Solutions for Exercises

Chapter 7

163. Show that L is absolute w.r.t. every transitive collection that contains all ordinals and satisfies sufficiently many ZF axioms.

Solution.

Let Σ be the ZF-axioms needed to prove that $\forall \alpha \in \text{OR} \exists y \mathcal{L}(\alpha, y) \ (\mathcal{L}(\alpha, y) \text{ is a } \Sigma_1\text{-formula that,}$ relative to ZF, amounts to $y = L_{\alpha}$).

Claim: If K is transitive, $OR \subset K$, and $(\forall \alpha \in OR \exists y \mathcal{L}(\alpha, y))^K$, then **L** (which we take to be defined by the formula $\exists \alpha \exists y [\mathcal{L}(\alpha, y) \land x \in y]$) is absolute w.r.t. K. *Proof:*

 $\mathbf{L}^{K} \subset \mathbf{L}$: Suppose that $x \in \mathbf{L}^{K}$. That is: $\exists \alpha \exists y [\mathcal{L}(\alpha, y) \land x \in y]$ holds in K. Say, $\alpha \in OR$, $y \in K$, $x \in y$, $\mathcal{L}^{K}(\alpha, y)$. By upward persistence, $\mathcal{L}(\alpha, y)$ holds as well. Thus, $y = \mathbf{L}_{\alpha}$, and $x \in \mathbf{L}$.

 $\mathbf{L} \subset \mathbf{L}^{K}$: Suppose that $x \in \mathbf{L}$, say, $x \in \mathbf{L}_{\alpha}$. By assumption on $K, y \in K$ exists such that $\mathcal{L}^{K}(\alpha, y)$. By persistence, $\mathcal{L}(\alpha, y)$, i.e.: $x \in \mathbf{L}_{\alpha} = y$. Hence, $\exists \alpha \exists y [\mathcal{L}(\alpha, y) \land x \in y]$ holds in K. \Box

166. Define $A^{<\omega} = \{f \mid f \text{ is a finite function s.t. } \text{Dom}(f) \subset \omega \land \text{Ran}(f) \subset A\}$. Show that the formula $X = A^{<\omega}$ is Σ_1^{ZF} .

Solution. $X = A^{<\omega} \text{ holds iff}$ $\emptyset \in X \land \forall g \in X \forall n \in (\omega - \text{Dom}(g)) \forall a \in A[g \cup \{(n, a)\} \in X] \land$ $\land \forall g \in X \exists n \in \omega[g \text{ is a function} \land \text{Dom}(g) \subset n \land \text{Ran}(g) \subset A].$

174. Show: (if $A \neq \emptyset$, then) Def(A) contains all finite subsets of A.

Solution.

Define formulas^{*} ϕ_n inductively by setting $\phi_0 = \lceil x_0 = x_0 \rceil$ and $\phi_{n+1} = \phi_n \land \lceil x_0 \neq x_{n+1} \rceil$. Then $\operatorname{FrV}(\phi_n) = \{\lceil 0 \rceil, \dots, \lceil n \rceil\}$ and $\operatorname{SAT}(A, \phi_n) = \{f \in A^{\{\lceil 0 \rceil, \dots, \lceil n \rceil\}} \mid f(\lceil 0 \rceil) \neq f(\lceil 1 \rceil), \dots, f(\lceil n \rceil)\}$ for all *n* (by induction on *n*). It follows that for any function $f : \{\lceil 1 \rceil, \dots, \lceil n \rceil\} \to A, D(A, \neg \phi_n, f) = \{f(\lceil 1 \rceil), \dots, f(\lceil n \rceil)\}$. If $B \subset A$ is finite, then for some $n \in \omega$ there exists a bijection $g : n \to B$, so if we set $f(\lceil i + 1 \rceil) = g(i)$, then $B = D(A, \neg \phi_n, f) \in \operatorname{Def}(A)$. \Box

178. Suppose that (A, <) is a wellordering and $f : A \to B$ a surjection. Define the relation \prec on B by $x \prec y \equiv$ the <-first element of $f^{-1}(x)$ is <-smaller than the <-first element of $f^{-1}(y)$. Then \prec wellorders B.

Solution.

The correspondence: $x \mapsto \prec$ -first element of $f^{-1}(x)$, embeds (B, \prec) into (A, <).

186. Show that the formula $x =_1 y$ (which is Σ_1^{ZF}) is not Π_1^{ZF} (unless ZF is inconsistent). Solution.

Assume that $x =_1 y$ is provably equivalent with the formula $\Phi(x, y)$.

Reason in ZF. Choose two infinite sets a and b such that $a \neq_1 b$. Hence, $\neg \Phi(a, b)$ is true.

Reflection: choose A satisfying Extensionality such that $a, b \in A$ and $(A \models \neg \Phi(a, b) \land a, b$ infinite) Löwenheim-Skolem: choose a countable $B \subset A$ with $a, b \in B$ and $(B \models \neg \Phi(a, b) \land a, b$ infinite) Mostowski's Collapsing Lemma: collapse B to a transitive C via an isomorphism h.

Then $(\neg \Phi(h(a), h(b)) \land h(a), h(b)$ infinite) is true in C. Since h(a), h(b) are infinite and $\subset C, h(a)$ and h(b) are both countably infinite, and hence $\Phi(h(a), h(b))$ holds in **V**. Thus, Φ is not Π_1 . \Box

197.

- 1. Assume that a set A exists such that (A, \in) is a model of all ZF-axioms (considered as a certain subset of FORM). Show:
 - (a) There is such a set A that is transitive.
 - (b) There is such a set A that has the form L_{α} , where $\alpha < \omega_1$.
- 2. Assume that α is the least ordinal such that (L_{α}, \in) is a ZF-model.

Show that if A is a transitive set such that (A, \in) is a ZF-model, then $\alpha \subset A$, and (hence) $L_{\alpha} \subset A$.

Solution.

- 1. If (A, \in) is a model of all ZF-axioms, then by the Downward Löwenstein-Skolem-Tarski Theorem, we can find a countable model (A_2, \in) of ZF. Since \in is well-ordered, and (A_2, \in) satisfies Extensionality, by Mostowski's Collapsing Lemma (see Exercise 67) there exists a unique transitive set A_3 such that $(A_3, \in) \cong (A_2, \in)$. Now let $A_4 = \mathbf{L}^{A_3}$. Then A_4 is a countable transitive model of ZF + $\mathbf{V} = \mathbf{L}$. So $\alpha = \text{OR} \cup A_4$ is a countable limit ordinal, and by the Condensation Lemma (Corollary 7.32), $A_4 = \mathbf{L}_{\alpha}$.
- 2. Let α be the least ordinal such that $(\mathbf{L}_{\alpha}, \in)$ is a ZF-model, and let A be a transitive set such that (A, \in) is a ZF-model. Then (\mathbf{L}^{A}, \in) is a model of $\mathbf{ZF} + \mathbf{V} = \mathbf{L}$, so by the Condensation Lemma $\mathbf{L}^{A} = \mathbf{L}_{\beta}$ for $\beta = A \cap OR$. By our choice of α , we now have $\alpha \leq \beta \subset A$, and hence $\mathbf{L}_{\alpha} \subset \mathbf{L}_{\beta} = \mathbf{L}^{A} \subset A$.