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ABSTRACT
Task migration is the transfer of the execution of a process (task)
from one processing element to another. It originates from the mas-
sive deployment of distributed systems in the parallel computing
field to enable dynamic load distribution, fault resilience and to
enhance data access locality. With the development of MultiPro-
cessor System-on-Chip (MPSoC) architectures, the topic of task
migration has recently regained research interest in the embedded
systems domain. In this paper, we present a high-level simulation
framework to study task migration for MPSoC systems. With this
framework, different migration methodologies on different under-
lying hardware systems can be easily and rapidly modeled, simu-
lated and evaluated during the early stages of design. By using this
high-level simulation framework, a designer can study the migra-
tion impact on the overall performance of the system by exploring
different task migration mechanisms (determining what and how to
migrate) or using different migration policies (determining when to
migrate which tasks whereto) in a specific task migration mecha-
nism. Using a number of experiments, we demonstrate the capabil-
ities of our simulation framework.
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1. INTRODUCTION
To fulfil the computation requirements of modern sophisticated

applications, Multi-Processor Systems-on-Chip (MPSoC) architec-
tures have in recent years received much attention in the embed-
ded systems domain. MPSoC systems often require to support an
increasing number of applications and standards, where multiple
applications may concurrently execute and contend for resources.
Consequently, to exploit the full potential and capabilities of such
architectures, the mapping of multi-application workloads onto the
processing elements of the MPSoC becomes increasingly challeng-
ing. This is also due to the fact that the initial task mapping may
need to change at run time for different reasons such as the re-
quirements of supporting application dynamism (the change of ap-
plication execution mode), fault tolerance, load balancing or ther-
mal balancing. For this reason, the concept of task migration has
been gaining research attention in the domain of MPSoC design
[5]. Task migration is the transfer of the execution of a process
(task) from one processing element to another. The concept origi-
nates from the massive deployment of distributed systems (and, in
particular, distributed operating systems) in the parallel computing
domain.

The main idea of task migration is the transfer of task context
(state)1 and its address space between processors [11]. In the do-
main of MPSoC systems, two main aspects should be carefully con-
sidered to support task migration in different architectures, namely
what and how to transfer during migration. Regarding the problem
of what to transfer during migration, it depends on the architecture
of the target system, i.e. homogeneous versus heterogeneous. Dif-
ferent processor types have different ISAs, address widths, register
file sizes, etc. Migration of tasks between heterogeneous cores re-
quires different program codes and task contexts. Even between
homogeneous cores, the data that need to be transferred during mi-
gration varies among different migration mechanisms. The second
problem – how to transfer – is related to the organization of the
memory (shared and/or distributed) and interconnection (bus, NoC,
etc) of the target system. This determines what kind of communica-
tion technique (load/store instructions or message passing) should
be used for task migration.

1The context of a task or a process is the minimal set of data used by
this task/process that must be saved to allow either task interruption
and/or migration at a given instant, and a continuation of this task at
the point it has been interrupted/stopped and at an arbitrary future
instant.



Besides the architecture related task migration mechanism de-
scribed above, the policies of task migration – determining when
to migrate task(s), which task(s) will be migrated and where these
tasks will be migrated to – are also very important. Such poli-
cies may highly depend on the goal of task migration (fault toler-
ance, load balancing, thermal balancing, etc.). To design migration-
enabled MPSoC systems, a system designer needs to be able to
determine what mechanism and policy of task migration are the
best choices for the target system already during the early stages of
design. To this end, this paper presents a system-level simulation
framework that supports the flexible and efficient modelling, simu-
lation and exploration of different task migration mechanisms and
policies in MPSoCs. Using a number of experiments, in which we
study task migration in both shared-memory and message-passing
MPSoC architectures, we also demonstrate the flexibility and capa-
bilities of our simulation framework.

The remainder of this paper is organized as follows. Section 2
introduces several task migration mechanisms. Section 3 provides
a detailed description of our task migration simulation framework.
Section 4 introduces two task migration case studies and presents
their experimental results. Section 5 discusses related work, after
which Section 6 concludes the paper.

2. TASK MIGRATION MECHANISMS FOR
DIFFERENT ARCHITECTURES

In this section, we will introduce several well-known task mi-
gration mechanisms for different hardware architectures. Here,
system architectures can be divided into three categories accord-
ing to the system memory organization: Uniform Memory Access
(UMA) [13], Non-Uniform Memory Access (NUMA) [16] and NO
Remote Memory Access (NORMA) [5, 11].

In a UMA system architecture, all the processors uniformly share
the physical memory. The cost of accessing the memory is the same
for all the processors in the system. A typical example of this ar-
chitecture are the tightly coupled shared memory SMP (Symmet-
ric Multi-Processor) systems, where all the processors run a sin-
gle copy of an operating system that coordinates global activities.
In SMP systems, task migration only needs to transfer the task’s
context between processors, while the address space of the migrat-
ing task does not need to be transferred since it is located in the
shared memory that is shared by all processors. In this case, the
cost of task migration is relatively low compared to the other multi-
processor architectures. In contrast to UMA, the memory access
time in a NUMA architecture depends on the memory location. A
processor can access its own local memory faster than non-local
memory (e.g., memory local to another processor). In this kind of
architecture, besides the task’s context, the address space contents
of the migrating task may also need to be transferred between dif-
ferent memories. Clearly, such task migrations come at the cost of
a performance penalty and increased on-chip communication.

In the two previous types of architectures, processors share a sin-
gle address space (i.e., the memory is physically/logically shared
among processors) and therefore the data transfer of task migra-
tions can be done via load and store instructions. This is, however,
not possible for NORMA architectures where processors have a
private memory (and address space) and do not grant access to
their memory by other processors. In NORMA architectures, the
task migration must therefore be coordinated using messages (i.e.,
message-passing) between processors. As a consequence, the cost
of task migration in NORMA architectures typically can be high
due to the need of transferring the migrating data over relatively
slow, multi-hop communication channels like in a NoC.
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Figure 1: Sesame Framework

For scalability reasons, future MPSoC systems will increasingly
be equipped with distributed memory, i.e., either use NUMA or
NORMA architectures. This means that the impact of task migra-
tion is not negligible with respect to system performance. To reduce
the task migration cost, several task migration mechanisms like the
eager-copy, pre-copy and post-copy [3, 27] have been proposed.
For heterogeneous architectures, as different processor types re-
quires different program code and task contexts, the complexity of
task migration is much higher than for their homogeneous coun-
terparts. State-of-the-art systems solve this through checkpoint-
ing [7, 18, 21] and application-level save-restore mechanisms [7],
while there exists no mechanism that is fully transparent to appli-
cations [14].

3. TASK MIGRATION SIMULATION FRAME-
WORK

To study and evaluate the impact of different task migration sche-
mes on the overall performance of a target system, we have devel-
oped a flexible and efficient system-level simulation framework.
This framework is based on and extends the open-source Sesame
system-level MPSoC simulator [23]. The Sesame modeling and
simulation environment, which is illustrated in Figure 1, facilitates
efficient performance analysis of embedded (media) systems archi-
tectures. It recognizes separate application and architecture mod-
els, where an application model describes the functional behavior
of an application and the architecture model defines architecture re-
sources and captures their performance constraints. After explicitly
mapping an application model onto an architecture model, they are
co-simulated via trace-driven simulation. This allows for evalua-
tion of the system performance of a particular application, underly-
ing architecture, and mapping.

During simulation, the application model issues trace events (read,
write and execute events), which are an abstract representation of
the computational (execute events) and communication (read/write
events) workload imposed on the architecture. These events are
processed by the architecture model to simulate their consequences
in terms of performance and power consumption. The relationship
between the tasks in an application and the hardware resources is
captured by the mapping layer. Before starting a simulation, an
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Figure 2: Extended Sesame’s layered infrastructure

explicit task mapping2 description should be provided to the map-
ping layer. In the original Sesame simulator, this mapping cannot
be changed dynamically during simulation, which evidently limits
the study of task migration mechanisms.

To support the modelling and simulation of task migration in
Sesame, we have modified its structure to resolve the constraint
mentioned above. More specifically, a new middleware layer which
is in charge of run-time task migration has been added to the Sesame
framework. This middleware layer, called the Run-time Task Mi-
gration Middleware (RTMM), removes the direct mapping relation-
ship between applications and hardware resources, as shown in Fig-
ure 2. To coordinate task migration-related activities at the archi-
tecture level on behalf of the RTMM, a Run-time Resource Sched-
uler (RRS) module is provided in the architecture model layer. This
RRS manages the hardware resources either in a centralized or dis-
tributed (in large-scale systems) manner. It takes care of collecting
statistics (e.g., performance of each application, system execution
information, etc.) from the underlying system during the simula-
tion process, triggering the RTMM layer to make a decision when
task migration is needed and sending migration commands to spe-
cific processors based on the decision of the RTMM. To facilitate
the simulation of different task migration mechanisms, we provide
a task migration library that implements several migration micro
instructions as shown in Table 1. Using these micro instructions,
different migration mechanisms can easily be modelled. The first
two instructions are designed for systems that use shared memory
whereas the other two instructions are used for message-passing
systems. In these instructions, the parameter mig_mode is used
to indicate different migration schemes like migrating task code
only, task context only or both. Figure 3 illustrates how the mi-
cro instructions can be used in the RRS to support task migra-
tion for a system with shared memory. After having received the
new mapping scheme calculated by the RTMM, the RRS will start

2The binding of tasks and communications to the underlying hard-
ware resources.

Table 1: Micro instructions provided in the task migration li-
brary

Instruction Parameters

MIG_STORE old_pe, address_shmem, mig_mode, mig_datasize

MIG_LOAD new_pe, address_shmem, mig_mode, mig_datasize

MIG_SEND old_pe, new_pe, mig_mode, mig_datasize

MIG_RECEIVE new_pe, old_pe, mig_mode, mig_datasize

OLD_PE NEW_PE

Global
sharedMEM

RRS
Pseudo code executed on RRS

...

reqTaskMig(statistics); //send req. to RTMM
new_pe = getNewMapping(task_index); 
old_pe = getOldMapping(task_index); 
if (new_pe != old_pe)

MIG_STORE(old_pe, address_shmem, 
mig_mode, mig_datasize); 

MIG_LOAD(new_pe, address_shmem, 
mig_mode, mig_datasize); 

storeNewMapping(task_index,new_pe); 

...

1: mig_store

2: store_data

3: mig_load

4: load_data

Figure 3: A simple example of task migration implementation
on a shared memory system

the task migration process for the task(s) that will be migrated by
issuing the micro instructions according to the migration mech-
anism implemented in the architecture. Here, the MIG_STORE
triggers the storing of all migrating data into shared memory, while
the MIG_LOAD triggers the loading of this data at the destina-
tion processor. For message-passing systems, the MIG_SEND and
MIG_RECEIVE micro instructions will be sent to the processors
from/to which a task is migrated, which will initiate a message-
passing data transfer (realizing the actual migration) between these
two processors.

As mentioned before, task migration can be implemented for dif-
ferent purposes such as a violation of application performance con-
straints, load balancing, fault tolerance and so on. To trigger task
migrations, our framework supports different types of approaches
that can be implemented in different layers, ranging from the ap-
plication level to the architecture level. For example, at application
level, explicit migration check-points can be inserted in the appli-
cation code. In this case, the task migrations are controlled by the
application designer. At the architecture level, each processor could
also issue task migration requests to the RRS, triggered by e.g. the
detection of undesired (execution) behavior like a timing violation,
hardware fault or overheating. Beside these, the RRS can also trig-
ger a task migration based on the statistics it has collected. In our
framework, the task migration process is performed by means of
coordinated actions between the RTMM and RRS. The exact re-
sponsibilities and workflow for each of these two components is
shown in Figure 4. At run time, the RRS will continuously monitor
the execution of applications and collect the running statistics of the
target system. Whenever there is a pre-defined migration condition
detected (e.g., a performance deadline violation), the RRS will send
a task migration request to the RTMM. Currently, our simulation
framework will stall all application processes until the migration
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decision has been taken. The RTMM, after receiving a migration
request from the RRS, will make a migration decision based on
the task migration policy implemented, information of active tasks
and the execution statistics collected by the RRS. Here, the migra-
tion decision includes the information of which task(s) should be
migrated and where the task(s) should be migrated to. It does not
involve information about how the task will be migrated. This is
under the control of the RRS. Given this task migration decision,
the RRS will start the task migration events according to the mi-
gration mechanism that has been implemented using the migration
micro instructions.

Using the extended Sesame simulator, it is possible to evaluate
the impact of task migrations on system performance for different
MPSoC architectures. To achieve this flexibility, the following sup-
port for modelling and simulating different task migration-enabled
architectures is available at each layer.

• Application model layer: Since we are targeting the stream-
ing application domain in this work, applications are mod-
eled using a process network (see e.g. the application model
in Figure 1) which can be implemented in any high level
programming language. To emit events to the architectural
model, the application processes are annotated. By default,
the Sesame framework supports the generation of read, write
and execute events [23]. To support the study of application-
level task migration mechanisms, we have added the possi-
bility to instrument the code of processes such that special
task migration events can be generated, which trigger task
migrations in the RTMM. Besides the (instrumented) appli-
cation source code, a structural application description (using
an XML-based language) is provided to the simulator. This
description includes the topology of the processes in the tar-
get application(s) and the execution parameters of each pro-
cess.

• Mapping layer: This layer determines the mapping of pro-
cesses (i.e. their event traces) onto architecture model com-
ponents by dispatching application events to the correct ar-
chitecture model component, as can be seen in Figure 2. The
mapping also includes the mapping of communications at ap-
plication level onto communication resources in the architec-
ture model. The mapping layer has two additional purposes.
First, the event dispatch mechanism in the mapping layer
provides a variety of static and dynamic policies to sched-
ule application tasks (i.e., their event traces) that are mapped
onto shared architecture model components. Second, the
mapping layer is also capable of dynamically transforming
application events into (lower-level) architecture events to fa-

cilitate flexible refinement of architecture models [23]. In the
extended Sesame simulator, the dispatching of trace events to
architecture components is now controlled together with the
RTMM / RRS tandem. The RTMM forwards events from the
mapping layer to the RRS in the architecture model layer,
where the latter is in charge of actually dispatching the trace
events to the processor component onto which the applica-
tion task in question is currently mapped. The mapping de-
scription that acts as input for this mapping layer includes
the task migration related parameters like the minimal task
context size and compiled task code size.

• RTMM layer: In this layer, the migration policy (algorithm)
is implemented based on the goal of task migration. The
policy defines which task(s) should be migrated and where
the task(s) should be migrated to. The designer can imple-
ment different policies like the task remapping algorithms
proposed in [26, 25] to test which one is the best for the de-
sign goal at hand.

• Architecture model layer: This layer models the (non- func-
tional behavior of the) MPSoC hardware architecture, and
can be generated using a system library that provides the tem-
plate models for different components like processors, mem-
ories, communication channels and interconnects, etc. Also,
designers can add and customise their own system compo-
nents. To support task migration, the RRS component should
be integrated into the architecture model. We also provide a
template RRS implementation. In this template, one could
use the micro instructions as described before to support dif-
ferent task migration schemes based on the target system ar-
chitecture. Besides the architecture model, an architecture
description file should be provided. It describes the structure
of the architecture and includes the non-functional proper-
ties of hardware components like frequency, power, band-
width/latency of communication channels, and so on.

4. TASK MIGRATION CASE STUDIES
In this section, we present two case studies in which we model

task migrations in two very different systems, shown in Figure 5, to
demonstrate the flexibility and wide application scope of our simu-
lation framework. The target applications used in our experiments
belong to the multi-media application domain. Each application
has a (soft) real-time performance constraint which can be used
to trigger task migrations as shown in the first experiment. For
the application and system architecture description, the parameters
needed for simulation are listed in Table 2. If needed, these param-
eters can be calibrated by designers using low(er)-level simulators
or measurements on real systems. We would like to stress that this
paper does not focus on the actual assessment of state-of-the-art
task migration policies, but instead our aim is to demonstrate the
flexibility and wide application scope of our simulation framework.
Therefore, in the two case studies, we have chosen to implement
only relatively simple task migration policies in the RTMM. The
details of each of the two experimental cases will be explained in
the following subsections.

4.1 A Heterogeneous UMA MPSoC

4.1.1 Target application and system architecture
In this experiment, the target application is a Sobel filter for edge

detection in images (frames) which contains 6 processes (including
2 IO processes) and 6 communication channels between processes
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Figure 5: The MPSoC architectures used for the case studies

Table 2: The parameters for application and architecture de-
scription in the simulator

Parameters Explanation
T j

i execution cycles of task i on processor j

CS j
i code size of task i on processor j

TC j
i minimal task context size of task i on processor j

Sm,Sb size of memory m or buffer b in the system
Bm,Bc bandwidth of memory m or comm. channel c
Lm,Lc latency of memory m or comm. channel c

Fk frequency of hardware component k on the system

in the application model. The target MPSoC system is shown in
the left part of Figure 5. In the heterogeneous MPSoC, 5 proces-
sors with different architectures are connected by a bus. A global
memory and a IO processor are shared by these processors. The
RRS has been integrated in the IO processor. The IO processor
can collect application performance statistics like Frame Execution
Time (FET) at the end of each processed frame (i.e., the time be-
tween a frame is read and written by the IO processor). Based on
these statistics, the RRS can trigger a task migration event when
needed. Initially, all processes except the two IO processes in the
Sobel application are mapped onto processor p0 of the heteroge-
neous MPSoC (the IO processes are mapped onto the IO proces-
sor).

4.1.2 Migration mechanism and policy
As the target architecture in this experiment is a heterogeneous

MPSoC with shared memory, the binary code of each task for each
processor might be different. Here, we assume that the compiled
code of each task for each processor is preserved in the global
shared memory. Under this assumption, we have modeled a task
recreation mechanism [11] in this experiment to support task mi-
gration. During task migration, the migrating task will be killed on
the original processor and the task state information will be saved
in global memory. The destination processor will load the binary
code and state information from shared memory to restore the task.
Also, the communication channels connected with the migrating
task will be redirected to the new processor by remapping them.

Regarding the task migration policy in this experiment, we have
modeled the following two algorithms to make the task migration
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Figure 6: Task migration impact on application performance
for the heterogeneous MPSoC

decision: a Random Task Remapping (RTR) which generates a
random mapping for task remapping3, and Task Processor Affin-
ity (TPA) [20] which uses the affinity between tasks and processors
to greedily determine a mapping without considering resource uti-
lization. If the new mapping is different from the initial mapping
mentioned above, then the system will enter the task migration state
and restart the application after the migration process has finished.

4.1.3 Experimental results
In this experiment, we use a single picture as the continuous

input stream of frames for the Sobel application. The migration
trigger in this experiment is a violation of the application perfor-
mance constraint as mentioned before. To this end, we have set a
performance constraint for Sobel, using the Frame Execution Time
(FET) metric, such that it enforces a task migration request after
the first frame has been processed. The migration request is han-
dled by the RTMM, which subsequently applies the implemented
migration policy to make a task migration decision. During this
process, all the tasks of the Sobel application will stall and wait for
the task migration decision. After the migration has finished, the
system continues to process the subsequent frames and monitor the
execution of the application.

Figure 6 shows the experimental results of the migration impact

3RTR randomly decides which task(s) should be migrated and
where the migrating task(s) should be migrated to.
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to the application performance by using different task migration
policies (algorithms) for our heterogeneous MPSoC. The marked
lines labeled as RTR1 and RTR2 are the results of migrating tasks
based on two different migration decisions computed by the RTR
algorithm. The dotted line represents the execution using the initial
mapping and without task migration. In Figure 7, we also show
the task migration overhead for each policy, which includes two
main elements: the computational cost of the task migration de-
cision and the task migration cost itself. The computational cost
of the task migration decision has been measured on a real CPU
and then normalised to the simulation frequency of our simulator.
In Figure 6, we clearly notice the task migration taking place after
the first frame since the higher FET values for the second frame
include the task migration overhead. After the second frame, the
FET values stabilize again, i.e., no further task migrations are trig-
gered. From the results, we can also see that the migration cost
of TPA is the highest among three task migration scenarios. Here,
RTR2 has migrated 2 tasks, whereas RTR1 and TPA both migrated
4 tasks. Consequently, RTR2 has the smallest task migration over-
head overall. However, after migration, the resulting mapping as
derived by TPA clearly shows the best performance.

4.2 A Homogeneous NORMA MPSoC

4.2.1 Target application and system architecture
The applications used in this experiment are three typical multi-

media applications: an M(otion)JPEG encoder, an MP3 decoder,
and a Sobel filter as mentioned in the previous experiment. The
application model of the MJPEG application contains 8 processes
and 18 communication channels, and the MP3 application contains
27 processes and 52 communication channels. In total, there are 41
processes and 76 channels that need to be mapped onto the under-
lying hardware resources.

With respect to the target system in this experiment, the archi-
tecture is shown in the right part of Figure 5. In this system, 8 ho-
mogeneous processors and an IO processor are connected by a 2D
mesh NoC. Similar to the system described in the last experiment,
the RRS has also been integrated into the IO processor. Initially,
we again map all processes except the IO processes onto processor
p0.

4.2.2 Migration mechanism and policy
In this experiment, the target system architecture is a homoge-

neous MPSoC system with private memories connected to the pro-
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Figure 8: Task migration impact to application performance
on the homogeneous MPSoC

cessors (i.e., no remote memory access). As all processors have
the same architecture, a task’s context can be shared among pro-
cessors. Therefore, we have modeled a task replication mechanism
[11] to support task migration in this system. The idea is that each
processor on the system has a replica of all tasks. Only one copy
of a task can be active and running on a specific processor while
the other copies are suspended and reside in memory of the other
processors. When a task migration is needed, the task is suspended
in the source processor and resumed in the destination processor,
using the context of the migrating task. Also, the communication
channels connected to the migrating task will be redirected to the
new processor by the RRS. So, using this migration mechanism,
only the context of the migrating task needs to be migrated between
processors. This greatly reduces the communication overhead of
task migration at the cost of increased memory usage because of
the storage of task copies.

The task migration policies used in this experiment are slightly
different than in the previous experiment. Since the target archi-
tecture is a homogeneous MPSoC, each task has the same task ex-
ecution time on each processor on the system. Consequently, the
TPA algorithm would not be very effective in this case. As a substi-
tute, we have modeled the Energy-aware Iterative multi-application
Mapping (EIM) algorithm from [25], where we have disregarded its
energy constraint.

4.2.3 Experimental results
Figure 8 shows the results of the migration impact to the ap-

plication performance for our homogeneous MPSoC. In this ex-
periment, the three afore-mentioned applications are mapped onto
the target system. For the purpose of results comparison, we also
use the concept of frame to define the workload of applications.
Here, we combine one unit workload (e.g., one picture) of each ap-
plication together as one frame for all applications. In this case,
the frame execution time of multiple applications is defined as the
maximal frame execution time among applications (each applica-
tion processes its own unit of workload). For example, the frame
execution time F of our three target applications for processing one
frame workload is represented as Equation 1.

F = max(Fm jpeg,Fsobel ,Fmp3) (1)

where Fm jpeg, Fsobel represents the frame execution time of pro-
cessing one picture for MJPEG, Sobel respectively and Fmp3 means
the execution time of processing one short piece of encoded MP3
song.
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Figure 9: Task migration cost of algorithm EIM with different
task context size on the homogeneous MPSoC

Similar to the previous experiment, a single input frame will be
reused continuously to act as input stream for each application. In
this experiment, task migration is used for dynamic resource real-
location, and therefore task migration is triggered when the system
workload changes. For example, a new application enters the sys-
tem or an active application finishes and quits the system. In Fig-
ure 8, there is only a single application (MP3) active in the system
during Frame ID ’1’. At the end of this frame, two other applica-
tions, namely Sobel and MJPEG, are activated on the system and
execute from frame ’2’ until ’6’. This means that a task migration
is triggered during Frame ID ’2’, as is clearly visible in Figure 8.
This figure shows the results for both the RTR and EIM migration
decision algorithms. For EIM, the migration impact with differ-
ent task context sizes have been considered (a 1KB and a 32KB
context). From the results shown in Figure 8, we can see that the
applications show poor performance after task migration when ap-
plying RTR. This can be explained by the fact that the communica-
tion costs of the NoC are high, especially for the applications that
are communication intensive. In our case, it is better to map the
MJPEG and Sobel applications each onto a single processor to re-
duce the communication cost. However, the RTR algorithm will
generate mapping decisions without considering the communica-
tion cost at all. On the other hand, by applying the EIM algorithm,
the final mapping has good performance behavior. Moreover, com-
paring the EIM-1KB and EIM-32KB curves, it can be seen that the
application performance during task migration (Frame ID ’2’) can
be substantially influenced by the task context size. To study how
the task migration overhead is affected by the size of the migrat-
ing data in more detail, we have measured the migration overhead
for different task context sizes. The results of this experiment are
given in Figure 9. Clearly, the cost of transferring task context on
our target homogeneous system linearly increases with the size of
task context. However, in Figure 9, the task migration overhead
also includes the computation cost of the EIM algorithm. From
this figure, we can see that the task migration cost increases slowly
with the task context size when it is under 8KB. However, when
the task context size is bigger than 8KB, the task migration cost
has a near linear relationship with the task context size. The reason
is that when the task context size is small (like below 8KB in our
test case) the task migration cost is dominated by the computation
cost of the EIM algorithm. However, when the task context size
increases to a certain amount, the cost of transferring task context
dominates the task migration cost.

5. RELATED RESEARCH
Task migration has been traditionally studied in distributed sys-

tems for dynamic load balancing [29, 15, 8]. However, with the in-
creasing popularity of MPSoCs in modern embedded systems, task
migration has also gained research attention in this domain and has
been studied for different purposes. For the purpose of thermal bal-
ancing, Cuesta et al. [10] provide three task migration polices to
optimize the thermal profile of MPSoCs by dynamically balanc-
ing the weight of the on-chip thermal gradients, maximum tem-
perature and effect of the underlying floorplan on heat dissipation
properties of each core. In the work of [19], task migration-based
thermal balancing policies are proposed to modulate power distri-
bution between processing cores to achieve temperature flattening.
The authors in [12] use proactive task migration among neighbor-
ing cores to balance the thermal profile for many-core systems.
For the purpose of load balancing, in [5], task migration combined
with intelligent initial placement are used to maintain load balanc-
ing in the MPSoC system. The authors in [6] analyze the impact
of task migration in a NoC based MPSoC system. In their work,
task migration is triggered after the resource allocation heuristic
which tries to balance the system on demand is executed. To sup-
port fault tolerance on MPSoC systems, task migration is also a
required technique [17, 9]. The idea in [17] is to improve depend-
ability of the system by exploiting the migration method in case
of run-time faults in the processing cores. In [9], a system-level
fault-tolerance technique for application mapping, which aims at
optimizing the entire system performance and communication en-
ergy consumption, is proposed. To this end, application compo-
nents running on a faulty core are migrated altogether to available
non-employed spare cores.

In the context of task migration mechanisms supported in MP-
SoC systems, quite some work has been done on task migration at
application level, middleware level and architecture level. In [5],
the authors propose a user-managed migration scheme based on
code checkpointing and user-level middleware support as an ef-
fective solution for many MPSoC application domains. The work
in [1, 24] implements task migration in a middleware layer which
is built on top of the uClinux operating system running on a pro-
totype multicore emulation platform. To support heterogeneity in
task migration, [22] provides a middleware, called Low Level Vir-
tual Machine (LLVM), to postcompile the tasks at runtime depend-
ing on their target processor. At the architecture level, [2] discuss
the possible architectural support for MPSoC systems to allow dy-
namic task migration. In [4], the authors propose a hybrid memory
organization for NoC-based MPSoC systems as the way to mini-
mize the energy spent during the code transfer when task migration
or dynamic task allocation needs to be performed.

With regard to task migration simulation, in [28], the authors ex-
tended Sesame to have a system-level simulator for run-time task
mapping in the context of reconfigurable systems. In their simula-
tor, tasks can be migrated between a general purpose processor and
a reconfigurable accelerator which enables the system to be more
efficient in terms of various design constraints such as performance,
chip area and power consumption. However, no details of the task
migration implementation are shown in this paper. Different with
this simulator, our proposed simulator provides a general purpose
task migration framework which is not limited by the target archi-
tecture, the task migration purpose and task migration mechanism.
To the best of our knowledge, this paper presents the first effort in
the direction of establishing a generic simulation infrastructure that
allows for the efficient exploration of a wide range of migration
mechanisms and policies in MPSoCs.



6. CONCLUSION
Task migration is a useful technique that can be used in MPSoC

systems for different purposes such as load balancing, thermal bal-
ancing, fault tolerance, improving system energy efficiency and so
on. Therefore, investigating the suitability of specific task migra-
tion schemes for a target system architecture is an important design
step that needs to be addressed as soon as the early stages of design.
For this purpose, in this paper, we have presented a high-level simu-
lation framework that allows for simulating and exploring different
task migration mechanisms and policies for a wide range of differ-
ent system architectures. Using two case studies, we have demon-
strated the flexibility and wide application scope of our simulator.
To this end, the case studies evaluate different task migration poli-
cies and mechanisms for vastly different target architectures. The
experiments point out that our task migration simulator can provide
designers with useful insights on the suitability of a specific migra-
tion scheme for the target system and allows for exploring different
migration policies.
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