pr

oc
es

si
ng

 T
im

e

Figure 8: Simulation results showing the utilization of architec-
ture components in P2. The throughput is 82.9 frames/sec.

SRAM and DRAM components in the figures. The second archi-
tecture also has an additional drawback that it is not well-balanced.
When we compare the utilizations of DSP1 and DSP2 in Figure 8,
we see that DSP1 is idle more than 80% of its execution time while
DSP2 is only idle for less than 10%.

5. RELATED WORK
In the domain of embedded systems and hardware/software code-

sign, multiobjective optimization studies have been performed ex-
tensively for system-level synthesis [2], [8], [9]. The latter means
the problem of optimally mapping a task-level specification onto
a heterogeneous hardware/software architecture. Teich et al. [8]
partition this problem into two steps: the selection of the archi-
tecture (allocation), and the mapping of the algorithm onto the se-
lected architecture in space (binding) and time (scheduling). In
their framework, they only consider cost and speed of the archi-
tecture, power consumption is ignored. Besides, they use penalty
functions to cope with infeasibility. This technique reduces the
number of infeasible individuals to an acceptable degree [8], while
our repair mechanism replaces all infeasible individuals. In [9], a
similar synthesis approach is applied to evaluate the design trade-
offs in packet processor architectures. But additionally, this model
includes a real-time calculus to reason about packet streams and
their processing.

In the MOGAC framework [2], starting from a task graph speci-
fication, the synthesis problem is solved for three objectives: cost,
speed and power consumption of the target architecture. To ac-
complish this, an adaptive genetic algorithm which can escape lo-
cal minima is utilized. However, this framework lacks the man-
agement of possible infeasibility as it treats all non-dominated so-
lutions equally even if they violate hard constraints. The invalid
individuals are only removed at the end of evolution. As a conse-
quence of this, the MOGAC framework may confront convergence
problems, i.e. convergence to a set of infeasible solutions.

In [5], configuration space of a parameterized system-on-chip
(SoC) architecture is explored using an exploration algorithm which
combines genetic algorithm and exhaustive search techniques. The
approximated Pareto-optimal set obtained by the exploration algo-
rithm is afterwards compared to the actual Pareto-optimal set using
a distance function for fitness calculations.

In the Sesame framework, we do not target at the problem of
system synthesis. Therefore, a schedule is not constructed at the
end of the design process. Our aim is to develop a methodology
which will quickly evaluate a large design space and provide us a
number of approximated Pareto-optimal solutions. These solutions
are then input to our simulation framework for further evaluation.
After simulation, figures about system-level trade-offs (utilization
of components, data throughput, communication media contention,
etc.) are provided to the designer. Thus, our goal is efficient design
space exploration in terms of simulation. As a final remark, we
should also note that our framework differs from the mentioned
frameworks in the sense that it uses process networks for algorithm
specification rather than task graphs.

6. CONCLUSION
In this paper, we have developed a novel analytical method to

optimally map application models, defined as Kahn process net-
works, onto multiprocessor target architectures. This methodol-
ogy is specifically designed and developed for the Sesame mod-
eling and simulation framework to be used prior to simulation. In
many cases, simulation environments have to cope with large de-
sign spaces, where the simulation of all alternatives is too expen-

sive or even impossible. Although finding the optimal mapping is
an intractable problem, this study tackles the mapping problem by
providing the designer a set of approximated Pareto-optimal solu-
tions to be further evaluated in terms of simulation. To illustrate the
practical aspects of our theoretical results, we have taken a modi-
fied M-JPEG encoder application and explored its design space in
a case study. We could quickly evaluate two conflicting design
choices for this multimedia application using Sesame’s efficient
simulation methodology.

The current research in Sesame is to extend this work in two
distinct tracks. One track is to formulate a new evolutionary algo-
rithm and compare it against SPEA and probably also against other
candidates from the literature. Another track is to refine the model
introduced in this study. Some of the assumptions in this study can
be further refined for getting better optimization results, but this
should be done with special care as one should avoid adding details
that may hamper the efficiency in terms of optimization time.

7. ACKNOWLEDGEMENTS
We thank Marco Laumanns and Eckart Zitzler for their help in

plotting the nondominated front.

8. REFERENCES
[1] J. E. Coffland and A. D. Pimentel. A software framework for

efficient system-level performance evaluation of embedded
systems. In Proc. of the ACM Symposium on Applied
Computing, Mar. 2003.

[2] R. P. Dick and N. K. Jha. MOGAC: A multiobjective genetic
algorithm for hardware-software co-synthesis of distributed
embedded systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Oct. 1998.

[3] M. Ehrgott. Multicriteria Optimization. Lecture Notes in
Economics and Mathematical Systems. Springer-Verlag,
2000.

[4] G. Kahn. The semantics of a simple language for parallel
programming. In Proc. of the IFIP Congress, 1974.

[5] M. Palesi and T. Givargis. Multi-objective design space
exploration using genetic algorithms. In Proc. of the 10th Int.
Symposium on Hardware/Software Codesign, May 2002.

[6] A. D. Pimentel, P. Lieverse, P. van der Wolf, L. O.
Hertzberger, and E. F. Deprettere. Exploring
embedded-systems architectures with Artemis. IEEE
Computer, Nov. 2001.

[7] A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Halderen,
J. E. Coffland, and L. O. Hertzberger. Towards efficient
design space exploration of heterogeneous embedded media
systems. In Embedded Processor Design Challenges:
Systems, Architectures, Modeling, and Simulation. Springer,
2002.

[8] J. Teich, T. Blickle, and L. Thiele. An evolutionary approach
to system-level synthesis. In Proc. of the 5th Int. Symposium
on Hardware/Software Codesign, Mar. 1997.

[9] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A
framework for evaluating design tradeoffs in packet
processing architectures. In Proc. of the ACM/IEEE Design
Automation Conference, June 2002.

[10] M. Wall. GAlib: A C++ Library of Genetic Algorithm
Components. Massachusetts Institute of Technology, 1996.

[11] E. Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. PhD thesis, Swiss
Federal Institute of Technology Zurich, 1999.

