Take-Home Exam AST: Solutions

67. Prove the following generalization of Theorem 4.10:

If € is well-founded and extensional on the set A, then there is a unique transitive set B such that
(B,g) 2 (4, ¢).

(This is called Mostowski’s Collapsing Lemma, cf. Lemma 7.52 p. 79. Erasing the well-foundedness
condition results in a statement —an example of an Anti- Foundation Aziom— that contradicts
the Foundation Axiom.)

Generalize to the following theorem: If e, next to satisfying the conditions from Theorem 4.13, is
extensional on the class U (elements in U with the same e-predecessors are the same), then there
is a unique transitive class T such that (U, ¢) = (T, €).

Solution.

Let ¢ be a well-founded and extensional relation on a class U such that for alla € U, {b € U | bea}
is a set. Then by applying Theorem 4.13 to the operator H with H(f) = Ran(f) for all functions
f, we obtain a unique operator F' : U — V such that for all a € U,

(%) F(a) ={F()|beU,bea}

Set T'= F[U]. Then T is transitive and F' is an isomorphism between (U, ¢) and (T. €):
1. F' is surjective, by definition of 7.
2. T is transitive, for if z € T, then for some a € U, z = F(a) = {F(b) | b€ U,bea} C T.

3. F is injective. For otherwise, let a € U be a e-minimal element such that 3bc U : a #b
A F(a) = F(b) (such an element exists, since e is well-founded on U). Now for any x € U
with zea, if F(z) = F(y) for some y € U, then x = y (because of the ¢-minimality of a).
Since {F(z) | x € U,zxea} = F(a) = F(b) = {F(y) | y € U,yeb}. it follows that for any
xeaor yebwe can pick an yeb or z e a with F(x) = F(y) and therefore 2 = y. We conclude
that for all z € U, xea <= xeb, contradicting the extensionality of ¢ on U.

4. Fis an isomorphy. For z,y € U, if x €y, then by definition of F, F(x) € F(y). Conversely, if
F(x) € F(y), then for some z € U with zey, F(z) = F(z), so by injectivity of F', x = zey.

For any transitive class 77 and any isomorphism F’ : (U, ) — (T". €), F’ must satisfy (*), and
by uniqueness of F' this implies F/ = F and 7" = F'[U] = T. So T is unique.

Mostowski’s Collapsing Lemma is merely the restriction of the above theorem to the case where
U is a set. Note that in that case, the condition that that for all a € U, {b € U | bea} C Uis a
set, is trivially satisfied. That T is a set follows from Substitution.

If we erase the wellfoundedness condition, we could apply Mostowski’s Collapsing Lemma to the
set A = {0} and the relation ¢ = {(0,0)}, to obtain a transitive set T = {z} with = {z},
contradicting the Foundation Axiom. O

104 (H. Rubin) Assume the Foundation Axiom. Show: AC is equivalent with the statement that
powersets of ordinals have well-orderings.

Solution.

The one implication is trivial, Since AC implies all sets have well-orderings, one direction is trivial.
So we will assume that powersets of ordinals have well-orderings, and try to show AC.



Let a be an arbitrary set. From the Foundation axiom, we know that a C V,; for some ordinal k.
Let A = I'(Vy), and fix a well-ordering <\ of ©()),. We will use this ordening to recursively
define well-orderings <, for all a < k. Then <, restricted to a will well-order a.

1.
2.

For Vjy, let <¢ be the trivial ordering.

For a+1, note that since V,, <1 A, the well-ordering <, induces an order-preserving injection
¢ Vo, <o) — (A, €), which in turn induces an injection ¥q41: (Vo) 3 a — dalal € p(N).
If we define the ordering <441 of V41 by setting, for a,b € V41,

a <a+1 b =def %H(a) <p(N) ¢a+1(b)
then (Vay1, <a+1) is order-isomorphic to (1a+1[Va+1], <p(n)), and hence a well-ordering.
For limits vy, we can define a well-ordering <., by setting, for a,b € V,,
0=y b Zaer (p(@)<pB) V (H@)=p(B) A (@ =p(aysr )

It is easily seen that <. is a linear ordering, and that for any subset X C V., if ¥ =
Bottom(X), then the <,y)-minimal element of Y is also the <, minimal element of X.

Hence <, is a well-ordering. O
113
1. Give a direct proof, using AC, but not using Lemma 6.19, that a countable union of countable
sets is countable. In particular, wy is not a countable union of countable sets. (It is known
that this is unprovable without AC).
2. Show without using AC that wy is not a countable union of countable sets.
Solution.
1. Let (A;j)icw be a countable collection of countable sets, and let A = (J,;., A;. Using AC,
pick for each i € w an injection ¢; : A; — w. Now we can define the injection ¢ : A — w X w
by setting, for a € A, ¢(a) = (iq, ¢i, (a)), where i, is the least number such that a € A;,.
Since by section 4.8 there is an injection v : w X w — w, it follows that o ¢ : A — w is an
injection, and hence A is countable.
2. Let (A;)iew be a countable collection of countable sets, and assume wy = (J,¢,, 4i. For any

1 € w, A; is a set of ordinals ordered by €, of countable order-type «;. This means that
without using AC we can define canonical bijections ¢; : A; — «; C w;. Now we can define
the injection ¢ : wa — w X wy by setting, for § € wa, G(&) = (ie, Ps (§)), where i¢ is the least
number such that £ € A;,. Since by section 4.8 there is an injection ¥ : w1 X w1 — wy, it
follows that 1 o ¢ : wy — w1 is an injection, a contradiction. ([l

146 An “w-incompleteness phenomenon”.

1.

The properties of Def from Corollary 7.17 suffice to show, for every specific natural number
n, that L,, = V,,.

Show: if ZF is consistent, then it stays consistent upon the addition of (i) the properties of
Def from Corollary 7.17 (not the definition of Def!), and (ii) the statement In € w(L, #V,,).

Solution.

1.

By Corollary 7.18 it is possible to show, for any specific natural number k, that if B C A
has cardinality < k, then B € Def(A4). Now let n be a specific natural number and let
k = |Vy,|, then it follows that for all ¢ < n and all B C V;, B € Def(V;). Hence for all
i < n, Def(V;) = (Vi) = Vi41, and by induction on 4, for all i < n L, = V;. In particular,
L, =V,.



2. By the Compactness Theorem, it suffices to show that any finite collection of instances of
Corollary 7.17 is consistent with ZF + 3n € w(L,, # V,,). So let V be a model of ZF, and
let @1, @5, ..., Pk be a collection of formulas, using free variables a1, ..., a,,. We will assign
the language symbol Def an interpretation Def™ such that for all sets A,

(a) Def(A) C p(A)
(b) Fori <k and ai,...,am € A, {a € A| ®2(a,a1,...,am)} € Def*(A)
(¢) In € w(ln # 9(Vn)).

The interpretation itself is straightforward: simply set
Def*(A) = {{a € A| ®(a,a1,...,am)} | i < k,a1,...,am € A}

This satisfies our first two conditions by definition. As for the third, note that |Def™(A)| <
k| A|™, so if we pick n such that k|V,|™ < 2!Vl then Def*(V,,) € p(V,) = Vyi1, and as a
consequence Ly, 1 = Def* (L) C Def*(V,,) € V1. O

155 Show that ZF (provided consistent) is not finitely axiomatizable over Zermelo set theory Z
(axiomatized by all axioms except Substitution). That is: there is no sentence ® consistent with
Z such that Z+® proves (all instances of) the Substitution Axiom.

Solution.

Suppose that ® is a sentence consistent with Z such that such that Z4+® proves (all instances of)
the Substitution Axiom. Then there exist models of Z+®, and any such model is a model of ZF.
ZF proves that if (& A Power A Infinity) holds, then (by Reflection) there exists an ordinal o such
that (® A Power A Infinity) hold in V,. Now if the Power and Infinity Axioms hold, then o must
be a limit ordinal > w, and then V, must be a model of Z as well as of ®. So any model V of
7Z+® must contain an ordinal « such that V is a model of Z+®.

So let 'V be a model of Z+®, and let a € OR be the smallest ordinal such that V, is a model
of Z+®. Since V, is a model of Z+®, it must contain an ordinal § < « such that VZ“ is also a

model of Z+®. It is easily seen that V;’“ = Vg, contradicting the minimality of a. O
189 Show:

1. Every X; statement provable in ZFC (or ZF+V = L) is also provable in ZF.

2. The same thing holds for statements of the form Vo€ OR ®(«) where ® is ;.

Solution.

The first statement is merely a special case of the second statement (where the ordinal « is not
used in ®). So assume that ® is ¥, and that Vo€ OR ®(«) is provable in ZFC or ZF+V = L..
Let V be a model of ZF. Then LV is a model of ZFC and of ZF+V =L, so LY | Va€OR &(«).

Since ORE" = ORY and since by upward persistence we have V = Va € OR(®Y(a) — @(a)), it
follows that V |=Va € OR ®(«). This holds for all models of ZF, so ZF proves Va € OR ®(«). O



