Take-Home Exam AST: Solutions

67. Prove the following generalization of Theorem 4.10:

If ε is well-founded and extensional on the set A, then there is a unique transitive set B such that $(B, \in) \cong (A, \varepsilon)$.

(This is called *Mostowski's Collapsing Lemma*, cf. Lemma 7.52 p. 79. Erasing the well-foundedness condition results in a statement —an example of an *Anti-Foundation Axiom*— that contradicts the Foundation Axiom.)

Generalize to the following theorem: If ε , next to satisfying the conditions from Theorem 4.13, is *extensional* on the class **U** (elements in **U** with the same ε -predecessors are the same), then there is a unique transitive class T such that $(\mathbf{U}, \varepsilon) \cong (T, \epsilon)$. Solution.

Let ε be a well-founded and extensional relation on a class **U** such that for all $a \in \mathbf{U}$, $\{b \in \mathbf{U} \mid b \varepsilon a\}$ is a set. Then by applying Theorem 4.13 to the operator H with $H(f) = \operatorname{Ran}(f)$ for all functions f, we obtain a unique operator $F : \mathbf{U} \to \mathbf{V}$ such that for all $a \in \mathbf{U}$,

(*)
$$F(a) = \{F(b) \mid b \in \mathbf{U}, b \in a\}$$

Set $T = F[\mathbf{U}]$. Then T is transitive and F is an isomorphism between $(\mathbf{U}, \varepsilon)$ and (T, ϵ) :

- 1. F is surjective, by definition of T.
- 2. T is transitive, for if $x \in T$, then for some $a \in \mathbf{U}$, $x = F(a) = \{F(b) \mid b \in \mathbf{U}, b \in a\} \subset T$.
- 3. *F* is injective. For otherwise, let $a \in \mathbf{U}$ be a ε -minimal element such that $\exists b \in \mathbf{U} : a \neq b \land F(a) = F(b)$ (such an element exists, since ε is well-founded on \mathbf{U}). Now for any $x \in \mathbf{U}$ with $x \varepsilon a$, if F(x) = F(y) for some $y \in \mathbf{U}$, then x = y (because of the ε -minimality of *a*). Since $\{F(x) \mid x \in \mathbf{U}, x \varepsilon a\} = F(a) = F(b) = \{F(y) \mid y \in \mathbf{U}, y \varepsilon b\}$. it follows that for any $x \varepsilon a$ or $y \varepsilon b$ we can pick an $y \varepsilon b$ or $x \varepsilon a$ with F(x) = F(y) and therefore x = y. We conclude that for all $x \in \mathbf{U}, x \varepsilon a \Leftrightarrow x \varepsilon b$, contradicting the extensionality of ε on \mathbf{U} .
- 4. *F* is an isomorphy. For $x, y \in \mathbf{U}$, if $x \in y$, then by definition of *F*, $F(x) \in F(y)$. Conversely, if $F(x) \in F(y)$, then for some $z \in \mathbf{U}$ with $z \in y$, F(z) = F(x), so by injectivity of *F*, $x = z \in y$.

For any transitive class T' and any isomorphism $F' : (\mathbf{U}, \varepsilon) \to (T', \epsilon), F'$ must satisfy (*), and by uniqueness of F this implies F' = F and $T' = F'[\mathbf{U}] = T$. So T is unique.

Mostowski's Collapsing Lemma is merely the restriction of the above theorem to the case where **U** is a set. Note that in that case, the condition that that for all $a \in \mathbf{U}$, $\{b \in \mathbf{U} \mid b \in a\} \subset \mathbf{U}$ is a set, is trivially satisfied. That T is a set follows from Substitution.

If we erase the wellfoundedness condition, we could apply Mostowski's Collapsing Lemma to the set $A = \{0\}$ and the relation $\varepsilon = \{(0,0)\}$, to obtain a transitive set $T = \{x\}$ with $x = \{x\}$, contradicting the Foundation Axiom.

104 (H. Rubin) Assume the Foundation Axiom. Show: AC is equivalent with the statement that powersets of ordinals have well-orderings.

Solution.

The one implication is trivial, Since AC implies all sets have well-orderings, one direction is trivial. So we will assume that powersets of ordinals have well-orderings, and try to show AC. Let a be an arbitrary set. From the Foundation axiom, we know that $a \subset V_{\kappa}$ for some ordinal κ . Let $\lambda = \Gamma(V_{\kappa})$, and fix a well-ordering $\prec_{\wp(\lambda)}$ of $\wp(\lambda)$,. We will use this ordening to recursively define well-orderings \prec_{α} for all $\alpha \leq \kappa$. Then \prec_{κ} restricted to a will well-order a.

- 1. For V_0 , let \prec_0 be the trivial ordering.
- 2. For $\alpha+1$, note that since $V_{\alpha} <_1 \lambda$, the well-ordering \prec_{α} induces an order-preserving injection $\phi_{\alpha} : (V_{\alpha}, \prec_{\alpha}) \to (\lambda, \in)$, which in turn induces an injection $\psi_{\alpha+1} : \wp(V_{\alpha}) \ni a \to \phi_{\alpha}[a] \in \wp(\lambda)$. If we define the ordering $\prec_{\alpha+1}$ of $V_{\alpha+1}$ by setting, for $a, b \in V_{\alpha+1}$,

$$a \prec_{\alpha+1} b \equiv_{def} \psi_{\alpha+1}(a) \prec_{\wp(\lambda)} \psi_{\alpha+1}(b)$$

then $(V_{\alpha+1}, \prec_{\alpha+1})$ is order-isomorphic to $(\psi_{\alpha+1}[V_{\alpha+1}], \prec_{\wp(\lambda)})$, and hence a well-ordering.

3. For limits γ , we can define a well-ordering \prec_{γ} by setting, for $a, b \in V_{\gamma}$,

$$a \prec_{\gamma} b \equiv_{def} (\rho(a) < \rho(b)) \lor ((\rho(a) = \rho(b)) \land (a \prec_{\rho(a)+1} b))$$

It is easily seen that \prec_{γ} is a linear ordering, and that for any subset $X \subset V_{\gamma}$, if Y = Bottom(X), then the $\prec_{\rho(Y)}$ -minimal element of Y is also the \prec_{γ} minimal element of X. Hence \prec_{γ} is a well-ordering.

113

- 1. Give a direct proof, using AC, but not using Lemma 6.19, that a countable union of countable sets is countable. In particular, ω_1 is not a countable union of countable sets. (It is known that this is unprovable without AC).
- 2. Show without using AC that ω_2 is not a countable union of countable sets.

Solution.

- 1. Let $(A_i)_{i \in \omega}$ be a countable collection of countable sets, and let $A = \bigcup_{i \in \omega} A_i$. Using AC, pick for each $i \in \omega$ an injection $\phi_i : A_i \to \omega$. Now we can define the injection $\phi : A \to \omega \times \omega$ by setting, for $a \in A$, $\phi(a) = (i_a, \phi_{i_a}(a))$, where i_a is the least number such that $a \in A_{i_a}$. Since by section 4.8 there is an injection $\psi : \omega \times \omega \to \omega$, it follows that $\psi \circ \phi : A \to \omega$ is an injection, and hence A is countable.
- 2. Let $(A_i)_{i\in\omega}$ be a countable collection of countable sets, and assume $\omega_2 = \bigcup_{i\in\omega} A_i$. For any $i \in \omega, A_i$ is a set of ordinals ordered by \in , of countable order-type α_i . This means that without using AC we can define canonical bijections $\phi_i : A_i \to \alpha_i \subset \omega_1$. Now we can define the injection $\phi : \omega_2 \to \omega \times \omega_1$ by setting, for $\xi \in \omega_2, \phi(\xi) = (i_{\xi}, \phi_{i_{\xi}}(\xi))$, where i_{ξ} is the least number such that $\xi \in A_{i_{\xi}}$. Since by section 4.8 there is an injection $\psi : \omega_1 \times \omega_1 \to \omega_1$, it follows that $\psi \circ \phi : \omega_2 \to \omega_1$ is an injection, a contradiction.

146 An " ω -incompleteness phenomenon".

- 1. The properties of Def from Corollary 7.17 suffice to show, for every *specific* natural number n, that $L_n = V_n$.
- 2. Show: if ZF is consistent, then it stays consistent upon the addition of (i) the properties of Def from Corollary 7.17 (*not* the definition of Def!), and (ii) the statement $\exists n \in \omega(L_n \neq V_n)$.

Solution.

1. By Corollary 7.18 it is possible to show, for any specific natural number k, that if $B \subset A$ has cardinality $\leq k$, then $B \in \text{Def}(A)$. Now let n be a specific natural number and let $k = |\mathbf{V}_n|$, then it follows that for all $i \leq n$ and all $B \subset V_i$, $B \in \text{Def}(V_i)$. Hence for all $i \leq n$, $\text{Def}(V_i) = \wp(V_i) = V_{i+1}$, and by induction on i, for all $i \leq n$ $L_i = \mathbf{V}_i$. In particular, $L_n = \mathbf{V}_n$.

- 2. By the Compactness Theorem, it suffices to show that any *finite* collection of instances of Corollary 7.17 is consistent with $ZF + \exists n \in \omega(L_n \neq V_n)$. So let **V** be a model of ZF, and let $\Phi_1, \Phi_2, \ldots, \Phi_k$ be a collection of formulas, using free variables a_1, \ldots, a_m . We will assign the language symbol Def an interpretation Def^{*} such that for all sets A,
 - (a) $\operatorname{Def}^*(A) \subset \wp(A)$
 - (b) For $i \leq k$ and $a_1, \ldots, a_m \in A$, $\{a \in A \mid \Phi_i^A(a, a_1, \ldots, a_m)\} \in \text{Def}^*(A)$
 - (c) $\exists n \in \omega(\mathbf{L}_n \neq \wp(\mathbf{V}_n)).$

The interpretation itself is straightforward: simply set

$$Def^*(A) = \{ \{ a \in A \mid \Phi_i^A(a, a_1, \dots, a_m) \} \mid i \le k, a_1, \dots, a_m \in A \}$$

This satisfies our first two conditions by definition. As for the third, note that $|\text{Def}^*(A)| \le k|A|^m$, so if we pick *n* such that $k|\mathbf{V}_n|^m < 2^{|\mathbf{V}_n|}$, then $\text{Def}^*(\mathbf{V}_n) \subsetneq \wp(\mathbf{V}_n) = V_{n+1}$, and as a consequence $L_{n+1} = \text{Def}^*(L_n) \subset \text{Def}^*(\mathbf{V}_n) \subsetneq V_{n+1}$.

155 Show that ZF (provided consistent) is not finitely axiomatizable over Zermelo set theory Z (axiomatized by all axioms except Substitution). That is: there is no sentence Φ consistent with Z such that Z+ Φ proves (all instances of) the Substitution Axiom. Solution.

Suppose that Φ is a sentence consistent with Z such that such that $Z+\Phi$ proves (all instances of) the Substitution Axiom. Then there exist models of $Z+\Phi$, and any such model is a model of ZF. ZF proves that if ($\Phi \land Power \land Infinity$) holds, then (by Reflection) there exists an ordinal α such that ($\Phi \land Power \land Infinity$) hold in \mathbf{V}_{α} . Now if the Power and Infinity Axioms hold, then α must be a limit ordinal $> \omega$, and then \mathbf{V}_{α} must be a model of Z as well as of Φ . So any model \mathbf{V} of $Z+\Phi$ must contain an ordinal α such that \mathbf{V}_{α} is a model of $Z+\Phi$.

So let \mathbf{V} be a model of $Z+\Phi$, and let $\alpha \in OR$ be the smallest ordinal such that \mathbf{V}_{α} is a model of $Z+\Phi$. Since \mathbf{V}_{α} is a model of $Z+\Phi$, it must contain an ordinal $\beta < \alpha$ such that $\mathbf{V}_{\beta}^{\mathbf{V}_{\alpha}}$ is also a model of $Z+\Phi$. It is easily seen that $\mathbf{V}_{\beta}^{\mathbf{V}_{\alpha}} = \mathbf{V}_{\beta}$, contradicting the minimality of α .

189 Show:

- 1. Every Σ_1 statement provable in ZFC (or ZF+V = L) is also provable in ZF.
- 2. The same thing holds for statements of the form $\forall \alpha \in \text{OR } \Phi(\alpha)$ where Φ is Σ_1 .

Solution.

The first statement is merely a special case of the second statement (where the ordinal α is not used in Φ). So assume that Φ is Σ_1 , and that $\forall \alpha \in OR \Phi(\alpha)$ is provable in ZFC or ZF+ $\mathbf{V} = \mathbf{L}$. Let \mathbf{V} be a model of ZF. Then $\mathbf{L}^{\mathbf{V}}$ is a model of ZFC and of ZF+ $\mathbf{V} = \mathbf{L}$, so $\mathbf{L}^{\mathbf{V}} \models \forall \alpha \in OR \Phi(\alpha)$. Since $OR^{\mathbf{L}^{\mathbf{V}}} = OR^{\mathbf{V}}$ and since by upward persistence we have $\mathbf{V} \models \forall \alpha \in OR(\Phi^{\mathbf{L}}(\alpha) \to \Phi(\alpha))$, it follows that $\mathbf{V} \models \forall \alpha \in OR \Phi(\alpha)$. This holds for all models of ZF, so ZF proves $\forall \alpha \in OR \Phi(\alpha)$. \Box