
Take-Home Exam AST: Solutions

67. Prove the following generalization of Theorem 4.10:
If ε is well-founded and extensional on the set A, then there is a unique transitive set B such that
(B,∈) ∼= (A, ε ).
(This is called Mostowski’s Collapsing Lemma, cf. Lemma 7.52 p. 79. Erasing the well-foundedness
condition results in a statement —an example of an Anti-Foundation Axiom— that contradicts
the Foundation Axiom.)
Generalize to the following theorem: If ε , next to satisfying the conditions from Theorem 4.13, is
extensional on the class U (elements in U with the same ε -predecessors are the same), then there
is a unique transitive class T such that (U, ε ) ∼= (T,∈).
Solution.

Let ε be a well-founded and extensional relation on a classU such that for all a ∈ U, {b ∈ U | b ε a}
is a set. Then by applying Theorem 4.13 to the operator H with H(f) = Ran(f) for all functions
f , we obtain a unique operator F : U→ V such that for all a ∈ U,

(∗) F (a) = {F (b) | b ∈ U, b ε a}

Set T = F [U]. Then T is transitive and F is an isomorphism between (U, ε ) and (T. ∈):

1. F is surjective, by definition of T .

2. T is transitive, for if x ∈ T , then for some a ∈ U, x = F (a) = {F (b) | b ∈ U, b ε a} ⊂ T .

3. F is injective. For otherwise, let a ∈U be a ε -minimal element such that ∃b ∈U : a 6= b
∧ F (a) = F (b) (such an element exists, since ε is well-founded on U). Now for any x ∈ U

with x ε a, if F (x) = F (y) for some y ∈ U, then x = y (because of the ε -minimality of a).
Since {F (x) | x ∈ U, x ε a} = F (a) = F (b) = {F (y) | y ∈ U, y ε b}. it follows that for any
x ε a or y ε b we can pick an y ε b or x ε a with F (x) = F (y) and therefore x = y. We conclude
that for all x ∈ U, x ε a ⇐⇒ x ε b, contradicting the extensionality of ε on U.

4. F is an isomorphy. For x, y ∈ U, if x ε y, then by definition of F , F (x) ∈ F (y). Conversely, if
F (x) ∈ F (y), then for some z ∈ U with z ε y, F (z) = F (x), so by injectivity of F , x = z ε y.

For any transitive class T ′ and any isomorphism F ′ : (U, ε ) → (T ′. ∈), F ′ must satisfy (*), and
by uniqueness of F this implies F ′ = F and T ′ = F ′[U] = T . So T is unique.
Mostowski’s Collapsing Lemma is merely the restriction of the above theorem to the case where
U is a set. Note that in that case, the condition that that for all a ∈ U, {b ∈ U | b ε a} ⊂ U is a
set, is trivially satisfied. That T is a set follows from Substitution.
If we erase the wellfoundedness condition, we could apply Mostowski’s Collapsing Lemma to the
set A = {0} and the relation ε = {(0, 0)}, to obtain a transitive set T = {x} with x = {x},
contradicting the Foundation Axiom. ¤

104 (H. Rubin) Assume the Foundation Axiom. Show: AC is equivalent with the statement that
powersets of ordinals have well-orderings.
Solution.

The one implication is trivial, Since AC implies all sets have well-orderings, one direction is trivial.
So we will assume that powersets of ordinals have well-orderings, and try to show AC.



Let a be an arbitrary set. From the Foundation axiom, we know that a ⊂ Vκ for some ordinal κ.
Let λ = Γ(Vκ), and fix a well-ordering ≺℘(λ) of ℘(λ),. We will use this ordening to recursively
define well-orderings ≺α for all α ≤ κ. Then ≺κ restricted to a will well-order a.

1. For V0, let ≺0 be the trivial ordering.

2. For α+1, note that since Vα <1 λ, the well-ordering ≺α induces an order-preserving injection
φα : (Vα,≺α)→ (λ,∈), which in turn induces an injection ψα+1 : ℘(Vα) 3 a→ φα[a] ∈ ℘(λ).
If we define the ordering ≺α+1 of Vα+1 by setting, for a, b ∈ Vα+1,

a ≺α+1 b ≡def ψα+1(a) ≺℘(λ) ψα+1(b)

then (Vα+1,≺α+1) is order-isomorphic to (ψα+1[Vα+1],≺℘(λ)), and hence a well-ordering.

3. For limits γ, we can define a well-ordering ≺γ by setting, for a, b ∈ Vγ ,

a ≺γ b ≡def (ρ(a)<ρ(b)) ∨ ((ρ(a)=ρ(b)) ∧ (a ≺ρ(a)+1 b))

It is easily seen that ≺γ is a linear ordering, and that for any subset X ⊂ Vγ , if Y =
Bottom(X), then the ≺ρ(Y )-minimal element of Y is also the ≺γ minimal element of X.
Hence ≺γ is a well-ordering. ¤

113

1. Give a direct proof, using AC, but not using Lemma 6.19, that a countable union of countable
sets is countable. In particular, ω1 is not a countable union of countable sets. (It is known
that this is unprovable without AC).

2. Show without using AC that ω2 is not a countable union of countable sets.

Solution.

1. Let (Ai)i∈ω be a countable collection of countable sets, and let A =
⋃

i∈ω Ai. Using AC,
pick for each i ∈ ω an injection φi : Ai → ω. Now we can define the injection φ : A→ ω×ω
by setting, for a ∈ A, φ(a) = (ia, φia(a)), where ia is the least number such that a ∈ Aia .
Since by section 4.8 there is an injection ψ : ω × ω → ω, it follows that ψ ◦ φ : A→ ω is an
injection, and hence A is countable.

2. Let (Ai)i∈ω be a countable collection of countable sets, and assume ω2 =
⋃

i∈ω Ai. For any
i ∈ ω, Ai is a set of ordinals ordered by ∈, of countable order-type αi. This means that
without using AC we can define canonical bijections φi : Ai → αi ⊂ ω1. Now we can define
the injection φ : ω2 → ω× ω1 by setting, for ξ ∈ ω2, φ(ξ) = (iξ, φiξ(ξ)), where iξ is the least
number such that ξ ∈ Aiξ . Since by section 4.8 there is an injection ψ : ω1 × ω1 → ω1, it
follows that ψ ◦ φ : ω2 → ω1 is an injection, a contradiction. ¤

146 An “ω-incompleteness phenomenon”.

1. The properties of Def from Corollary 7.17 suffice to show, for every specific natural number
n, that Ln = Vn.

2. Show: if ZF is consistent, then it stays consistent upon the addition of (i) the properties of
Def from Corollary 7.17 (not the definition of Def !), and (ii) the statement ∃n∈ω(Ln 6=Vn).

Solution.

1. By Corollary 7.18 it is possible to show, for any specific natural number k, that if B ⊂ A

has cardinality ≤ k, then B ∈ Def(A). Now let n be a specific natural number and let
k = |Vn|, then it follows that for all i ≤ n and all B ⊂ Vi, B ∈ Def(Vi). Hence for all
i ≤ n, Def(Vi) = ℘(Vi) = Vi+1, and by induction on i, for all i ≤ n Li = Vi. In particular,
Ln = Vn.



2. By the Compactness Theorem, it suffices to show that any finite collection of instances of
Corollary 7.17 is consistent with ZF + ∃n ∈ ω(Ln 6= Vn). So let V be a model of ZF, and
let Φ1, Φ2, . . . , Φk be a collection of formulas, using free variables a1, . . . , am. We will assign
the language symbol Def an interpretation Def∗ such that for all sets A,

(a) Def∗(A) ⊂ ℘(A)

(b) For i ≤ k and a1, . . . , am ∈ A, {a ∈ A | Φ
A
i (a, a1, . . . , am)} ∈ Def

∗(A)

(c) ∃n ∈ ω(Ln 6= ℘(Vn)).

The interpretation itself is straightforward: simply set

Def∗(A) =
{

{a ∈ A | ΦAi (a, a1, . . . , am)} | i ≤ k, a1, . . . , am ∈ A
}

This satisfies our first two conditions by definition. As for the third, note that |Def∗(A)| ≤
k|A|m, so if we pick n such that k|Vn|

m < 2|Vn|, then Def∗(Vn) ( ℘(Vn) = Vn+1, and as a
consequence Ln+1 = Def

∗(Ln) ⊂ Def
∗(Vn) ( Vn+1. ¤

155 Show that ZF (provided consistent) is not finitely axiomatizable over Zermelo set theory Z
(axiomatized by all axioms except Substitution). That is: there is no sentence Φ consistent with
Z such that Z+Φ proves (all instances of) the Substitution Axiom.
Solution.

Suppose that Φ is a sentence consistent with Z such that such that Z+Φ proves (all instances of)
the Substitution Axiom. Then there exist models of Z+Φ, and any such model is a model of ZF.
ZF proves that if (Φ ∧ Power ∧ Infinity) holds, then (by Reflection) there exists an ordinal α such
that (Φ ∧ Power ∧ Infinity) hold in Vα. Now if the Power and Infinity Axioms hold, then α must
be a limit ordinal > ω, and then Vα must be a model of Z as well as of Φ. So any model V of
Z+Φ must contain an ordinal α such that Vα is a model of Z+Φ.
So let V be a model of Z+Φ, and let α ∈ OR be the smallest ordinal such that Vα is a model
of Z+Φ. Since Vα is a model of Z+Φ, it must contain an ordinal β < α such that VVα

β is also a

model of Z+Φ. It is easily seen that VVα

β = Vβ , contradicting the minimality of α. ¤

189 Show:

1. Every Σ1 statement provable in ZFC (or ZF+V = L) is also provable in ZF.

2. The same thing holds for statements of the form ∀α∈OR Φ(α) where Φ is Σ1.

Solution.

The first statement is merely a special case of the second statement (where the ordinal α is not
used in Φ). So assume that Φ is Σ1, and that ∀α∈OR Φ(α) is provable in ZFC or ZF+V = L..
Let V be a model of ZF. Then LV is a model of ZFC and of ZF+V = L, so LV |= ∀α∈ORΦ(α).

Since ORL
V

= ORV and since by upward persistence we have V |= ∀α∈OR(ΦL(α) → Φ(α)), it
follows that V |= ∀α∈OR Φ(α). This holds for all models of ZF, so ZF proves ∀α∈OR Φ(α). ¤


