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Propositional +-calculus is an extension of the propositional modal
logic with the least fixpoint operator. In the paper introducing the logic
Kozen posed a question about completeness of the axiomatisation which
is a small extension of the axiomatisation of the model system K. It is
shown that this axiomatisation is complete. ] 2000 Academic Press

1. INTRODUCTION AND SUMMARY

We consider +-calculus as defined by Kozen [4]. This is the logic obtained from
modal logic by adding the least fixpoint operator: +X .:(X). The intended models
of the logic are Kripke structures. Kozen's axiomatisation consists of the
axiomatisation of the modal system K together with one axiom and one rule
characterising the least fixpoint operator:

:(+X .:(X)) O +X .:(X)
:(.) O .
+X .: O .

The completeness theorem considered here is sometimes called weak completeness
because it deals with validity relation; it says that every valid formula is provable.
Strong completeness refers to an axiomatisation of the semantic consequence rela-
tion. It is not possible to have finitary strongly complete axiomatisation for the
+-calculus because the compactness theorem fails for the logic. In the following
completeness means weak completeness and provability means provability in
Kozen's system unless explicitly stated otherwise.

In [4] Kozen showed that the axiom system proves negations of all unsatisfiable
formulas of a special kind called aconjunctive formulas. In [10] another finitary
axiomatisation was proposed and proved to be complete for the whole +-calculus.
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This solved one part of the problem posed in [4] but the question of the complete-
ness of the original axiomatisation remained still open. We give an affirmative
answer to this question.

There are other reasons, apart from curiosity, to investigate the problem of the
completeness of Kozen's system. The axiomatisation proposed in [10] makes essen-
tial use of the small model theorem for the +-calculus; this makes it impossible to
use it for extensions of the logic not enjoying the finite model theorem. The other
reason is that Kozen's system is very natural, one may say as natural as the notion
of Kripke structures. Hence, it is good to know that the class of Kripke structures
is a complete subclass of a quasi-variety defined by Kozen's system.

Let us review some methods used in previous approaches to the completeness
problem. The first step is a tableau method of model construction of Streett and
Emerson [9]. For a given formula one constructs a tableau; if the formula is
satisfiable then one can construct a model from a part of this tableau. It was shown
in [7] that if the initial formula is unsatisfiable, and one cannot find a model in the
tableau, then one can construct for the formula another tableau-like structure called
a refutation. In [10] a stronger axiomatisation was proposed and it was shown
that:

(a)
If there is a refutation for . then c. is provable in the stronger

system.

This proof does not work for Kozen's axiomatisation and it does not look like any
simple modification of the argument can help here.

It is also possible to look at Kozen's proof for aconjunctive formulas from the
point of view of refutations. One can introduce a notion of thin refutation, which
is a refutation where reductions of conjunctions are restricted. A slight extension of
Kozen's arguments gives us:

(b)If there is a thin refutation for . then c. is provable.

Thin refutations suggest the notion of weakly aconjunctive formulas. These formulas
have the property that every refutation for such a formula is thin. As the name
indicates, all aconjunctive formulas are weakly aconjunctive. Below we will use both
fact (b) and the notion of weakly aconjunctive formulas.

Let us now give an outline of the proof presented here. As we noted above it
seems very hard to directly improve the statement (b) by trying to enlarge the class
of refutations for which it holds. On the other hand, by fact (b) in order to show
completeness it is enough to prove:

(c)
For every formula . there is a semantically equivalent acon-
junctive formula .̂ such that . O .̂ is provable.

This cannot work because it is not true that every formula is equivalent to an acon-
junctive formula. This obstacle can be avoided if we allow weakly aconjunctive
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formulas but still these formulas are not particularly easy to work with. It would
certainly save us some work if we first tried to find some class of formulas with
better properties.

We will prove a statement like (c) but instead of aconjunctive formulas we will
use disjunctive formulas [2]. These formulas have several useful properties. First,
tableaux for disjunctive formulas have very simple structure. Next, the proof of the
fact that negation of every unsatisfiable disjunctive formula is provable is much
easier than for weakly aconjunctive formulas (see Theorem 24). The third important
property is that for every formula there is a semantically equivalent disjunctive for-
mula. This last statement can be even strengthened as we will describe in the next
paragraph.

The properties stated above suggest that instead of proving (c) we should try to
prove:

(d)
For every formula . there is a semantically equivalent disjunctive

formula .̂ such that . O .̂ is provable.

The tool we will use to construct a proof of . O .̂ is tableau equivalence. As we
have mentioned above, models for a formula can be constructed from a tableau for
the formula. We will say that two tableaux are equivalent if they are essentially the
same from the perspective of the model construction procedure. This induces equiv-
alence on formulas which is stronger than semantical equivalence because there
exist semantically equivalent formulas which do not have equivalent tableaux. Now
it was shown in [2] that for every formula there is a disjunctive formula with an
equivalent tableau. The use of tableau equivalence is important because it allows us
to replace semantical equivalence with an equivalence which is much finer and syn-
tactically defined.

Another important observation is that we can prove (d) in case . is a weakly
aconjunctive formula. This follows from:

(e)
If : is a weakly aconjunctive formula, $ is a disjunctive formula,
and the two formulas have equivalent tableaux then : O $ is
provable.

Observe that already with this statement we increase the class of formulas which
are known to be provable. We now know that some formulas of the form
c(: 7c$) are provable, where c$ may not be a weakly aconjunctive formula.

Let us try to use (e) to prove (d) by induction on the structure of .. This way
we will see what we can do and where the problems are.

Suppose .=&X .:(X). By induction assumption we have a disjunctive formula
:̂(X) and a proof of :(X) O :̂(X). Hence, &X .:(X) O &X . :̂(X) is provable. Because
:̂(X) is a disjunctive formula, &X . :̂(X) is a weakly aconjunctive formula although
it may not be a disjunctive formula. Let .̂ be a disjunctive formula with a tableau
equivalent to a tableau for &X . :̂(X). By (e) we have a proof of &X . :̂(X) O .. So
. O .̂ is provable.
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The problems come only in one case when .=+X .:(X). This is because +X . :̂(X)
may not be a weakly aconjunctive formula. Fortunately, by the fixpoint rule, to
prove +X . :̂(X) O .̂ it is enough to prove :̂(.̂) O .̂. Formula :̂(.̂) is weakly acon-
junctive but this time we meet another problem. There may be no tableau for :̂(.̂)
which is equivalent to a tableau for .̂. This should not come as a big surprise as
the notion of tableau equivalence is very restrictive; it would be rather surprising
if it worked all the way. We remedy this by introducing a weaker relation between
tableaux which we call tableau consequence. It turns out to be a relation which
refines semantical consequence.

We prove that there is a tableau for :̂(.̂) of which a tableau for . is the conse-
quence. On the other hand the notion of tableau consequence is still strong enough
to show a statement similar to (e):

(f)
If : is a weakly aconjunctive formula, $ is a disjunctive formula,
and a tableau for $ is a consequence of a tableau for : then : O $
is provable.

This way we obtain a proof of :̂(.̂) O .̂ and hence also a proof of . O .̂.
The plan of the paper is as follows. We start by defining the +-calculus and some

auxiliary notions like positive guarded formulas, binding function, or (a � 9) con-
struct. In the next section we recall the results from [2] which we will need here.
The notions of tableau equivalence and disjunctive formula are introduced there.
Next, we present Kozen's axiomatisation of the logic and show some simple proper-
ties of it. The following section deals with weakly aconjunctive formulas. The next
section is devoted to the properties of the tableau consequence relation. The last
section gives the inductive proof of (d).

2. PRELIMINARY DEFINITIONS

Let Prop=[ p, q, ...] be a set of propositional letters, Var=[X, Y, ...] be a set of
variables, and Act=[a, b, ...] be a set of actions. Formulas of the +-calculus over
these three sets are defined by the following grammar:

F :=� | = | Var | Prop | cF | F 6F | F 7 F |

(Act) F | [Act] F | + Var .F | & Var .F.

Additionally we require that in formulas of the form +X .:(X) and &X .:(X),
variable X occurs in :(X) only positively, i.e., under an even number of negations.

We will use _ to denote + or &. Formulas will be denoted by lowercase Greek
letters. Uppercase Greek letters will denote finite sets of formulas. We write : O ;
for c: 6 ;. For a finite set of formulas 1 we denote by � 1 the conjunction of for-
mulas in 1. Similarly � 1 denotes the disjunction of formulas in 1. As usual the
conjunction of the empty set is true and the disjunction of the empty set is false.
Propositional constants, variables, and their negations will be called literals.
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Formulas are interpreted in Kripke structures M=(S, R, \) , where S is a non-
empty set of states, R: Act � P(S_S) is a function assigning a binary relation on
S to each action in Act, and \: Prop � P(S) is a function assigning a set of states
to each propositional letter in Prop.

The meaning of a formula in a model is a set of states where it is true. For a
given model M and a valuation V: Var � P(S), the meaning of a formula :,
denoted &:&M

V , is defined by induction on the structure of : by the following clauses
(we will omit superscript M when it causes no ambiguity):

&�&V =S &=&V=<

&X&V =V(X)

&p&V =\( p)

&c:&V =S&&:&V

&: 7 ;&V =&:&V & &;&V

&: 6 ;&V =&:&V _ &;&V

&(a) :&V =[s: _t . (s, t) # R(a) 7 t # &:&V]

&[a] :&V =[s: \t . (s, t) # R(a) O t # &:&V]

&+X .:(x)&V =�[T�S : &:&V[T�X] �T]

&&X .:(X)&V =�[T�S : T�&:&V[T�X]].

Sometimes we will write M, s, V < : instead of s # &:&M
V .

Definition 1 (Positive, guarded formulas). We call a formula positive iff all
negations in the formula appear only before propositional constants and free
variables.

The variable X in +X .:(X) is called guarded iff every occurrence of X in : is in
the scope of some modality operator: (a) or [a]. We say that a formula is guarded
iff every bound variable in the formula is guarded.

Proposition 2 (Kozen). Every formula is equivalent to a positive guarded
formula.

Proof. Let . be a formula. We first show how to obtain an equivalent guarded
formula. The proof proceeds by induction on the structure of the formula with the
only nontrivial cases being fixpoint constructors. We present here the case for the
least fixpoint. The case for the greatest fixpoint is similar.

Assume that .=+X .:(X) and :(X) is a guarded formula. Suppose X is
unguarded in some subformula of :(X) of the form _Y .;(Y, X). By the assump-
tion, the variable Y is guarded in _Y .;(Y, X). We can use the equivalence
_Y .;(Y, X)=;(_Y .;(Y, X), X) to obtain a formula with all unguarded occurrences
of X outside the fixpoint operator. This way we obtain a formula equivalent to
:(X) with all unguarded occurrences of X not in the scope of a fixpoint operator.
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Now using the laws of classical propositional logic we can transform this formula
to a conjunctive normal form (considering fixpoint formulas and formulas of the
form (a) # and [a] # as propositional constants). This way we obtain a formula

(X6 :1(X)) 7 } } } 7 (X 6 :i (X)) 7 ;(X), (1)

where all occurrences of X in :1(X), ..., ai (X), ;(X) are guarded. Observe that some
of :j (X) may be just = and ;(X) may be �. The variable X occurs only positively
in (1) because it did so in our original formula. Formula (1) is equivalent to

(X 6 (:1(X) 7 } } } 7 : i(X))) 7 ;(X).

We will show that +X . (X 6:� (X)) 7 ;(X) is equivalent to +X .:� (X) 7 ;(X). It is
obvious that

(+X .:� (X) 7 ;(X)) O (+X . (X7 :� (X)) 7;(X)).

Let # stand for +X .:� (X) 7 ;(X). To prove another implication it is enough to
observe that # is a pre-fixpoint of +X .(X 6 :� (X)) 6 ;(X) as the following calcula-
tion shows:

(# 6 :� (#)) 7 ;(#) O

((:� (#) 7 ;(#)) 6 :� (#)) 7 ;(#) O

:� (#) 7 ;(#) O #.

If . is a guarded formula then we use dualities of the +-calculus,

c(: 6 ;)=c: 7 c; c(: 7 ;)=c: 6 c;

c(a) :=[a]c: c[a] :=(a)c:

c+X .:(X)=&Xc:(cX) c&X .:(X)=+X .c:(cX),

to produce an equivalent positive formula. It is easy to see that it will be still a
guarded formula. K

Next we introduce some tools which allow us to deal with occurrences of subfor-
mulas of a given formula. These tools are very similar to those used in [4] or [8].
We would like to have a different name (which will be a variable) for every fixpoint
subformula of a given formula. We will also introduce a notion of a binding
function which will associate subformulas to names.

Definition 3 (Binding). We call a formula well-named if every variable is
bound at most once in the formula and free variables are distinct from bound
variables. For a variable X bound in a well-named formula : there exists the unique
subterm of : of the form _X .;(X), from now on called the binding definition of X
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in : and denoted D:(X). We will omit subscript : when it causes no ambiguity. We
call X a &-variable if _=&, otherwise we call X a +-variable.

The function D: assigning to every bound variable its binding definition in : will
be called the binding function associated with :.

Remark. Every formula is equivalent to a well-named one which can be
obtained by some consistent renaming of bound variables. The substitution of a for-
mula ; for all free occurrences of a variable X in :, denoted :[;�X], can be made
modulo some consistent renaming of bound variables of ;, so that the formula
:[;�X] so obtained is still well-named.

Definition 4 (Dependency order). Given a formula :, we define the dependency
order � : on the bound variables of : as the least partial order relation such that
if X occurs free in D:(Y) then X� : Y. We will say that a bound variable Y depends
on a bound variable X in : when X� : Y.

Example. In case :=+X .(a) X 6 &Y .(b) Y, variables X and Y are incom-
parable in the �: ordering. On the other hand, if : is +X .&Y .(a)X6+Z .(a)(Z6Y)
then X� : Z.

Definition 5 (Expansion). Let : be a formula with an associated binding func-
tion D: . For every subformula ; of : we define the expansion of ; with respect to
D: as

([;]) D:=;[D:(Xn)�Xn] } } } [D:(X1)�X1],

where the sequence (X1 , X2 , ..., Xn) is a linear ordering of all bound variables of :
compatible with the dependency partial order, i.e., if Xi�: Xj then i� j.

Definition 6. We extend the syntax of the +-calculus by allowing a new con-
struct of the form (a � 9), where a is an action and 9 is a finite set of formulas.
As for its semantics, we will consider such a formula to be an abbreviation of the
formula �[(a) �: � # 9] 7 [a]� 9.

Remark. By itself the (a � 9) construction is nothing but a way to hide some
conjunctions. This construct arises when one tries to find a notion of automata
corresponding to the +-calculus that is able to cope with potentially unbounded
branching. In our case, we use this construction to provide a more symmetric rule
for reducing modalities. It also makes the definition of a special conjunction
(Definition 25) more natural. With this one construct it is possible to express both
[a] and (a) modalities. A formula [a] � is equivalent to (a � <) 6 (a � [�])
and a formula (a) � is equivalent to (a � [�, �]). All the notions from this sec-
tion such as guarded formula and binding function extend to formulas with this
new construct.

Definition 7 (Terminal formulas). A formula of the form (a � <) will be called
a terminal formula because its meaning is that there are not states reachable by
action a from a given state.
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Proviso. If not otherwise stated all formulas are assumed to be well named,
positive, and guarded and to contain (a � 9) construct instead of (a) � and [a] �
modalities. By observations stated above, this is not a restriction as far as semantics
is concerned. As we will mention later every formula is provably equivalent to a
formula of this kind.

3. TABLEAU EQUIVALENCE AND DISJUNCTIVE FORMULAS

In this section we recall results from [2] which we are going to use later on. We
define the notions of tableau and tableau equivalence. It turns out that if two
tableaux are equivalent then the formulas in the roots of the tableaux are semanti-
cally equivalent. In spite of the fact that the implication in the other direction does
not hold, tableau equivalence turns out to be a very handy tool. Next we define a
notion of disjunctive formula. Some of the properties of these formulas are dis-
cussed in [2]. Here we will recall only one result: for a given tableau which can be
presented as a finite graph one can construct a disjunctive formula with an equiv-
alent tableau.

Definition 8 (Tableau rules). For a formula . and its binding function D. we
define the system of tableau rules S. parametrised by . or rather its binding func-
tion. The system is presented in Fig. 1 (we use [:, 1] as a shorthand for [:] _ 1).

Remark. (1) We see applications of the rules as a process of reduction. Given
a finite set of formulas 1 that we want to derive, we look for the rule the conclusion
of which matches our set. Then we apply the rule and obtain the assumptions of
the instance of the rule in which 1 is the conclusion.

(2) There is no rule for reducing formulas of the form (a) . or [a] .
because we assume that these formulas are replaced by equivalent formulas using
the (a � 9) notation.

(3) The rule (mod) has as many assumptions as there are formulas in the sets
9, for which, (a � 9) # 1. For example,

[.1 , .3] [.2 , .3] [.1 6 .2 , .3] [�1] [�2]
[(a � [.1 , .2]), (a � [.3]), (b � [�1 , �2])]

is an instance of the rule. We will call a son labelled by an assumption obtained by
reducing and action a a (a)-son. In our example, if a node n of a tableau is labelled
by the conclusion of the rule then its son labelled by [.1 , .3] is a (a)-son of n
and a son labelled by [�1] is a (b)-son of n.

Definition 9 (Tableaux). Tableau for a formula . is a pair (T, L) , where T is
a tree and L is a labelling function such that:

1. The root of T is labelled by [.].

2. The sons of any internal node n are created and labelled according to the
rules of the system S.. Additionally, we require that the rule (mod ) is applied only
when no other rule is applicable.
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FIG. 1. The system S..

As our tableaux may be infinite we will be interested not only in the form of the
leaves but also in the internal structure of tableaux. We are now going to dis-
tinguish some nodes of tableaux and define a notion of trace which captures the
idea of a history of a regeneration of a formula.

Definition 10 (Modal and choice nodes). Leaves and nodes where reduction of
modalities is performed, i.e., the rule (mod) is used, will be called modal nodes. The
root of the tableau and sons of modal nodes will be called choice nodes.

If . is a guarded formula then the sequence of all the choice nodes on the path
of a tableau for . induces a partition of the path into finite intervals beginning in
choice nodes and ending in modal nodes. We will say that a modal node m is near
a choice node n iff they are both in the same interval, i.e., in the tableau there is
a path from n to m without an application of the rule (mod ). Observe that in some
cases a choice node may be also a modal node.

Definition 11 (Trace). Given a path P of a tableau T=(T, L) , a trace on P

will be a function Tr assigning a formula to every node in some initial segment of
P (possibly to all of P), satisfying the following conditions:

v If Tr(m) is defined then Tr(m) # L(m).

v Let m be a node with Tr(m) defined and let n # P be a son of m. If a rule
applied in m does not reduce the formula Tr(m) then Tr(n)=Tr(m). If Tr(m) is
reduced in m then Tr(n) is one of the results of the reduction. This should be clear
for all the rules except possibly for (mod ). If m is a modal node and n is labelled
by [�] _ [� %: (a � %) # 1, %{9] for some (a � 9) # L(m) and � # 9, then
Tr(n)=� if Tr(m)=(a � 9) and Tr(n)=� % if Tr(m)=(a � %) for some
(a � %) # 1, %{9. Traces from all other formulas end in the node m.

Definition 12 (+-trace). We say that there is a regeneration of a variable X on
a trace Tr on some path of a tableau for . if for some node m and its son n on
the path Tr(m)=X and Tr(n)=:(X), where D.(X)=_X .:(X).

We call a trace a +-trace iff it is an infinite trace (defined for the whole path) on
which the smallest variable (with respect to � . ordering) regenerated infinitely
often is a +-variable. Similarly, a trace will be called a &-trace iff it is an infinite
trace where the smallest variable which regenerates infinitely often is a &-variable.
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Remark. Every infinite trace is either a +-trace or a &-trace because all the rules
except regenerations decrease the size of formulas and formulas are guarded; hence,
every formula is eventually reduced.

3.1. Tableau Equivalence

The main result of this subsection is Theorem 19 which says that tableau equiv-
alence refines semantical equivalence. We start by characterising satisfiability of a
formula in a state of a structure by means of markings of a tableau of the formula.

Definition 13 (Marking). For a tableau T=(T, L) we define its marking
with respect to a structure M=(S, R, \) and state s0 to be a relation M�S_T
satisfying the following conditions:

1. (s0 , r) # M, where r is the root of T.

2. If some pair (s, m) belongs to M and a rule other than (mod) was applied
in m, then for some son n of m, (s, n) # M.

3. If (s, m) # M and the rule (mod ) was applied in m then for every action a
for which exists a formula of the form (a � 9) in L(m):

(a) for every (a)-son n of m there exists a state t such that (s, t) # R(a)
and (t, n) # M.

(b) for every state t, such that (s, t) # R(a), there exists a (a)-son n of m
such that (t, n) # M.

Definition 14 (Consistent marking). Keeping the notation from Definition 13,
we say that a marking M of T is consistent with respect to M, s, Val iff it satisfies
the following conditions:

local consistency for every modal node m and state t, if (t, m) # M then M, t,
Val <2, where 2 is the set of all the literals occurring in L(m),

global consistency for every path P=n0 , n1 , ... of T such that for every
i=0, 1, ..., there exist si with (si , ni) # M there is no +-trace on P.

Theorem 15. A formula . (satisfying our proviso at the end of Section 2) is
satisfied in a structure M, state s, and valuation Val iff there is a tableau T for .
and a marking M of T consistent with M, s, Val.

Proof. First we introduce notions of a signature and &-signature similar to that
considered by Streett and Emerson [9]. These notions come from the characterisa-
tion of fixpoint formulas by means of transfinite chains of approximations.

In order to describe these approximations we introduce two new constructs,
+{X .:(X) and &{X .:(X), where { is an ordinal, with the following semantics:

�� �+0X .:(X)�=<, �&0X .:(X)�=S,

�� �_{+1X .:(X)�=&:(X)&Val[�_{X .:(X)��X] (_ stands for + or &),

�� �+{X .:(X)�=�{$<{ �+{$X .:(X)�, for { limit ordinal,

�� �&{X .:(X)�=�{$<{ � &{$X .:(X)�, for { limit ordinal.
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With these definitions we have:

�+X .:(X)�=.
{

�+{X .:(X)�

�&X .:(X)�=,
{

�&{X .:(X)�.

We extend the notion of binding function from Section 2, by allowing values of
the form _{X .:(X) (as before _ stands for + or &). The concept of expansion ([:]) D

extends immediately.

Definition 16. Let us take a formula ; and a binding function D defined for
all the variables occurring in ;. Let P be a linearisation of the dependency order
between the variables in the domain of D. Let U1 , U2 , ..., Ud+ (V1 , ..., Vd &) be all the
+-variables (&-variables, respectively) from the domain of D listed according to P
ordering.

If the formula ([;]) D is satisfied in a state s of a model M with a valuation Val
then we can define a signature of ; in s, Sig(;, s), as the least, in the lexicographical
ordering, sequence of ordinals ({1 , ..., {d+) such that M, s, Val <([;])D$ , where D$
is a binding function constructed from D by replacing, for each i=1, ..., d +, i th
+-variable definition D(Ui)=+X .:i (X) by D$(Ui)=+{iX .:i (X).

If the formula ([;]) D is not satisfied in a state s of a model M with a valuation
Val then we can define a &-signature of ; in s, &Sig(;, s), as the least, in the
lexicographical ordering, sequence or ordinals ({1 , ..., {d &) such that M, s,
Val <% ([;]) D$ , where D$ is a definition list constructed from D by replacing, for
each i=1, ..., d &, i th &-variable definition D(Vi)=&X .:i (X) by D$(Vi)=&{iX .: i (X).

Remark. Of course, signature of a formula depends not only on a state but also
on a valuation and a binding function. This is not taken into the account in our
notation. These parameters will be always clear from the context.

It can be shown that signatures behave nicely with respect to formula reduction,
namely:

Lemma 17. Let s be a state of a model M, let Val be a valuation, let D be a
definition list with some linear ordering P on its domain as in the definition of
signature. For all formulas :, ;, +X .:(X), &X .:(X) such that every variable occurring
in them belongs to the domain of D the following holds:

�� If M, s, Val <([: 7 ;]) D then Sig(: 7 ;, s)=max(Sig(:, s), Sig(;, s)).

�� If M, s <([: 6 ;]) D then Sig(: 6;, s)=Sig(:, s) or Sig(: 6 ;, s)=
Sig(;, s).

�� If M, s <([(a � 8)]) D then (i) for every formula . # 8 there is a state t
such that (s, t) # R(a) and Sig(., t)�Sig((a � 8), s), (ii) for every state t such that
(s, t) # R(a), Sig(� 8, t)�Sig((a � 8), s).

�� If M, s <([&X .:(X)]) D and D(V)=&X .:(X) then Sig(&X .:(X), s)=
Sig(V, s).
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�� If M, s <([+X .:(X)]) D and D(Ui)=+X .:(X) is the ith (in the P ordering)
+-variable in D then the prefixes of length i&1 of Sig(+X .:(X), s) and Sig(Ui , s) are
equal.

�� If M, s <([W])D and D(W)=_X .:(X) then Sig(W, s)=Sig(:(W), s) if W
is a &-variable. If W is the i th +-variable then the second signature is smaller and the
difference is at the position i.

Similarly for &-signatures but with interchanged role of + with &, conjunction with
disjunction and the dual statement in (a � 8) case.

Proof. We will consider only the last case. Suppose M, s <([Ui]) D , where Ui is
the i th +-variable in our linear ordering P of variables.

Let D(Ui)=+X .:i (X). Recall that P extends the dependency order; hence, only
variables P -smaller than Ui can appear in :i (X). Let Sig(Ui , s)=({1 , ..., {n) and let
D$ be a binding function obtained from D by replacing the j th +-variable definition
D(Uj)=+X .:j (X) by D(Uj)=+{jX .: j (X) for every j=1, ..., n. Let us denote
([: i (X)]) D$ by ;(X).

It should be clear that the signature of :i (+X .:i (X)) is the same as the signature
of +X .:i (X). This means that the signatures of Ui and :i (Ui) are the same on posi-
tions smaller than i. From the definition of the signature we have M, s <+{iX .;(X).
Observe that {i must be a successor ordinal. Hence M, s <;(+{i&1X .;(X)), which
implies the thesis of the lemma. K

Proof of Theorem 15 O . Let us first focus on the left to right implication. Sup-
pose that . is satisfied in a state s of a structure M with a valuation Val. Let T

be a tableau for .. We will construct a consistent marking M of T with respect to
M, s, Val.

v We put the pair consisting of s and the root of T into M.

v If (s, n) # M and the unary rule was applied in n then we put (s, n$) into M,
for n$ the son of n.

v Suppose (s, n) # M and the rule (or) was applied in n:

[:, 1] [;, 1]
[: 6 ;, 1]

.

Node n has two sons, n: and n; , labelled by the obtained assumptions. We put the
pair (s, n:) it into M if Sig(:, s)<Sig(;, s); otherwise we put (s, n;) into M.

v Suppose (s, n) # M and the rule (mod) was applied in n. If for some
(a � 8) # L(n), . # 8 and t with (s, t) # R(a) we have Sig(., t)�Sig((a � 8), s)
then we put the pair (t, n.) into M, where n. is the a-son of n containing ..

Observe that by the construction for every (s, n) # M we have M, s, Val <L(n).
From this and Lemma 17 it follows that M is a marking. This observation also
implies that M is a locally consistent marking.

Let us check the global consistency condition of the marking. Let P=n1 , n2 , ...
be a path of T such that for every node n of P there is a state s of M with
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(s, n) # M. Construct a sequence of states s1 , s2 , ... such that for all i=1, ...,
(si , ni) # M and (si , n i) is the reason for the pair (si+1 , n i+1) to be in M; in other
words (si+1 , ni+1) # M because of one of the above rules for constructing the
marking.

Suppose on the contrary that there is a +-trace :1 , :2 , ... on P. Let Uk be the
smallest variable regenerated infinitely often on this trace; of course it must be
+-variable. Consider the sequence of signatures: [Sig(si , :i)]i # [1, ...] . These are
defined because M, si , Val < L(ni). From the assumption that Uk is the smallest
variable regenerated infinitely often it follows that after some initial part of the
sequence the signatures do not increase on positions 1, ..., k. Moreover, each time
k is regenerated the signature of a node where it happens decreases at the position
k. This is a contradiction with the fact that lexicographic ordering on k-tuples of
ordinals is well ordering.

Proof of Theorem 15 o . To prove the theorem in the direction from right to
left let us assume that there is a tableau T for . and its marking M consistent with
respect to M, s, Val. Assume conversely that M, s, Val <% .. We will show that this
assumption leads to a contradiction. We will show that there must be a +-trace on
a path of T such that for every node n of it there is a state s with (s, n) # M.

Suppose that we have constructed this hypothetical trace up to a node n, formula
: # L(n) is the last formula of it, and s is a state such that (s, n) # M and M, s,
Val <% :. We proceed according to the rule which was applied in n.

v Suppose the rule is unary. If it was applied to : then the next element of the
trace is the result of a reduction of :; otherwise, the next element is the formula :
itself. In the case the (and) rule was applied to :=#1 7 #2 , choose #1 if &Sig(#1 , s)
is smaller than &Sig(#2 , s) or #2 otherwise. It is clear that the new last element of
the trace is not satisfied in s.

v If the rule (or) was applied in n then choose a son n$ of n, s.t. (s, n$) # M(n$).
The next element of the trace will be the result of a reduction of : which appears
in n$ or : itself if : was not reduced by this application of the rule.

v If the rule (mod ) was applied in n then by the definition of a consistent
marking : cannot be a literal or a terminal formula. Hence, it is a formula of the
form (a � 8) with 8{<. In this case either:

1. There is a formula . # 8 such that every t with (s, t) # R(a) we have
t <% . and &Sig(., t)� &Sig((a � 8), s). In this case we choose a son n$ of n labelled
by [.] _ [�%: (a � %) # L(n), %{8]. For the next state we take a state t such that
(t, n$) # M.

2. There is a state t, s.t. (s, t) # R(a) and t <% � 8 with &Sig(� 8, t)�
&Sig((a � 8), s). In this case take a son n$ of n such that (t, n$) # M. Our next
formula is � 8 or some � # 8 depending on which one appears in L(n).

Using arguments similar to those in the proof of the left to right implication one
can easily prove that the constructed trace must be a +-trace. This contradicts our
assumption about consistency of the marking. K
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We are now going to define what it means for two tableaux to be equivalent. It
occurs that we can abstract from the order of application of nonmodal rules, but
the structure of a tree designated by modal nodes will be very important.

Definition 18 (Tableau equivalence). We say that two tableaux T1 and T2 are
equivalent iff there is a bijection E between the choice and modal nodes of T1 and
T2 such that:

1. E maps the root of T1 to the root of T2 ; it maps choice nodes to choice
nodes and modal nodes to modal nodes.

2. If n is a descendant of m then E(n) is a descendant of E(m). Moreover if
for some action a, node n is a (a)-son of a modal node m then E(n) is a (a)-son
of E(m).

3. For every modal node m, the sets of literals and terminal formulas (recall
that these are formulas of the form (a � <)) occurring in L(m) and in L(E(m)) are
equal.

4. There is a +-trace on a path P of T1 iff there is a +-trace on a path of T2

determined by the image of P under E.

The next theorem shows that tableau equivalence is a refinement of the semanti-
cal equivalence. It is quite easy to see that this is a strict refinement; there are
semantically equivalent formulas which do not have equivalent tableaux.

Theorem 19. If two formulas (satisfying our proviso) have equivalent tableaux
then they are semantically equivalent.

Proof. Let :, ; be two formulas and let T1 , T2 be equivalent tableaux for : and
;, respectively. Let E: T1 � T2 denote the bijection showing the equivalence of T1

and T2 . We will show that for every structure M, state s, and valuation Val, we
have M, s, Val < : iff M, s, Val < ;.

Suppose M, s, Val < :. By Theorem 15 there is a consistent marking M1 of T1

with respect to M, s, Val. This marking determines a consistent marking M2 of T2

defined as follows. First for every modal or choice node n of T2 we let (s, n) # M2

iff (s, E&1(n)) # M1 . The marking of the internal nodes is uniquely determined by
this choice. Directly from the definition of the equivalence it follows that M2 is con-
sistent with respect to M, s, Val.

Observe that E&1 is also a function showing equivalence of T2 and T1 ; hence,
there is a way of obtaining a consistent marking of T1 from a consistent marking
of T2 . K

3.2. Disjunctive Formulas

Here we define the notion of disjunctive formulas. The main theorem of this
subsection shows that every formula is equivalent to some disjunctive formula.

Definition 20 (Special conjunctions and disjunctive formulas). A conjunction
:1 7 } } } 7 :n is called special iff every :i is either a literal or a formula of the form
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(a � 9) and for every action a there is at most one conjunct of the form (a � 9)
among :1 , ..., :n .

The set of disjunctive formulas, Fd , is the smallest set defined by the following
clauses:

1. Every literal is a disjunctive formula.

2. If :, ; # Fd then : 6; # Fd ; if, moreover, X occurs only positively in : and
not in the context X 7# for some #, then +X .:, &X .: # Fd .

3. (a � 9) # Fd if 9�Fd .

4. A special conjunction of disjunctive formulas is a disjunctive formula.

Remark. Modulo the order of application of (and ) rules, disjunctive formulas
have unique tableaux. Moreover, on every infinite path there is one and only one
infinite trace.

A permutation of the order of application of (and) rules does not change the
shape of a tableau. It just changes the order in which conjunctions are replaced
with commas. On the other hand it matters when (or) rules are applied, as the
following example shows:

[(: 6 ;) 6 #, : 6;] [(: 6 ;) 6 #, : 6;]

[:, : 6 ;] [:, :6 ;] [(: 6;) 6#, :] [(: 6 ;) 6 #, ;]

[:] [:, ;] [#, :] [#, ;] B

[:] [:, ;] [:, #] [:, ;] [;] [;, #].

Definition 21 (Unwinding, regular tableau). Given a labelled graph with a
source, G=(GG , LG , sG ) an unwinding of G is a tree whose nodes are finite paths
of GG starting from sG and the label of such a finite path is the label of the last
node in the path. A tableau is regular if it is an unwinding of a finite graph.

The following theorem shows that every formula is equivalent to a disjunctive
formula. The theorem is even stronger and this stronger statement will be needed
in the completeness proof.

Theorem 22. For every formula . and every regular tableau T for . there is a
disjunctive formula . with a tableau equivalent to T.

Proof. Let T=(T, L) be a regular tableau for .. Suppose T is the unwinding
of a finite labelled graph with a source G=(GG , LG , sG ).

We first show that it is possible to find another finite graph K=(GK , LK , sK )
that also unwinds to T and that is a finite tree with back edges. A back edge is an
edge leading from a node to one of its ancestors. We will still use tree-like terminol-
ogy to trees with back edges. For example, we will say that one node is a son of
the other if it is so in a tree obtained by forgetting about back edges. The most
useful property of the graph K will be a special colouring of nodes described in the
lemma.
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Lemma 22.1. It is possible to construct a finite tree with back edges
K=(GK , LK , sK ) satisfying the following conditions:

(1) K unwinds to T,

(2) Every node to which a back edge points can be assigned the colour magenta
or navy so that for every infinite path of the unwinding of K we have that there is
a +-trace on the path iff the closest to the root node of K appearing infinitely often
on the path is coloured magenta.

Proof. There are only finitely many possible labels of nodes of T. Hence we can
consider these labels as letters of our alphabet. It is easy to see that there is a
Muller automaton on infinite words recognising those paths of T which have a
+-trace on them. We can assume that this automaton is deterministic.

From the results of Mostowski [6] it follows that there is an equivalent deter-
ministic automaton A with so-called parity conditions. Parity conditions are given
by a function 0 assigning to each state of the automaton a natural number. A run
of the parity automaton is accepting if the smallest priority among priorities of the
states appearing infinitely often on the run is even.

We can run our parity automaton A also on finite paths of G (the input is a
sequence of the labels of the nodes). Let A( p) denote a state that A reaches after
reading p. We define our tree with back edges K=(GK , LK , sK ) as follows:

(a) The vertices of the graph GK are finite paths s0 , ..., sk of GG with the
following property: if si=sj for some i{ j (i, j # [1, ..., k]) and si is a choice but not
a modal node then either A(si){A(sj) or there is i<i $< j with 0(A(si $))<
0(A(si)).

(b) If p, p$ are two vertices of GK then there is an edge from p to p$ if either
(i) p$ is one element longer than p or (ii) p$ is a prefix of p ending in a node sj such
that psj is a path of G but not a vertex of GK .

It should be clear that the unwinding of K is T. For arbitrary automaton A,
the graph K may not be finite. It may happen when in all choice nodes A is forced
to take states with some big priority. But this is the only technical complication. To
avoid it we can assume, without a loss of generality, that A is such that a state
assigned to a choice node in an accepting run of A always has a smaller priority
than any state assigned to nonchoice nodes. If A has this property then it is easy
to show that K is finite as on every infinite path some choice and not modal node
must appear infinitely often.

We colour a node p of K magenta if the priority of the state A( p) is even;
otherwise we colour p navy. Let us check that this colouring satisfies condition (2)
of the lemma. Let us take an infinite path p0 , p1 , ... of the unwinding of K. The
sequence A( p0), A( p1), ... is a run of A on the path. Let p� be the closest to the
root node of K appearing infinitely often on the path. It is not difficult to see that
such a node exists. From the construction of K it follows that 0(A( p� )) is the
smallest among priorities of those states which appear infinitely often in
A( p0), A( p1), ... . Hence, A( p0), A( p1), ... is an accepting run iff 0(A( p� )) is
coloured magenta. By definition of A, it happens iff there is a +-trace on
p0 , p1 , ... . K
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From the tree with back edges K we are going to construct a disjunctive formula
which has a tableau equivalent to T. We start from the leaves of K and going to
the top assign a formula F(n) to each node n of K in the following way:

v If there are no edges going from n then in the label of n only literals and
terminal formulas can occur. We let F (n) be a conjunction of all the formulas
appearing in the label of n plus the formula +Xn .�.

v If there are edges going from n then we assume that every son of n has some
formula assigned to it. It will be convenient to consider that a formula assigned to
a son is also assigned to an edge leading from n to this son. There can be also back
edges leading from n to some ancestors of n. Of course those ancestors have no for-
mula assigned yet. To such a back edge from n to, say, m we assign the variable
Um (the index of the variable is the target of the edge). We first define an auxiliary
formula # depending on the rule which was applied in n.

�� If one of the rules (+), (&), (cons), or (and) was applied in n then # is
exactly the same as the formula assigned to the only edge leading from n.

�� If the rule (or) was applied in n then there are two edges leading from
n which have been assigned formulas �1 and �2 . We let #=�1 6 �2 .

�� If the rule (mod ) was applied then let 9a be the set of all the formulas
assigned to the edges leading from n to some node labelled by a result of reduction
of the action a. We let # be a conjunction of all the literals and terminal formulas
appearing in L(n) together with all the formulas of the form (a � 9a). If n is not
a choice node then we add a conjunct +Xn .� to #.

If there are no back edges leading to n then F(n) is just #. Otherwise, let
F(n)=_Un .#, where _ is + or & depending on whether n was coloured magenta or
navy, respectively.

We let .̂ be the formula assigned to the root of K, i.e., .=F(n0). Observe that
.̂ has only one tableau, call it T� . We show that it is equivalent to T.

Remark. Strictly speaking the constructed formula . is not a disjunctive for-
mula. This is because of conjuncts +Xn .� added during the construction. These
conjuncts are necessary to obtain the property from Observation 22.2 which in turn
simplifies main arguments. To be completely formal we could allow such conjuncts
in the definition of a disjunctive formula and say in the definition of the tableau
equivalence that a presence or absence of � in the label does not matter. These
changes would just obscure the notions and would not give any complications in
any of the proofs. We have chosen to pretend that .̂ is a disjunctive formula and
to forget about these inessential technicalities.

Let T� be a tableau for .̂. We will define an equivalence function E: T� � T.
Recall that T is the unwinding of K; hence, its nodes are paths of K and the label
of such a node is the label of the last element of the path. Function E will have the
property that for every modal or choice node m̂ of T� ,

F(last(E(m̂)))=L(m̂); (2)

here last(E(m̂)) is the last element of the path E(m̂).
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We construct E(m̂) by induction on the distance of m̂ from the root. To the root
of T� we assign the root of T. If the root of T� is a modal node then by construc-
tion F, the root of T is also a modal node. Conversely, if the root of T is a modal
node then by the condition (a) of the definition of K we know that there cannot
be a back edge to the root in K (because it is both a modal and a choice node).
Hence, by the construction F, the root of T� is also a modal node.

Suppose E is defined for some modal node m̂. By the property (2) and the con-
struction F there is a bijection between the sons of m̂ and the sons of m. We extend
F according to this bijection.

Suppose E is defined for some choice node m̂. If it is also a modal node then by
the property (2) so is E(m̂). If m is not a modal node then by the construction of
K node E(m) also cannot be a modal node. By the construction F there is a bijec-
tion between modal nodes near m and modal nodes near m. We use this bijection
to extend E. It can be checked that E satisfies clauses 1�3 of the definition of
tableaux equivalence.

The truth of the clause 4 of the definition of the equivalence follows from proper-
ties of our colouring. Let P� be a path of T. The path E(P� ) is some path in K.
Let n be the closest to the root node of E(P� ) which appears infinitely often on
E(P� ). By the construction F and property (2) we have that the smallest variable
regenerated infinitely often on the unique trace on P� is Un . This variable is a
+-variable if n is coloured magenta and it is a &-variable otherwise. Hence, the
smallest variable regenerated on the unique trace on P� is a +-variable iff there is
a +-trace on E(P� ).

The addition of +Xn .� components in the construction guarantees the following
additional property:

Observation 22.2. For a modal or choice node m̂ of T� and a set of modal or
choice nodes N� of T� , if L� (m̂)��n # N� L� (n̂) then L(E(m̂))�� n̂ # N� L(E(n̂)). In par-
ticular if L� (m̂)=L� (n̂) then L(E(m̂))=L(E(n̂)). K

4. THE SYSTEM

Here we present an axiomatisation of the +-calculus proposed by Kozen [4] and
show some simple properties of the system.

We adopt the original formulation of Kozen. The basic judgement of the system
has the form :=; with the intended meaning that the two formulas are semanti-
cally equivalent. Judgement :�; is an abbreviation for : 7 ;=:. A formula : is
provable if :=� is provable.

The axiomatisation consists of the axioms and rules of equational logic (includ-
ing substitution of equals by equals, i.e., cut rule) and the following axioms and
rules:

(K1) axioms for Boolean algebra

(K2) (a) . 6 (a) �=(a)(. 6 �)

(K3) (a) . 7 [a] ��(a)(. 7 �)
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(K4) (a) ===

(K5) :(+X .:(X))�+X .:(X)

(K6)
:(.)�.

+X .:(X)�.
.

Because we have put & and box directly into the language we have to define them
by equivalences:

[a] :=c(a)c:

&X .:(X)=c+X .c:(cX).

It was proved in [4] (or it easily follows from [4]) that the following rules are
admissible:

(( ) )
� 7 �[� %: (a � %) # 1, %{9]�=

(a � 9) 7 � 1�=
for some � # 9

(fix)
# 7:(+X .c# 7 :(X))�=

# 7+X .:(x)�=

(mon)
:�;

.(:)�.(;)
X occurs only positively in .(X).

According to our proviso we restrict ourselves to well-named, positive, and guarded
formulas. We must show that it is a harmless restriction as far as provability is con-
cerned.

Fact 23. Every formula is provably equivalent to a formula satisfying the proviso
at the end of Section 2.

Proof. Just observe that all the steps used in transforming a formula to a
positive guarded form as described in Proposition 2 use provable equivalences. K

One of the nice properties of disjunctive formulas is that they are easy as far as
provability is concerned.

Theorem 24. For every unsatisfiable disjunctive formula : the formula c: is
provable.

Proof. In [2] it was shown:

A disjunctive formula : is satisfiable iff ; obtained from : by

replacing all +-variables by = and all &-variables by � is satisfiable.
(3)

We prove the theorem by induction on the size of :.
Suppose : is a special conjunction :1 7 } } } 7 :n ; we have two cases. If :i== or

:i=c:j for some i, j # [1, ..., n] then c: is easily provable. Otherwise one of the
conjuncts must be of the form (a � 9) and one of the formulas from 9 must be
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unsatisfiable. From the induction assumption and the rule (( ) ) we obtain the
proof of c:.

If :=# 6 $ then by the induction assumption we have proofs of c# and c$. We
can use propositional calculus laws to obtain the proof of c:.

If :=+X .#(X) then because this formula is unsatisfiable so is #(=). By induction
assumption there is a proof of c#(=) and we can use the derivable rule:

c#(=)=�

c+X .#(X)=�
.

If :=&X .#(X) then we consider #(�). It is, of course, a disjunctive formula. By (3),
the formula #(�) is satisfiable iff &X .#(X) is satisfiable. As the latter formula is not
satisfiable we have by the induction assumption the proof c#(�) and we can use
the derivable rule:

c#(�)=�

c& .#(X)=�
. K

5. PROVABILITY FOR WEAKLY ACONJUNCTIVE FORMULAS

In this section we will consider a class of formulas for which the provability is
easier than in the general case (although not as easy as for disjunctive formulas).
We recall the notion of aconjunctive formulas [4] and propose its slight generalisa-
tion called weakly aconjunctive formulas. Our goal in the section is to obtain a
generalisation of the main result from [4] which states that the negation of every
unsatisfiable aconjunctive formula is provable. To do this we introduce the notion
of thin refutation, which isolates the cases for which the original proof still goes
through. It turns out that every refutation of a weakly aconjunctive formula is thin.

Definition 25 (Weakly aconjunctive formulas). Let . be a formula, D. be its
binding function, and �. be the dependency ordering (see Definitions 3 and 4).

�� We say that a variable X is active in �, a subformula of ., iff there is a
variable Y appearing in � and X�. Y.

�� Let X be a variable with its binding definition D.(X)=+X .#(X). The
variable X is called aconjunctive iff for all subformulas of # of the form : 7; it is
not the case that X is active in : as well as in ;.

�� A variable X as above is called weakly aconjunctive iff for all subformulas
of # of the form :7 ; if X is active in both : and ; then : 7 ; is a special conjunc-
tion as defined in Definition 20.

�� A formula . is called (weakly) aconjunctive iff all +-variables in . are
(weakly) aconjunctive.

In the following we will be interested only in weakly aconjunctive formulas. The
definition of aconjunctive formulas was restated just to compare the two notions.
It also makes sense to compare weakly aconjunctive formulas with disjunctive
formulas.
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Fact 26. Every disjunctive formula is a weakly aconjunctive formula.

Proof. Directly from the fact that the only conjunctions in disjunctive formulas
are special conjunctions. K

From the next observation it follows that all formulas appearing in a tableau for
a weakly aconjunctive formula are weakly aconjunctive.

Fact 27. Every formula appearing in a tableau for . is a subformula of ..

The next proposition states some closure properties of the class of weakly acon-
junctive formulas. Observe that weakly aconjunctive formulas are not closed under
negation or under the least fixpoint operation.

Proposition 28 (Composition). If #(X) and $ are weakly aconjunctive formulas
then #[$�X], &X .#(X), and $ 7 #(X) are also weakly aconjunctive formulas.

Proof. As we consider only well-named formulas, when conjunction is formed
we make sure that the bound variables in $ and #(X) are different. With this obser-
vation it should be easy to see that &X .#(X) and $ 7 (X) are weakly aconjunctive.

Also while performing substitution #[$�X] we keep bound variables of $ distinct
from the bound variables of #. Let :=#[$�X] and let Y be a +-variable of :. This
variable is bound either in # or in $. If it is a bound variable from # then because
no bound variable of # is free in $ we have that for every Y�: Z, variable Z is a
bound variable of #. Hence, Y is weakly aconjunctive in : iff it was weakly acon-
junctive in #. For a similar reason every +-variable of $ is weakly aconjunctive
in :. K

Next we turn our attention to refutations. These will be tableau-like objects
corresponding to unsatisfiability, in the sense that a formula has a refutation iff it
is unsatisfiable. From our point of view the most interesting property is that from
some refutations, called thin, we can construct a proof of the negation of the initial
formula.

Definition 29 (Refutations). A refutation for a formula . is defined as tableau,
but this time we modify system S. (presented in Fig. 1) by adding the explicit
weakening rule

1
[:, 1]

and instead of (mod ) rule we take (( ) ) rule:

(( ) )
[�] _ [� %: (a � %) # 1, %{9]

1
(a � 9) # 1, � # 9,

This rule is similar to (mod ) but has only one assumption. Additionally, we require
that on every infinite path of the refutation there should be a +-trace and every leaf
of the refutation must be labelled by a set containing = or some literal and its
negation.

162 IGOR WALUKIEWICZ



We call a refutation thin iff whenever a formula of the form : 7 ; is reduced
in some node of the refutation and some variable is active in : as well as in ;
then either : 7 ; is a special conjunction or one of the conjuncts is immediately
discarded by the use of the weakening rule.

The following is an easy consequence of Fact 27.

Fact 30. Every refutation for a weakly aconjunctive formula is a thin refutation.

It was shown in [7] that every unsatisfiable formula has a refutation. From this
perspective the next theorem essentially says that one can prove the negation of an
unsatisfiable weakly aconjunctive formula. The theorem is stated in greater
generality because in Lemma 36 we deal with thin proof tableaux for formulas
which may not be weakly aconjunctive.

Theorem 31. If a formula has a thin refutation then its negation is provable.

Proof. The proof is a reformulation of Kozen's argument from [4]. Let R be
a thin refutation for .. We can assume that in R we reduce special conjunctions
only when no other formula can be reduced by rules other than (mod ). This restric-
tion does not change the shape of the tableau. Let D be the binding function
associated with . and let � . be the dependency ordering on the bound variables
of .. It will be convenient here to use some arbitrary linearisation of � . . We will
write < . for strictly less relation determined by this linearisation.

We will assign to every node m of R a formula which will contain some informa-
tion about the path up to m. The information we are interested in is what variables
were regenerated and in what nodes. To see what we mean consider a node
m labelled [X, 1] and its son n labelled [:(X), 1]. The formula assigned to m
will have the form c(# 7 +X .;(X)). Now, to remember the context in which X
was regenerated we can use the rule ( fix) and assign to n the formula
c(# 7 ;(+X .c# 7 ;(X))). If it ever happens that in some descendant o of n we
regenerate X in the same context then we can use this recorded information in a
sense that the formula assigned to o will be of the form c(# 7 c# 7

;(+X .c# 7;(X))); hence, it will be a provable formula. Summarising, we want two
properties from our assignment of formulas:

1. If the formula assigned to a node is unprovable then the formula assigned
to one of the sons is unprovable.

2. In some nodes use remembering so that on every path there is a variable
regenerated in the context which is already recorded.

If c. is not provable then, by the first property, we can find an infinite path of
R, every node of which has associated an unprovable formula. By the second
property, we obtain a contradiction because a formula associated with the node
where some variable was regenerated for the second time in the same context is
provable.

Unfortunately the second property is quite difficult to obtain. If we just used the
remembering trick in every possible node, it could happen that we could get
infinitely many different contexts. We have to be very careful about what informa-
tion we remember and what we should forget. This is why the assignment of
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formulas to nodes is rather involved. We split it into two steps. First, starting from
the root of R we assign a token list to every node; then we use this list assignment
to define formulas.

We assume that we have a countable set of tokens. We can remove tokens from
the list and we can add tokens to the right end of the list. Removed tokens are
never used again. Each token has its own counter. We also assign a pair (formula,
bound variable of .) to every token on the list.

Let us first introduce some operations on labelled lists of tokens. We say that :
is replaceable by ; in some list of tokens if either of the conditions holds:

1. ; does not appear in the labels of tokens in the list,

2. the smallest variable X: such that (:, X:) is the label of some token is
smaller than the smallest variable X; such that (;, X;) is the label of some token,

3. variables X: and X; are the same but the token labelled (:, X:) is to the
left of the token labelled (;, X;).

If : is replaceable by ; then to replace : by ; means, first, to delete all the tokens
labelled (;, Y), for some variable Y, and next replace each label of the form (:, Z)
by (;, Z). If : is not replaceable by ; then we can delete ; from the list by removing
all the tokens labelled (;, Y) for some variable Y.

To the root of R we assign an empty list of tokens. A list of tokens for an internal
node n is constructed from the list for its father m according to the following rules:

1. If the weakening rule was applied and some formula, say :, was deleted
from the label of the node then delete : also from the token list.

2. Suppose the (or) rule is applied in m to : 6 ; and, say, : is the result of
the reduction which appears in the label of n. The token list for n is obtained by
replacing : 6 ; by : if : 6 ; is replaceable by :.

3. Suppose in m we apply the rule

(reg)
[:(X), 1]

[X, 1]
D(X)=_X .:(X).

If X is replaceable by :(X) then replace X by :(X). In case X is a +-variable addi-
tionally increase the counter of the token now labelled (:(X), X) and set to 0 the
counters of all the tokens to the right of it.

4. Suppose in m we apply the rule (+) or (&):

(_)
[:(X), 1]

[_X .:(X), 1]
D(X)=_X .:(X).

If _X .:(X) is replaceable by :(X) then we replace _X .:(X) by :(X). In case X is
a +-variable we additionally put a new token labelled (:(X), X) at the end of the
list.

5. Suppose in m we apply the (and) rule to a formula : 6 ; which is not a
special conjunction. Because our refutation is thin we know that either (i) one of
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the conjuncts is deleted or (ii) every variable is active in at most one of the formulas
: or ;. In the first case we proceed in exactly the same way as in the case of the
(or) rule.

In the second case if : 7 ; is replaceable by : then for every token labelled
(: 7 ;, Y), with Y active in :, replace its label by (:, Y). Similarly if : 7 ; is
replaceable by ; then for every token labelled (: 7 ;, Y), with Y active in ;, replace
its label by (;, Y).

6. Suppose we have zero or more applications of the (and) rule to special
conjunctions followed by an application of the (( ) ) rule:

[#i 7 (a1 � 9 i
1) 7 } } } 7 (ak � 9 i

k) : i=1, ..., l]
B

[#i, (a1 � 9 i
1), ..., (ak � 9 i

k) : i=1, ..., l]
[� 9 1

i , ..., �9 j&1
i , �j , � 9 j+1

i , ..., � 9 l
i]

.

Consider indices p=1, ..., l one by one, starting from the smallest. If �9 p
i is dif-

ferent from �9 q
i for all q<p then for every token labelled

(# p 7 (a1 � 9 p
1 ) 7 } } } 7 (ak � 9 p

k), X) (4)

for some X, replace this label by (�9 p
i , X). If �9 p

i =�9 q
i , for some q<p, then

check if the formula (4) is replaceable by (�9 p
i , X); if so, perform the replacement.

Similarly, for �j check whether the formula (4), for p= j, is replaceable by �j . If so,
perform the replacement.

7. After the above steps we remove tokens which are either (i) labelled with
pairs (:, Y) with Y not active in : or (ii) labelled with formulas not appearing in
the label of the node.

Observation 31.1. For every path P of R there is a counter which gets
arbitrarily big on P.

Proof. As R is a refutation, there is a +-trace Tr on P. Let X be the smallest
variable regenerated on this trace. Let n0 be a node of P where X is regenerated
on Tr and after which no variable smaller than X is regenerated on Tr.

Let t0 be a token from the list for n0 labelled (X, Y0) for the smallest possible Y0 .
We call t0 the support of the trace in n0 . Such a support exists because (X, X) is in
the label of some token. Because of the step 7 of the construction, we know that X
depends on Y0 (i.e., Y0� . X).

Suppose that n1 is a node where t0 is deleted. As X is active in Tr(n1), it can
happen only because there was a token t1 labelled (Tr(n1), Y1) for Y1 smaller than
Y0 or maybe Y0=Y1 but t1 was to the left of t0 . The new support for the trace
becomes t1 . It should be clear that support can change only finitely many times.

Let m be a node after which the support does not change and where X is
regenerated. Let t be a token labelled (X, X) on the list of m. From this point t is
never deleted and its counter is increased every time X is regenerated.
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If the counter of t is not unbounded then there is a token to the left of it in the
list whose counter is being increased; i.e., the counter of the leftmost such token is
unbounded. K

Next we assign a formula to every node of R. To do this for every node n of R

and every formula ; # L(n) we define a binding function Dn, ; depending on the
token list for n. These binding functions will be obtained from D by modifications
of one kind. For some +-variables instead of D(X)=+X .:(x) we will have
Dn, ;(X)=+X .c#1 7 } } } 7 c#k 7:(X), where formulas #1 , ..., #k are determined in
the following way:

Consider ancestors of n up to the nearest node where a token

now labelled (;, X) is added or its counter is reset to zero.

Among these ancestors choose all n1 , ..., nk where the counter (V)

of the token was increased, then for i=1, ..., k,

#i=�[([$]) Dn i , $ : $ # L(ni), ${:(X)].

The formula assigned to the node n is

c�[([;]) Dn, ; : ; # L(n)].

Observation 31.2. If for some node m formula c�[([;]) Dm, ; : ; # L(m)] is
unprovable then there is a son n of m such that c�[([;]) Dn, ; : ; # L(n)] is
unprovable. (In case special conjunctions are reduced in m, the node n is not a son of
m but a son of the modal node near m.)

Proof. The proof is by cases depending on the rule which was applied in m. We
will consider only one case when the rule applied in m is a regeneration of a
+-variable:

(reg)
[:(X), 1]

[X, 1]
D(X)=+X .:(X).

If X is not replaceable by :(X) then

[([;]) Dn, ; : ; # [:(X), #]]=[([;])Dm, ; : ; # 1].

Otherwise, looking at the changes to the token list for the son n of m we can see
that for every ; # 1 and every variable Y, Dn, ;(Y) is either Dm, ;(Y) or D(Y). This
implies that ([;]) Dm, ;�([;]) Dn, ; is provable for all ; # 1.
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By definition ([X]) Dn, :(X)
is of the form +X .# 7 :(X) and let us denote

[([;]) Dn, ; : ; # L(n), ;{:(X)] by %. We know that

c\� % 7 (+X .# 7:(X))+
is unprovable. By rule ( fix)

c\� % 7# 7 : \+X .c � % 7 #7 :(X)++
is unprovable, hence

c\� % 7 : \+X .c � % 7 # 7 :(X)++
is unprovable. But :(+X .c� % 7 # 7 :(X))=([:(X)]) Dn, :(X)

. K

For the root n0 of R we have Dn0 , .=D. Using the assumption that c. is
unprovable and the above observation we obtain an infinite path P of R such that
for every node n of P the formula c�[([;]) Dn, ; : ; # L(n)] is unprovable.

Let t be a token whose counter can be arbitrarily big on P. Let X be a variable
from the label of t and let D(X)=+X .:(X) be its original definition. Because
the counter of t is unbounded there must be two nodes n1 , n2 such that
(i) L(n1)=L(n2), (ii) in both nodes the parts of the lists to the left of t are identical,
(iii) t is labelled by (:(X), X), and (iv) the counter of t was increased and it was not
reset between n1 and n2 . Let us assume that n2 is a descendant of n1 . We will show
that c�[([#]) Dn 2 , # : # # L(n2)] is provable.

As binding functions are established by (*) we have that

Dn2 , $=Dn1, $ for every formula $ # L(n1), ${:(X). (5)

This is because by (iii) and (iv) the counters of all the tokens to the right of t are
0 and all the counters to the left of t are the same in n1 and n2 . Of course, the
counter of t in n1 is strictly smaller than in n2 .

We have:

Dn1, :(X)(X)=+X .c#1 7 } } } 7 c#i 7 :(X)

Dn2 , :(X)(X)=+X .c#1 7 } } } 7 c#j 7 :(X),

where j>i and formulas #1 , ..., #j are determined by the rule (*). We know that #i

is �[([$]) Dn1, $ : $ # L(n1), ${:(X)] and by (5) it is the same as �[([$]) Dn2 , $ : $ #
L(n2), ${:(X)]. Finally we have that c�[([#]) Dn2 , # : # # L(n2)] is of the form

c \c#i 7;(+X .c#i 7;(X)) 7 �[([$]) D(n2, $) : ${:(X), $ # L(n2)]+
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which is just an instance of the propositional tautology c(c:7 ; 7 :) �� a con-
tradiction with the choice of P. K

6. TABLEAU CONSEQUENCE

In the completeness proof it will turn out that tableau equivalence is a too
restrictive notion. Here we introduce a weaker notion called tableau consequence. It
will turn out that this is a refinement of a semantic consequence relation. The main
result of this section is Lemma 36, which shows that if a disjunctive formula $ has
a tableau which is a consequence of a tableau for an aconjunctive formula : then
:�$ is provable.

Definition 32 (Tableau consequence). Given a pair of tableaux (T� , T), where
T� =(T� , L� ) and T=(T, L) , we define a two player game G(T� , T) with the
following rules.

1. The starting position is the pair of the roots of each tableaux.

2. Suppose a position of a play is (n~ , n), both nodes being choice nodes of T�
and T, respectively. Player I must choose a modal node m~ near n~ and player II
must respond by choosing a modal node m near n. Node m must have the property
that every literal and terminal formula from L(m) appears in L� (m~ ).

3. Suppose a position of a play is (N� , N) with N� , N being sets of choice nodes
of T� and T, respectively. Player I must choose a modal node m~ near some n~ # N�
and player II must respond with a modal node m near some n # N, such that every
literal and terminal formula from L(m) appears in L� (m~ ).

4. Suppose a position consists of a pair of modal nodes (m~ , m) from T� and T,
respectively. Player I chooses some action a and has two possibilities afterwards. He
can choose a (a)-son n of m and player II then has to respond with a (a)-son n~
of m~ . Otherwise, player I can choose all (a)-sons of m and player II must respond
with the set of all (a)-sons of m~ .

The game may end in a finite number of steps because one of the players cannot
make a move. In this case, the opposite player wins. When the game has infinitely
many steps we get as the result two infinite paths: P� from T� and P from T.
Player I wins if there is no +-trace on P� but there is a +-trace on P; otherwise,
player II is the winner.

Definition 33 (Strategy). A strategy S for the second player in the game
G(T� , T) is a function assigning to a position consisting of two modal nodes (m~ , m)
and a son n of m a son S(m~ , n) of m~ of the same type as n. If (n~ , n) is a pair of
choice nodes and m~ is a modal node near n~ then the strategy gives us a modal node
S(m~ , n) near n. If a position consists of two sets (N� , N) then for every modal node
m~ near some n~ # N� strategy S gives a modal node S(m~ , N) near some n # N.
A strategy is winning if it guarantees that player II wins no matter what the moves
of player I are.

We will say that a tableau T is a consequence of a tableau T� iff player II has a
winning strategy in G(T� , T).
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The definition of the game is based on the following intuition about tableaux.
A tableau for a formula describes the semantics of a formula in an operational way.
In order to satisfy formulas in a choice node n, we must provide a state which
satisfies the label of one of the modal nodes near n. The sons of a modal node
describe the transitions from a hypothetical state satisfying its label. Every (a)-son
describes an a-successor which is required. The set of all (a)-sons puts a restriction
on all possible a-successors of the node. In this way, a tableau of a formula
describes all possible models of that formula.

The game is defined so that whenever player II has a winning strategy from a
position (n~ , n) then every model of the label of n~ , L� (n~ ), is also a model of the label
of n, L(n). If n~ and n are both choice nodes then a model of L� (n~ ) must satisfy the
label of one of the modal nodes near n~ . Hence, for every modal node near n~ we
must find a modal node near n whose label is implied by it. If n~ , n are modal nodes
then every (a)-son of n describes a state the existence of which is required in order
to satisfy L(n). We must show that existence of such a state is also required by L� (n~ ).
The set of all the (a)-sons represents general requirements, imposed by L(n), on
states reachable by action a. We must show that they are implied by the general
requirements in L� (n~ ).

Fact 34. Tableau consequence is transitive.

Proof. If T2 is a consequence of T1 and T3 is a consequence of T2 then we can
in some sense compose the winning strategies, S1, 2 in G(T1 , T2) and S2, 3 in
G(T2 , T3), to obtain a winning strategy in G(T1 , T3). For example, if the current
position is a pair of choice nodes (n1 , n3) then player I chooses a modal node m1

near n1 . Strategy S1, 2 gives us a modal node m2 near n2 . We can consider m2 as
a move of player I in the game G(T2 , T3). Hence the strategy S2, 3 can give us
a node n3 near m3 . It is easy to check that the strategy defined in such a way is
winning. K

The following lemma shows that tableau consequence is indeed weaker than
equivalence.

Lemma 35. If two tableaux T1 and T2 are equivalent then T1 is a consequence
of T2 .

Proof. Let E: T1 � T2 be an equivalence function. Consider the game
G(T1 , T2). The strategy for player II is to keep to positions of the form (n, E(n)).
The initial position is of this form. The strategy is defined by the following rules:

v If a position of a play is a pair of choice or modal nodes (m, E(m)), then
player I chooses some node n and player II replies by choosing E(n).

v If a position of a play is (N, E(N)) with N being a set of choice nodes of
T1 and E(N)=[E(n): n # N] then player I chooses a modal node m near some
n # N and player II responds with the modal node E(m).

By the definition of the tableau equivalence this strategy is winning. K

In the next lemma we show how to use the fact that a tableau for a formula $
is a consequence of a tableau for a formula : to prove :�$.
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Lemma 36. Suppose that we have a weakly aconjunctive formula : and a dis-
junctive formula $. If there is a tableau for $ which is a consequence of a tableau for
: then c(: 7 c$) is provable.

Proof. Let T:=(T: , L:) and T$=(T$ , L$) be tableaux for : and $, respec-
tively, such that the second is a consequence of the first. Let S be a winning
strategy for player II in the game G(T: , T$). We will construct a thin refutation
R=(T, L) for :7 c$.

To facilitate the construction we will define two correspondence functions C: and
C$ which assign to every considered node of R (that is, not to all the nodes) a node
of T: and T$ , respectively. It will be always the case that:

C1 L(n)=L:(C:(n)) _ [c� L$(C$(n))],

C2 strategy S is defined for the position (C:(n), C$(n)).

Of course, the root of R will be labelled by [: 7 c$]. The next node, say m0 ,
will be labelled by [:, c$]. We let C:(m0) and C$(m0) be the roots of T: and T; ,
respectively. The next two observations show how to prolong R.

Observation 36.1. Suppose we have already constructed R up to a node m;
C:(m), C$(m) are choice nodes of appropriate tableaux and satisfy C1, C2. We can
construct a finite part of R and define for each leaf n of the constructed part C:(n)
and C$(n) so that (i) C$(n)=S(C:(n), C$(m)), (ii) conditions C1 and C2 are satisfied,
and (iii) traces from m to n are reflected. This last property means that the traces
from m to n are exactly the traces from C:(m) to C:(n) with the exception of the trace
from c� L$(C$(m)) to c� L$(C$(n)), which corresponds to the (unique) negated
trace from C$(m) to C$(n).

Proof. By assumption L(m)=L:(C:(m)) _ [c#] as C$(m) is labelled by one
formula because $ is a disjunctive formula. The idea of the construction is repre-
sented in Fig. 2.

FIG. 2. Construction of R.
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From m we apply as long as possible rules other than (( ) ) and weakening to
all the formulas in L(m) except c#. We apply them in the same order as they were
applied from C:(m). This way we obtain a finite tree rooted in m. This tree is
isomorphic to the part of T: between C:(m) and nearest modal nodes. Denoting
this isomorphism F we have the property that for every leaf n$ of this part
L(n$)=L:(F(n$)) _ [c#]. Set C:(n$)=F(n$). Strategy S gives us a node C$(n$)
which is a reply of player II to choosing C:(n$) by player I. From the definition of
the game it follows that C$(n$) is a modal node near C$(m). Let us look at the path
from C$(m) to C$(n$) in T$ . Because $ is a disjunctive formula, on this path first
only (_), (reg), and (or) rules may be applied and then we have zero or more
applications of the (and) rule. Let us apply dual rules to c# (dual to (+) is (&),
(reg) is self-dual). When it comes to an application of the (or) rule in T$ , apply the
(and ) rule followed by weakening to leave only the conjunct which appears on the
path to C$(n$). This way we make sure that the resulting tableau will be thin.

After these reductions we get a node n which is labelled by L(C:(n$)) _

[c� L$(C$(n$))]. Setting C:(n)=C:(n$) and C$(n)=C$(n$) establishes the condi-
tions C1 and C2 . Finally trace reflection follows directly from the construction. K

Observation 36.2. Suppose we have constructed R up to a node m. Assume that
C:(m) and C$(m) are modal nodes and C1, C2 are satisfied. We can construct a finite
part of R and define C:(n), C$(n) for every leaf n of this part in such a way that
(i) position (C:(n), C$(n)) is reachable from (C:(m), C$(m)) when player II plays
according to S, (ii) conditions C1, C2 are satisfied, and (iii) traces are reflected.

Proof. Let #=� L$(C$(m))=�[#1 , ..., #l] and 1=L:(C:(m)). By C1 we have
L(m)=[c#] _ 1. Node C$(m) is a modal node; hence, every #i is either a literal
or a formula of the form (a � 8). When we negate # we obtain a disjunction of
negations of such formulas. Let us apply the (or) rule to eliminate these disjunc-
tions. This way we obtain new leaves m1 , ..., m l . For every i # 1, ..., l node m i is
labelled by [c#i] _ 1. We use #i to decide what rule to apply in mi .

If #i is a literal or a terminal formula then we are done because #i appears in 1.
This follows directly from C2 and the definition of the game.

If #i is of the form (a � 8) with 8{< then negated it becomes

�[[a]c.: . # 8] 6 (a)�[c.: . # 8]

or rather the translation of this formula to (a � %) notation. We apply disjunction
rules as long as possible. This way we obtain a part of a tree. Each leaf u of this
part is labelled by 1 and one of these disjuncts.

v Suppose this disjunct is (a � <). As 8{<, there is a (a)-son of C$(m) so
there is, by the definition of a strategy, a (a)-son of C:(m). Hence there is
(a � %) # 1 with %{<. Apply the (( ) ) rule to (a � %) and some � # %. Then
because (a � <) # L(u) the son will contain =.

v If it is (a � [c.]) for some . # 8 then let us consult the strategy in the
case when player I chooses the (a)-son u$ of C$(m) labelled by [.]. Strategy S

gives us in this case (a)-son u: of C:(m). This son is labelled by
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[�] _ [� %: (a � %) # 1, %{9] for some (a � 9) # 1 and � # 9. We apply the
(( ) ) rule to (a � 9) in L(u) and obtain a son u$ of u labelled [�] _ [� %:
(a � %) # 1, %{9] _ [c.]. We let C:(u$)=u: and C$(u$)=u$ .

v If it is (a � [�[c.: . # 8], �]) then we apply the (( ) ) rule to this
formula and obtain a son u$ of u labelled

{� [c.: . # 8]=_ {� %: (a � %) # 1= .

The construction from this point is presented in Fig. 3.
Let us choose one formula � 9 # [�%: (a � %) # 1] and apply (or) rules to it.

This way we obtain a part of R each leaf of which is labelled by the set

{�[c.: . # 8]=_ [�] {� %: (a � %) # 1, % � 9=
for some � # 9. Let o be one of such leaves and let o: be a (a)-son of C:(m)
labelled by [�] _ [� %: (a � %) # 1, %{9]. As in the previous observation apply
rules other than (mod ) and weakening to this set to obtain a finite part of a tree
isomorphic to the part of T: between o: and the nearest modal nodes. Let F denote
this isomorphism. Let n$ be a leaf of this part. We have L(n$)=L:(F(n$)) _

�[c.: . # 8]. Now it is time to consult the strategy.
Let player I choose N$ , the set of all (a)-sons of C$(m). Player II responds with

N: being the set of (a)-sons of C:(m). For every modal node n: near o: # N: the
strategy S gives us a modal node n$=S(n: , N$). Let n$=S(F(n$), N$) and let o$

be a choice node on the path to n$ . We have L$(o$)=[.] for some . # 8. Apply

FIG. 3. Construction a part of R.

172 IGOR WALUKIEWICZ



the (and ) rule followed by a contraction to obtain a node n" labelled
[c.] _ L:(F(n$)). Then reduce c. in n" as in the proof of the previous observa-
tion. We arrive at a node n labelled [c� L$(n$)] _ L:(F(n$)). Let C:(n)=F(n$)
and C$(n)=n$ . K

The above two observations describe R completely. All the leaves are labelled by
sets containing = or some literal and its negation. For every infinite path P we
have two possibilities. There may be a +-trace on a path of T: designated by the
image of P under C: . In this case, by trace reflection, there is also a +-trace on P.
If there is no +-trace on C:(P) then there cannot be a +-trace on C$(P) because we
were choosing our moves according to the strategy S. Hence there is a &-trace on
C$(P) which negated in R becomes a +-trace.

This shows that R is a refutation. R is also a thin refutation because : is a
weakly aconjunctive formula and whenever we reduce a conjunction coming from
c$ we leave only one of the conjuncts. Hence by Theorem 31 the formula
c(: 7c$) is provable. K

7. COMPLETENESS

Our main goal is:

Theorem 37 (Completeness). For every unsatisfiable formula . formula c. is
provable.

Having Theorem 24 to prove completeness it is enough to show that for every
unsatisfiable formula . there is a disjunctive unsatisfiable formula .̂ such that
.�.̂ is provable. Of course we could just take .̂ to be = but then the proof of
this fact would be exactly as difficult as showing completeness. So in general we will
look for more complicated formulas than =. Because we will prove this fact by
induction on .̂ we clearly need to consider also satisfiable formulas. From these
considerations it follows that we need:

Theorem 38. For every positive, guarded formula . there is a semantically equiv-
alent disjunctive formula .̂ such that .�.̂ is provable. Moreover, if a variable occurs
only positively in . then it occurs only positively in .̂.

Before proving this theorem let us show how to use it in the completeness proof.

Proof (Completeness). Let . be an unsatisfiable formula. By Proposition 23 we
may assume that . satisfies our proviso from Section 2. From Theorem 38 it
follows that there is a disjunctive formula .̂ equivalent to . and .�.̂ is provable.
Hence it is enough to show that c. is provable. But this follows from
Theorem 24. K

The rest of this section is devoted to the proof of Theorem 38.

Proof (Theorem 38). The proof is by induction on the structure of the formula ..

Case: . is a literal. In this case .̂ is just ..
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Case: .=: 6 ;. By the induction assumption there are disjunctive formulas :̂,
;� equivalent to : and ;, respectively. We let : 6 ;@ be :̂ 6 ;� . Because :�:̂ and ;�;�
are provable, : 6 ;�(:̂ 6 ;� ) is also provable.

Case: .=(a � 8). This case is very similar to the previous one.

Case: .=+X .:(X). The proof of this case will take a significant part of this sec-
tion. Fortunately the tools developed here can be also used for the remaining cases.

By the induction assumption there is a disjunctive formula :̂(X) equivalent to
:(X). It is easy to see that +X .:(X) is semantically equivalent to +X . :̂(X) and
+X .:(X)�+X . :̂(X) is provable. Unfortunately +X . :̂(X) may not be a disjunctive
or even a weakly aconjunctive formula. This is because X may occur in a context
X7 # for some #. Therefore we have to construct .̂ from scratch.

By Theorem 22 there is a disjunctive formula .̂ which has the tableau equivalent
to some tableau T for +X . :̂(X). By Theorem 19 the two formulas are equivalent.
We are left to show that +X . :̂(X)�.̂ is provable in Kozen's system. To do this it
is enough to prove :̂(.̂)�.̂ and then use the rule (K6). Now, it is possible to show
that if : and $ have equivalent tableaux, : is weakly aconjunctive, and $ is dis-
junctive then :�$ is provable. Unfortunately the notion of tableau equivalence is
too strong for us because there may be no tableau for :̂(.̂) equivalent to a tableau
for .̂. It turns out that tableau consequence is what we need.

Lemma 39. The tableau T for +X . :̂(X) is a consequence of the tableau T� for
:̂(.̂).

Proof. Let T=(T, L) , T� =(T� , L� ) and let T� =(T� , L� ) be the tableau for ..
Recall that T� was constructed from T using Theorem 22. Hence we can assume
that T� satisfies the properties from Observation 22.2. As T and T� are equivalent
we have an equivalence function E: T � T� . Because the tableaux for +X . :̂(X) and
:̂(+X . :̂(X)) differ just by one application of the fixpoint rule in the root we will
denote by T also the tableau for :̂(+X . :̂(X)).

By assumption .̂ and :̂(X) are disjunctive formulas. We will use ;[+X . :̂(X)�.̂]
and ;[.̂�+X . :̂(X)] to stand for the obvious replacements; it will be always the case
that no free variable in +X . :̂(X) or .̂ is bound by the context ;. From Fact 27 we
obtain:

Observation 39.1. For every node n~ of T� , every formula in L� (n~ ) is either a
disjunctive formula or of the form $(.̂) with $(X) being a disjunctive formula.

As the first step, for every mode m~ of T� we will define two functions:

pm~ : L� (m~ ) � N _ [�] nd@m~ : Ran( pm~ ) & NP(T� ).

The first function assigns a priority which is a natural number or � to every for-
mula in L� (m~ ). The function nd@m~ assigns sets of nodes of T� to finite priorities in the
range of pm~ . Sometimes we will identify a singleton set [m] with the element m. For
example, we will write L� (nd@m~ (q)) when nd@m~ (q) is a singleton.
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These two functions will satisfy the following condition which we call I1.

v if nd@m~ (q) is a singleton then

p&1
m~ (q)�L� (nd@m~ (q))� .

q$�q

p&1
m~ (q$);

v if nd@m~ (q) is not a singleton then

p&1
m~ (q)={�[�: [�]=L� (m), m # nd@m~ (q)]=; (I1)

v if m~ is a modal node then nd@m~ (q) is a singleton for all q # Ran( pm~ ) & N

The idea behind these two functions comes from considering T� to be some kind
of composition of T and many copies of T� . To see what we mean consider a part
of a path of T� which is represented in the middle of Fig. 4. To the left of it we have
put a corresponding path of T and to the right we have represented a part of T� .
Arrows represent traces.

The label of a node of T� can be divided into a set of formulas to which there
is no trace going through . and the rest which have such a trace. Every formula
# of the first kind corresponds to a formula #[+X . :̂(X)�.̂] of T. These formulas
will have priority �. In our figure they are represented by 1 with indices. For a for-
mula $ of the second type, there is the earliest occurrence of .̂ from which there is
a trace to $. This occurrence determines the priority of the formula and the whole
trace determines the node of T� . We use priorities when contraction occurs. Con-
sider, for example, a situation represented in the last two nodes of the part of the
path in Fig. 4. Formula $1

1 is reduced and becomes the same as $0
2 . Nevertheless the

node associated with $0
2 may be different than the son of the node associated with

$1
1 because the histories of reductions of these formulas could have been different.

The priority tells us that the path from the son of $1
1 should not be followed but

the path from the left occurrence of $0
2 should continue. We can say that the trace

FIG. 4. Decomposition of a path of T� .
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jumps from $1
1 to the left occurrence of $0

2 . Arranging formulas this way we have
that every trace on a path of T� is either some trace on the corresponding path of
T or is eventually (after finitely many jumps) a trace on a path of T� designated
by the nd@ function.

The functions pm~ and nd@m~ will be defined by simultaneous induction on the dis-
tance of m~ from the root. For the root r~ of T� we let pr~ (:̂(.̂))=�. The induction
step is handled by the following two observations.

Observation 39.2. Suppose m~ # T� is a modal node, both pm~ and ndm~ are defined
and satisfy condition I1. For every son n~ of m~ we can define pn~ and ndn~ so that I1
will be satisfied.

Proof. Let [(a � %1), ..., (a � %k)] be all the formulas from L� (m~ ) having the
form (a � %).

Let n~ be a (a)-son of m~ and to keep indexing simple say it is labelled by
[.1] _ [� %2 , ..., �%k] for some .1 # %1 .

If .1 {� %i for all i=2, ..., k then set pn~ (� %i)= pm~ (a � % i) and let nd@n~ ( pn~ (� %i))
be the set of all (a)-sons of ndm~ ( pm~ (a � %i)). For .1 let pn~ (.1)= pm~ (a � %1) and
let nd@n~ ( pn~ (.1)) be the son of nd@m~ ( pm~ (a � %1)) which is labelled by [.1]. Of course

we set nd@n~ only whenever the priority is finite.
Suppose now that .1=� %i for some i=2, ..., k. We must decide whether to treat

this formula as .1 or as � % i .

v If pm~ (a � % i)<pm~ (a � %1) then let pn~ (�%i)= pm~ (a � %i) and let
nd@n~ ( pn~ (� %i)) be the set of all the (a)-sons of nd@m~ ( pm~ (a � [%i])).

v If pm~ (a � % i)>pm~ (a � %1) then let pn~ (.1)= pm~ (a � %1) and let nd@n~ ( pn~ (.1))
be the son of nd@m~ ( pm~ (a � %1)) which is labelled by .1 .

With all � %j for j=2, ..., k, j{i we proceed as before. K

Observation 39.3. Suppose m~ # T� is not a modal node, both pm~ and ndm~ are
defined and satisfy condition I1. For every son n~ of m~ we can define pn~ and ndn~ so
that I1 will be satisfied.

Proof. If m~ is not a modal node then only one formula, say ;, is reduced by the
rule applied in m~ . Let q= pm~ (;). Let n~ be a son of m~ and let # # L(n~ ) be one of the
formulas obtained by reducing ;. We have several cases depending on the type of
formula ;.

v If nd@m~ (q) is not a singleton then ;=�[�: [�]=L� (m̂), m̂ # nd@m~ (q)]. In this
case # is a disjunct of ;. Let pn~ (#)=q and let nd@n~ (q) be an appropriate subset of
nd@m~ (q). For every $ # L� (n~ ), ${# let pn~ ($)= pm~ ($) and nd@n~ ( pn~ ($))=nd@m~ ( pm~ ($)).

v If ;=+X . :̂(X) then we let pn~ (#) be the smallest priority not in the range of

pm~ and set nd@n~ ( pn~ (#)) to the root of T� . For every $ # L� (n~ ), ${# we proceed as
before.

v If not the previous cases, # # L� (m~ ) and pm~ (#)>pm~ (;) then for every $ # L� (n~ )
let pn~ ($)= pm~ ($) and nd@n~ ( pn~ ($))=nd@m~ ( pm~ ($)).
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v If not the previous cases, # � L� (m~ ) or pm~ (#)�pm~ (;) then pn~ (#)= pm~ (;) and
nd@n~ ( pn~ (#)) is the son of nd@m~ ( pm~ (;)) containing #. For all $ # L� (n~ ), ${# we proceed
as in the first case. K

The next step is to define a winning strategy in the game G(T� , T). We will write
ndm~ (q) for E&1(nd@m~ (q)) (recall that E: T � T� is the equivalence function). All
positions (m~ , m) reachable in a game played according to the strategy will have the
following property.

If m~ is a choice or modal node then (whenever defined) ndm~ (q) is either a
singleton or a set of all the (a)-sons of some node. Let Lm~ (q) stand for L(n) if
[n]=ndm~ (q) and let Lm~ (q)=[� %1 , ..., � %k] if ndm~ (q) is the set of all (a)-sons of
some node m and [(a � %1), ..., (a � %n)]�L(m) is the set of all the formulas of the
form (a � %) in L(m). With this definition we have the property

L(m)� .
q # Ran( pm~ ) & N

Lm~ (q) _ [�[+X . :̂(X)�.̂]: � # p&1
m~ (�)]. (I2)

Condition I2 allows us to define a function pm~ , m : L(m) � N _ [�]. For every
# # L(m) let pm~ , m(#) be the smallest priority q such that # # Lm~ (q); in case there is
no such q let pm~ , m(#)=�.

The strategy is described in the next three observations.

Observation 39.4. Assume the game is in a position (m~ , m) consisting of two
modal nodes and the condition I2 is satisfied. Suppose player I chooses a (a)-son n
of m. We can find a (a)-son n~ of m~ so that (i) condition I2 will be satisfied and (ii) if
; # L(n) is obtained from : # L(m) then pn~ , m(;)�pm~ , m(:).

Proof. Let n be a (a)-son of m. It is labelled by

[!] _ {� %: (a � %) # L(m), %{5=
for some (a � 5) # L(m) and ! # 5. Let q= pm~ , m(a � 5). If q=� we take a son of
m~ labelled

[![.̂�+ . :̂(X)]] _ {� %: (a � %) # L� (m~ ), %{5[.̂�+X . :̂(X)]= .

The case when q # N is represented in Fig. 5.

FIG. 5. Finding a (a)-son of m~ for a (a)-son of m.
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By I2 there is a (a)-son n$ of ndm~ (q) labelled

[!] _ {� %: (a � %) # L(ndm~ (q)), %{5= .

Using equivalence E we get (a)-son E(n$) of nd@m~ (q)=E(ndm~ (q)). It is labelled by

some [�] for � # 9 and (a � 9) # L� (nd@m~ (q)). By I1 we can take as n~ a (a)-son
of m~ labelled

[�] _ {� %: (a � %) # L� (m~ ), %{9= .

It is quite straightforward to show that (i) and (ii) are satisfied if we use the fact
that for every two choice nodes n̂1 , n̂2 of T� , whenever L� (n̂1)=L� (n̂2) then
L(E&1(n̂1))=L(E&1(n̂2)). We can assume this property by Observation 22.2. K

Observation 39.5. Assume the game is in a position (m~ , m) consisting of two
choice nodes and the condition I2 is satisfied. Suppose player I chooses a modal node
n~ near m~ . We can find a modal node n near m so that (i) the condition I2 will be
satisfied and (ii) the traces from m to n will be preserved. Preservation of traces
means that whenever there is a trace from : # L(m) to ; # L(n) and Y is the smallest,
in � +X . :̂(X) ordering, variable regenerated on the trace then either:

v pm~ , m(:)>pn~ , n(;) or

v pm~ , m(:)= pn~ , n(;)=q and when q # N there is a trace from : # L(ndm~ (q)) to
; # L(ndn~ (q)) or when q=� there is a trace from :[.̂�+X . :̂(X)] # L(m~ ) to
;[.̂�+X . :̂(X)] # L(n~ ). In both cases Y is the smallest regenerated variable on the
trace.

Proof. We will find n with the required properties by constructing a path to it
from m. In some sense n is determined by n~ and all ndn~ (q) for q # N. For every
q # Ran( pm~ ) & N let %q=[�: [�]=L� (m̂), m̂ # nd@m~ (q)]. By I1 we have

L� (m~ )={� %q : q # Ran( pm~ ) & N=_ p&1
m~ (�).

On the path to n~ there is a node s~ where exactly one disjunct is chosen from each
%q . Say its label is

L� (s~ )=[�q : q # Ran( pm~ ) & N] _ p&1
m~ (�)

for some �q # %q , (q # Ran( pm~ ) & N). For this node we can define nd@s~ (q) to be a

node from nd@m~ (q) labelled [�q]. As before we define nds~ (q)=E&1(nd@s~ (q)).
Switching to the other tableau, by I2 we have

L(m)� .
q # N

Lm~ (q) _ [�[+X . :̂(x)�.̂]: � # p&1
m~ (�)].
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FIG. 6. Finding a modal node n for the modal node n~ .

If ndm~ (q) is a singleton then �%q=�q and L(ndm~ (q))=L(nds~ (q)). Otherwise
Lm~ (q)=[�21 , ..., �2k] and L(nds~ (q))=[�21 , ..., $i , ...�2k] for some i=1, ..., k
and $i # 2i . First apply (or) rules from m to obtain a node s such that

L(s)� .
q # N

L(nds~ (q)) _ [�[+X . :̂(X)�.̂]: � # p&1
m~ (�)]. (6)

The obtained situation and the rest of the construction is represented in Fig. 6.
From s we will construct a path choosing one node at the time. For every con-
sidered node o we will define a priority function ps~ , o : L(o) � N _ [�]. We will
assume that for every considered node o and every � # L(o):

(I3)
If ps~ , o(�)=� then �[.�+X .:(X)] appears on the path from m~ to n~ ,

otherwise if ps~ , o(,)=q # N then � appears on the path from ndm~ (q) to

ndn~ (q)

Function ps~ , s is defined using (6) by letting ps~ , s(�) be the smallest q such that
. # L(nds~ (q)) or � if there is no such q. Actually it may happen that s does not
satisfy I3 or rather I3 does not make sense because Ran( pn~ ){Ran( pm~ ). Let us
extend nd@m~ and nd@n~ . The only element which can appear in Ran( pn~ )"Ran( pm~ ) is the
smallest priority q which does not appear in Ran( pm~ ). We take care of this by
extending the definition of nd@m~ and letting nd@m~ (q) be the root of T� . Let
q # Ran( pm~ )"Ran( pn~ ) and let 1�L� (n~ ) be the set of all the formulas to which there
is a trace from the unique formula of priority q in L� (m~ ). 1 is the label of some
modal node n near nd@m~ (q). Let nd@n~ (q)=n. As 1��[L� (nd@n~ (q$)): q$ # Ran( pn~ ), q$<q]
we know by Observation 22.2 that

ndn~ (q)��[L(ndn~ (q$)): q$ # Ran( pn~ ), q$<q]. (7)

With these extensions, the condition I3 is satisfied for the node s and we may
proceed with the construction of the path.
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v If � is not a disjunction then there is only one son o$ of o. Let �$ be the
result of reducing �. For every ; # L(o$), ;{�$ we let ps~ , o$(;)= ps~ , o(;). If �$ � L(o)
then let ps~ , o$(�$)= ps~ , o(�); otherwise let ps~ , o$(�$)=min[ ps~ , o(�), ps~ , o(�$)]. If
�{+X . :̂(X) then function ps~ , o$ satisfies the condition I3. If �=+X . :̂(X) then
�$=X and letting ps~ , o$(X)=� would be unsound with respect to I3. We let
ps~ , o$(X) be the smallest priority q not in Ran( pn~ ). This is sound as ndn~ (q) is a modal
node near the root of T.

v If �=: 6 ; then o has two sons o1 , o2 and we have to choose one of them.
If ps~ , o(�)=� then �[.̂�+X . :̂(X)] is on the path from n~ to m~ ; otherwise � appears
on the path from ndm~ ( ps~ , o(�)) to ndn~ ( ps~ , o(�)). We choose a son of o with the same
disjunct as the one appearing on the appropriate path. For the chosen o$ we define
ps~ , o$ as in the case of an unary rule. It should be easy to check that for so-defined
o$ and ps~ , o$ the condition I3 holds.

Repeating this procedure we arrive at a modal node n near m. Let us check that
condition I2 holds. Suppose � # L(n) and q= ps~ , n(�). Because n is a modal node,
� can be reducible only by application of (mod ) rule. By I3 if q=� then
�[.̂�+X . :̂(X)] # L� (n~ ); otherwise q # N and � # L(ndn~ (q)). In the latter case either
q # Ran( pn~ ) or by (7) we have q$ # Ran( pn~ ), q$�q with � # ndn~ (q$).

Finally it is easy to see that the traces are preserved. K

Observation 39.6. Suppose a position in the game is (N� , N) for N� being a set of
all the (a)-sons of some node m~ and N being a set of all the (a)-sons of some node
m. Suppose also that I2 holds for the pair (m~ , m). For every modal node o~ near some
n~ # N� we can find a modal node o near some n # N so that (i) condition I2 holds for
position (o~ , o) and (ii) the traces from m to o are preserved.

Proof. For every q # Ran( pn~ ) & N let %q=�[�: [�]=L(n~ ), n~ # nd@n~ (q)]. By I1
we have

L� (n~ )={� %q : q # Ran( pn~ ) & N=_ p&1
n~ (�).

On the way to o~ we reach a node s~ where exactly one formula �q is chosen from
each %q .

L� (s~ )=[�q : q # Ran( pm~ ) & N] _ p&1
n~ (�)

For this node we can define nd@s~ (q) to be a node from nd@m~ (q) labelled [�q]. As
before we define nds~ (q)=E&1(nd@s~ (q)).

Now L(nds~ (q))=[$1] _ [�22 , ..., �2k] and L(ndn~ (q)) is either the same set of
formulas or it is [�21 , ..., �2k] for some 21 % $1 .

We can find a choice node n # N and a descendant s of n such that

L(s)� .
q # N

L(nds~ (q)) _ [�[+X . :̂(X)�.̂]: � # p&1
m~ (�)].

From this point we can repeat the arguments from the previous observation. K
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Finally we show that the defined strategy is winning. Let us take some play of
G(T� , T) where II plays according to the strategy. By the three observations above
player II can always make a move so II cannot lose in a finite number of steps.
Assume that the play was infinite. The result of the play is two paths
P� =[n~ 0 , n~ 1 , ...] of T� and P=[n0 , n1 , ...] of T. If there is no +-trace on P then
player II wins, so assume that there is a +-trace on P.

By condition I2 for every choice or modal node ni of P we can define priority
pn~ i , ni . By trace preservation this priority cannot increase, hence after some index j
it is constant, say equal q.

If q=� then j=0 and for every k�0 by I2 we have T(nk)[.̂�+X . :̂(X)] # L� (n~ k).
By trace preservation we obtain a +-trace on P� going throughout these formulas.

If q # N then for k� j, by I2, we have T(nk) # L(ndn~ k(q)) which by trace preserva-
tion gives us a +-trace on the path P$=[ndn~ j (q), ndn~ j+1

(q), ...] of T. By equivalence

E we have a +-trace on the path P� =[nd@n~ j (q), nd@n~ j+1
(q), ...] of T� . By condition I1

we have a +-trace on P� which means that player II wins. K

We now summarise the case of the proof of Theorem 38 for .=+X .:(X). By the
induction assumption we have a disjunctive formula :̂(X) equivalent to :(X) and
know that :(X)�:̂(X) is provable. By Theorem 22, we a obtain a disjunctive for-
mula .̂ which has a tableau T� equivalent to some tableau T for +X . :̂(X). By
Theorem 19, formula .̂ is equivalent to .. By Lemma 39, T is a consequence of T� .
By Lemma 35, T� is a consequence of T. Hence, as the consequence relation is
transitive, T� is a consequence of T� . Now by Proposition 28, :̂(.̂) is a weakly
aconjunctive formula and .̂ is by definition a disjunctive formula. By Lemma 36,
:̂(.̂)�.̂ is provable. Then +X . :̂(X)�.̂ is provable by rule (K6) and .�+X . :̂(X)
is provable by the induction assumption. Hence .�.̂ is provable.

Case: .=&X .:(X). By the induction assumption we have an equivalent dis-
junctive formula :̂(X) and :(X)�:̂(X) is provable. By Theorem 22, we obtain a
disjunctive formula .̂ which has a tableau T� equivalent to some tableau T for
&X . :̂(X). Fortunately, by Proposition 28, &X . :̂(X) is a weakly aconjunctive formula
and by Lemma 35 T� is a consequence of T. Hence we can use Lemma 36 to show
that &X .:(X)�.̂ is provable.

Case: .=: 7 ;. By the induction assumption there are disjunctive formulas
:̂, ;� equivalent to : and ;, respectively, and such that both :�:̂ and ;�;� are
provable. Hence : 7 ;�:̂ 7 ;� is provable. By Theorem 22, there is a disjunctive
formula .̂ which has a tableau equivalent to some tableau for :̂ 7 ;� . Because, by
Proposition 28, :̂7 ;� is a weakly aconjunctive formula, we can, as in the case
before, use Lemma 36 to show that : 7 ;�.̂ is provable. K
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