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1. Introduction and motivation

The aim of these notes is to help the reader develop basic intuitions about the
properties of ultrafilters over sets with an eye to applications in modal logic. Ul-
trafilters are a very powerful tool which is also used in other areas of mathematics
and logic such as topology and model theory.

In sections 2.5 and 2.6 of [1], ultrafilters are introduced for two distinct purposes.
In section 2.5 the goal is to find m-saturated models. What this amounts to tech-
nically is that a Kripke model 〈W,R, V 〉 may have too few points. The solution is
to take a new and bigger set of points, viz. the set Uf(W ) of all ultrafilters over
W . We will see that there is a natural injective function f : W ↪→ Uf(W ), which
makes it a good starting point for an extension of 〈W,R, V 〉. Note that here we are
interested in using all ultrafilters over W .

In section 2.6 of [1], the objective is to construct a new big model N out of an
(infinite) bunch of ‘small’ ones, say M0,M1, . . . , such that N 
 φ iff there is a
majority of Mi such that Mi 
 φ. Ultrafilters are a tool that allows us to define
a precise mathematical notion of such a ‘majority model’, called an ultraproduct of
M0,M1, . . . . The key here is that we can let an ultrafilter ‘decide’ what counts as
a majority among the Mi. So when we are dealing with a specific ultraproduct of
models

∏
U Mi/F , we are concerned with one suitably chosen ultrafilter F over N

(or some other index set I) which tells us what counts as a majority of indices.

2. Filters

Definition 1. A filter over W is a collection of subsets F ⊆ P(W ) such that:
(1) W ∈ F ,
(2) X, Y ∈ F implies X ∩ Y ∈ F ,
(3) X ∈ F , Y ⊆ W and X ⊆ Y implies Y ∈ F .

We say that a filter F is proper if F 6= P(W ).

Exercise 2.1. Show that F is proper iff ∅ /∈ F .

Example. We give three ubiquitous examples of filters.
(1) We call {W} the trivial filter over W .
(2) Similarly, P(W ) is the improper filter over W .
(3) If W is infinite, the set

Cof(W ) := {X ⊆ W | W \X is finite}
of cofinite subsets of W is a proper filter over W (sometimes called the
Fréchet filter).
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Exercise 2.2. Show that the examples above are indeed filters. Why do we need W
to be infinite in the third example?

Exercise 2.3. Show that the intersection of a non-empty collection of filters is again
a filter.

Let X ⊆ P(W ) be a family of sets. Since P(W ) is a filter, we know that
S = {F | F is a filter and X ⊆ F} 6= ∅. By the exercise above, we know that
G =

⋂
S is a filter, so we may call G the filter generated by X ⊆ P(W ).

Definition 2. Let X ⊆ P(W ) be a non-empty family of sets.

X↑ := {Y ⊆ W | ∃n ∈ N∃X0, . . . , Xn ∈ X : X0 ∩X1 ∩ · · · ∩Xn ⊆ Y }.

Using the definition above we can give a more concrete characterization of the
filter generated by X : a set Y ⊆ W is in the filter generated by X iff there exists
a finite collection of X0, . . . , Xn ∈ X such that X0 ∩ · · · ∩Xn ⊆ Y . To put it more
precisely:

Proposition 1. If we let X ⊆ P(W ) be a non-empty family of sets then X↑ is the
filter generated by X .

Exercise 2.4. Prove Proposition 1.

We say that X has the finite intersection property if every finite intersection of
elements from X is non-empty.

Proposition 2. Let X ⊆ P(W ) be a non-empty family of sets. There exists a
proper filter F extending X iff X has the finite intersection property.

Exercise 2.5. Prove Proposition 2 above.

3. Ultrafilters

Definition 3. Let F be a proper filter over W . We call F
(1) an ultrafilter if for every X ⊆ W , either X ∈ F or W \X ∈ F ,
(2) a maximal filter if for every filter F ′ ⊇ F , we have either F ′ = F or

F ′ = P(W ),
(3) a prime filter if for all X, Y ⊆ W , if X ∪ Y ∈ F then either X ∈ F or

Y ∈ F .

Example (Principal ultrafilters). For every w ∈ W , πw := {X ⊆ W | w ∈ X} is
an ultrafilter called the principal ultrafilter generated by w.

Exercise 3.1. Show that πw is indeed an ultrafilter over W for any w ∈ W .

Thus the elements of W provide us with examples of ultrafilters. In fact, we often
think of the principal ultrafilters over W as a copy of W inside the set Uf(W ) of
all ultrafilters over W : consider the function f : W → Uf(W ), defined by w 7→ πw.

Exercise 3.2. Show that f : W → Uf(W ) is injective.

But what about maximal and prime filters? It turns out that we may think of
them as alternative characterizations of ultrafilters:

Proposition 3. Let F be a proper filter over W . The following are equivalent:
(1) F is an ultrafilter,
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(2) F is maximal,
(3) F is prime.

Exercise 3.3. Prove Proposition 3 above.

4. The Ultrafilter Theorem

Above we showed that the set of all ultrafilters over W is non-empty because it
has a ‘copy’ of W inside of it (the principal ultrafilters). Can we prove that there
are any other ultrafilters?

Theorem 4. Let F be a proper filter over W . Then there exists an ultrafilter F ′

extending F .

Proof sketch. Use Zorn’s Lemma on {G | G is a proper filter over W extending F}.
�

Exercise 4.1. Let F be an ultrafilter over W . Show that if there exists X ∈ F with
X finite then F is principal. Conclude that F is non-principal iff every X ∈ F is
infinite.

Exercise 4.2. Let F be an ultrafilter over an infinite set W . Show that F is non-
principal iff Cof(W ) ⊆ F . Conclude that at least one non-principal ultrafilter
exists.

These non-principal ultrafilters are the ‘new’ points we add to W .

Exercise 4.3. Show that any ultrafilter F over an infinite set W has uncountably
many elements.
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