## Take-Home Exam AST: Solutions

67. Prove the following generalization of Theorem 4.10:

If $\varepsilon$ is well-founded and extensional on the set $A$, then there is a unique transitive set $B$ such that $(B, \in) \cong(A, \varepsilon)$.
(This is called Mostowski's Collapsing Lemma, cf. Lemma 7.52 p. 79. Erasing the well-foundedness condition results in a statement -an example of an Anti-Foundation Axiom- that contradicts the Foundation Axiom.)
Generalize to the following theorem: If $\varepsilon$, next to satisfying the conditions from Theorem 4.13, is extensional on the class $\mathbf{U}$ (elements in $\mathbf{U}$ with the same $\varepsilon$-predecessors are the same), then there is a unique transitive class $T$ such that $(\mathbf{U}, \varepsilon) \cong(T, \in)$.
Solution.
Let $\varepsilon$ be a well-founded and extensional relation on a class $\mathbf{U}$ such that for all $a \in \mathbf{U},\{b \in \mathbf{U} \mid b \varepsilon a\}$ is a set. Then by applying Theorem 4.13 to the operator $H$ with $H(f)=\operatorname{Ran}(f)$ for all functions $f$, we obtain a unique operator $F: \mathbf{U} \rightarrow \mathbf{V}$ such that for all $a \in \mathbf{U}$,

$$
\begin{equation*}
F(a)=\{F(b) \mid b \in \mathbf{U}, b \varepsilon a\} \tag{*}
\end{equation*}
$$

Set $T=F[\mathbf{U}]$. Then $T$ is transitive and $F$ is an isomorphism between $(\mathbf{U}, \varepsilon)$ and $(T . \in)$ :

1. $F$ is surjective, by definition of $T$.
2. $T$ is transitive, for if $x \in T$, then for some $a \in \mathbf{U}, x=F(a)=\{F(b) \mid b \in \mathbf{U}, b \in a\} \subset T$.
3. $F$ is injective. For otherwise, let $a \in \mathbf{U}$ be a $\varepsilon$-minimal element such that $\exists b \in \mathbf{U}: a \neq b$ $\wedge F(a)=F(b)$ (such an element exists, since $\varepsilon$ is well-founded on $\mathbf{U}$ ). Now for any $x \in \mathbf{U}$ with $x \in a$, if $F(x)=F(y)$ for some $y \in \mathbf{U}$, then $x=y$ (because of the $\varepsilon$-minimality of $a$ ). Since $\{F(x) \mid x \in \mathbf{U}, x \varepsilon a\}=F(a)=F(b)=\{F(y) \mid y \in \mathbf{U}, y \varepsilon b\}$. it follows that for any $x \varepsilon a$ or $y \varepsilon b$ we can pick an $y \varepsilon b$ or $x \varepsilon a$ with $F(x)=F(y)$ and therefore $x=y$. We conclude that for all $x \in \mathbf{U}, x \varepsilon a \Longleftrightarrow x \varepsilon b$, contradicting the extensionality of $\varepsilon$ on $\mathbf{U}$.
4. $F$ is an isomorphy. For $x, y \in \mathbf{U}$, if $x \varepsilon y$, then by definition of $F, F(x) \in F(y)$. Conversely, if $F(x) \in F(y)$, then for some $z \in \mathbf{U}$ with $z \varepsilon y, F(z)=F(x)$, so by injectivity of $F, x=z \varepsilon y$.

For any transitive class $T^{\prime}$ and any isomorphism $F^{\prime}:(\mathbf{U}, \varepsilon) \rightarrow\left(T^{\prime} . \in\right), F^{\prime}$ must satisfy (*), and by uniqueness of $F$ this implies $F^{\prime}=F$ and $T^{\prime}=F^{\prime}[\mathbf{U}]=T$. So $T$ is unique.
Mostowski's Collapsing Lemma is merely the restriction of the above theorem to the case where $\mathbf{U}$ is a set. Note that in that case, the condition that that for all $a \in \mathbf{U},\{b \in \mathbf{U} \mid b \varepsilon a\} \subset \mathbf{U}$ is a set, is trivially satisfied. That $T$ is a set follows from Substitution.
If we erase the wellfoundedness condition, we could apply Mostowski's Collapsing Lemma to the set $A=\{0\}$ and the relation $\varepsilon=\{(0,0)\}$, to obtain a transitive set $T=\{x\}$ with $x=\{x\}$, contradicting the Foundation Axiom.
104 (H. Rubin) Assume the Foundation Axiom. Show: AC is equivalent with the statement that powersets of ordinals have well-orderings.
Solution.
The one implication is trivial, Since AC implies all sets have well-orderings, one direction is trivial. So we will assume that powersets of ordinals have well-orderings, and try to show AC.

Let $a$ be an arbitrary set. From the Foundation axiom, we know that $a \subset V_{\kappa}$ for some ordinal $\kappa$. Let $\lambda=\Gamma\left(V_{\kappa}\right)$, and fix a well-ordering $\prec_{\wp(\lambda)}$ of $\wp(\lambda)$,. We will use this ordening to recursively define well-orderings $\prec_{\alpha}$ for all $\alpha \leq \kappa$. Then $\prec_{\kappa}$ restricted to $a$ will well-order $a$.

1. For $V_{0}$, let $\prec_{0}$ be the trivial ordering.
2. For $\alpha+1$, note that since $V_{\alpha}<_{1} \lambda$, the well-ordering $\prec_{\alpha}$ induces an order-preserving injection $\phi_{\alpha}:\left(V_{\alpha}, \prec_{\alpha}\right) \rightarrow(\lambda, \in)$, which in turn induces an injection $\psi_{\alpha+1}: \wp\left(V_{\alpha}\right) \ni a \rightarrow \phi_{\alpha}[a] \in \wp(\lambda)$. If we define the ordering $\prec_{\alpha+1}$ of $V_{\alpha+1}$ by setting, for $a, b \in V_{\alpha+1}$,

$$
a \prec_{\alpha+1} b \equiv_{\text {def }} \quad \psi_{\alpha+1}(a) \prec_{\wp( }(\lambda) \psi_{\alpha+1}(b)
$$

then $\left(V_{\alpha+1}, \prec_{\alpha+1}\right)$ is order-isomorphic to $\left(\psi_{\alpha+1}\left[V_{\alpha+1}\right], \prec_{\wp(\lambda)}\right)$, and hence a well-ordering.
3. For limits $\gamma$, we can define a well-ordering $\prec_{\gamma}$ by setting, for $a, b \in V_{\gamma}$,

$$
a \prec_{\gamma} b \equiv_{\text {def }}(\rho(a)<\rho(b)) \vee\left((\rho(a)=\rho(b)) \wedge\left(a \prec_{\rho(a)+1} b\right)\right)
$$

It is easily seen that $\prec_{\gamma}$ is a linear ordering, and that for any subset $X \subset V_{\gamma}$, if $Y=$ $\operatorname{Bottom}(X)$, then the $\prec_{\rho(Y)}$-minimal element of $Y$ is also the $\prec_{\gamma}$ minimal element of $X$. Hence $\prec_{\gamma}$ is a well-ordering.

113

1. Give a direct proof, using AC, but not using Lemma 6.19, that a countable union of countable sets is countable. In particular, $\omega_{1}$ is not a countable union of countable sets. (It is known that this is unprovable without AC).
2. Show without using $A C$ that $\omega_{2}$ is not a countable union of countable sets.

## Solution.

1. Let $\left(A_{i}\right)_{i \in \omega}$ be a countable collection of countable sets, and let $A=\bigcup_{i \in \omega} A_{i}$. Using AC, pick for each $i \in \omega$ an injection $\phi_{i}: A_{i} \rightarrow \omega$. Now we can define the injection $\phi: A \rightarrow \omega \times \omega$ by setting, for $a \in A, \phi(a)=\left(i_{a}, \phi_{i_{a}}(a)\right)$, where $i_{a}$ is the least number such that $a \in A_{i_{a}}$. Since by section 4.8 there is an injection $\psi: \omega \times \omega \rightarrow \omega$, it follows that $\psi \circ \phi: A \rightarrow \omega$ is an injection, and hence $A$ is countable.
2. Let $\left(A_{i}\right)_{i \in \omega}$ be a countable collection of countable sets, and assume $\omega_{2}=\bigcup_{i \in \omega} A_{i}$. For any $i \in \omega, A_{i}$ is a set of ordinals ordered by $\in$, of countable order-type $\alpha_{i}$. This means that without using $A C$ we can define canonical bijections $\phi_{i}: A_{i} \rightarrow \alpha_{i} \subset \omega_{1}$. Now we can define the injection $\phi: \omega_{2} \rightarrow \omega \times \omega_{1}$ by setting, for $\xi \in \omega_{2}, \phi(\xi)=\left(i_{\xi}, \phi_{i_{\xi}}(\xi)\right)$, where $i_{\xi}$ is the least number such that $\xi \in A_{i_{\xi}}$. Since by section 4.8 there is an injection $\psi: \omega_{1} \times \omega_{1} \rightarrow \omega_{1}$, it follows that $\psi \circ \phi: \omega_{2} \rightarrow \omega_{1}$ is an injection, a contradiction.

146 An " $\omega$-incompleteness phenomenon".

1. The properties of Def from Corollary 7.17 suffice to show, for every specific natural number $n$, that $\mathrm{L}_{n}=\mathbf{V}_{n}$.
2. Show: if ZF is consistent, then it stays consistent upon the addition of (i) the properties of Def from Corollary 7.17 ( not the definition of Def!), and (ii) the statement $\exists n \in \omega\left(\mathrm{~L}_{n} \neq \mathbf{V}_{n}\right)$.

Solution.

1. By Corollary 7.18 it is possible to show, for any specific natural number $k$, that if $B \subset A$ has cardinality $\leq k$, then $B \in \operatorname{Def}(A)$. Now let $n$ be a specific natural number and let $k=\left|\mathbf{V}_{n}\right|$, then it follows that for all $i \leq n$ and all $B \subset V_{i}, B \in \operatorname{Def}\left(V_{i}\right)$. Hence for all $i \leq n, \operatorname{Def}\left(V_{i}\right)=\wp\left(V_{i}\right)=V_{i+1}$, and by induction on $i$, for all $i \leq n \mathrm{~L}_{i}=\mathbf{V}_{i}$. In particular, $\mathrm{L}_{n}=\mathbf{V}_{n}$.
2. By the Compactness Theorem, it suffices to show that any finite collection of instances of Corollary 7.17 is consistent with $\mathrm{ZF}+\exists n \in \omega\left(\mathrm{~L}_{n} \neq \mathbf{V}_{n}\right)$. So let $\mathbf{V}$ be a model of ZF, and let $\Phi_{1}, \Phi_{2}, \ldots, \Phi_{k}$ be a collection of formulas, using free variables $a_{1}, \ldots, a_{m}$. We will assign the language symbol Def an interpretation Def* such that for all sets $A$,
(a) $\operatorname{Def}^{*}(A) \subset \wp(A)$
(b) For $i \leq k$ and $a_{1}, \ldots, a_{m} \in A,\left\{a \in A \mid \Phi_{i}^{A}\left(a, a_{1}, \ldots, a_{m}\right)\right\} \in \operatorname{Def}^{*}(A)$
(c) $\exists n \in \omega\left(\mathrm{~L}_{n} \neq \wp\left(\mathbf{V}_{n}\right)\right)$.

The interpretation itself is straightforward: simply set

$$
\operatorname{Def}^{*}(A)=\left\{\left\{a \in A \mid \Phi_{i}^{A}\left(a, a_{1}, \ldots, a_{m}\right)\right\} \mid i \leq k, a_{1}, \ldots, a_{m} \in A\right\}
$$

This satisfies our first two conditions by definition. As for the third, note that $\left|\operatorname{Def}^{*}(A)\right| \leq$ $k|A|^{m}$, so if we pick $n$ such that $k\left|\mathbf{V}_{n}\right|^{m}<2^{\left|\mathbf{V}_{n}\right|}$, then $\operatorname{Def}^{*}\left(\mathbf{V}_{n}\right) \subsetneq \wp\left(\mathbf{V}_{n}\right)=V_{n+1}$, and as a consequence $\mathrm{L}_{n+1}=\operatorname{Def}^{*}\left(\mathrm{~L}_{n}\right) \subset \operatorname{Def}^{*}\left(\mathbf{V}_{n}\right) \subsetneq V_{n+1}$.

155 Show that ZF (provided consistent) is not finitely axiomatizable over Zermelo set theory Z (axiomatized by all axioms except Substitution). That is: there is no sentence $\Phi$ consistent with Z such that $\mathrm{Z}+\Phi$ proves (all instances of) the Substitution Axiom.

## Solution.

Suppose that $\Phi$ is a sentence consistent with Z such that such that $\mathrm{Z}+\Phi$ proves (all instances of) the Substitution Axiom. Then there exist models of $Z+\Phi$, and any such model is a model of ZF. ZF proves that if ( $\Phi \wedge$ Power $\wedge$ Infinity) holds, then (by Reflection) there exists an ordinal $\alpha$ such that ( $\Phi \wedge$ Power $\wedge$ Infinity) hold in $\mathbf{V}_{\alpha}$. Now if the Power and Infinity Axioms hold, then $\alpha$ must be a limit ordinal $>\omega$, and then $\mathbf{V}_{\alpha}$ must be a model of Z as well as of $\Phi$. So any model $\mathbf{V}$ of $\mathrm{Z}+\Phi$ must contain an ordinal $\alpha$ such that $\mathbf{V}_{\alpha}$ is a model of $\mathrm{Z}+\Phi$.
So let $\mathbf{V}$ be a model of $\mathrm{Z}+\Phi$, and let $\alpha \in$ OR be the smallest ordinal such that $\mathbf{V}_{\alpha}$ is a model of $\mathbf{Z}+\Phi$. Since $\mathbf{V}_{\alpha}$ is a model of $\mathbf{Z}+\Phi$, it must contain an ordinal $\beta<\alpha$ such that $\mathbf{V}_{\beta}^{\mathbf{V}_{\alpha}}$ is also a model of $\mathrm{Z}+\Phi$. It is easily seen that $\mathbf{V}_{\beta} \mathbf{V}_{\alpha}=\mathbf{V}_{\beta}$, contradicting the minimality of $\alpha$.

## 189 Show:

1. Every $\Sigma_{1}$ statement provable in $\mathrm{ZFC}($ or $\mathrm{ZF}+\mathbf{V}=\mathbf{L})$ is also provable in ZF .
2. The same thing holds for statements of the form $\forall \alpha \in \operatorname{OR} \Phi(\alpha)$ where $\Phi$ is $\Sigma_{1}$.

## Solution.

The first statement is merely a special case of the second statement (where the ordinal $\alpha$ is not used in $\Phi$ ). So assume that $\Phi$ is $\Sigma_{1}$, and that $\forall \alpha \in \mathrm{OR} \Phi(\alpha)$ is provable in ZFC or $\mathrm{ZF}+\mathbf{V}=\mathbf{L}$. Let $\mathbf{V}$ be a model of ZF. Then $\mathbf{L}^{\mathbf{V}}$ is a model of ZFC and of ZF+V $=\mathbf{L}$, so $\mathbf{L}^{\mathbf{V}} \models \forall \alpha \in \operatorname{OR} \Phi(\alpha)$. Since $\mathrm{OR}^{\mathbf{L}^{\mathbf{V}}}=\mathrm{OR}^{\mathbf{V}}$ and since by upward persistence we have $\mathbf{V} \models \forall \alpha \in \operatorname{OR}\left(\Phi^{\mathbf{L}}(\alpha) \rightarrow \Phi(\alpha)\right)$, it follows that $\mathbf{V} \models \forall \alpha \in$ OR $\Phi(\alpha)$. This holds for all models of ZF, so ZF proves $\forall \alpha \in \operatorname{OR} \Phi(\alpha)$.

