Solutions for Exercises

Chapter 7

140 Show that the following are Π_1^{ZF} or Π_1^{ZFC} . Solution.

- 1. $y = \wp(x) \iff \forall z(z \subset x \leftrightarrow z \in y)$
- 2. $x <_1 y \iff z_{\text{FC}} \forall z \neg (z \text{ is an injection } y \rightarrow x)$
- 3. α is an initial number $\Leftrightarrow \alpha \in OR \land \alpha \notin \omega \land \forall \beta \in \alpha (\beta <_1 \alpha)$
- 4. $\gamma < cf(\alpha) \iff \forall x((x \subset \alpha \land \bigcup x = \alpha) \rightarrow \gamma <_1 x)$
- 5. α is regular $\Leftrightarrow \forall \gamma < \alpha(\gamma < cf(\alpha))$

What about the following?

- 1. $x \leq_1 y$
- 2. $x =_1 y$
- 4. $\beta = cf(\alpha)$

These formulas are not Π_1^{ZFC} : if $\phi(x, y)$ is a formula equivalent in ZFC to $x \leq_1 y$ or $x =_1 y$ or $y = \operatorname{cf}(x)$, then ZFC proves $\exists x \in \operatorname{OR} \neg \phi(x, y)$. If K is a countable transitive inner model of ZFC (or of a sufficient fragment of ZFC to prove the above sentence), then for some ordinal $\alpha \in K, \ \neg \phi^K(\alpha, \omega)$. But since K is countable, α must be countable, so $\phi(\alpha, \omega)$ holds, and hence ϕ does not persist downward and is not Π_1 .

- 3. $\alpha = \omega_1$ is not Π_1^{ZFC} : if we have an inner transitive model K of (a sufficient fragment of) ZFC containing ω_1 such that for some countable $\alpha \in K$, K does not contain any bijection between α and ω , then $\omega_1^K \leq \alpha < \omega_1$. Constructing such a model is beyond the scope of this exercise, though.
- 5. " α is weakly inaccessible" is Π_1^{ZF} : it can be written as " α is an initial $\land \alpha$ is regular $\land \forall \beta < \alpha \exists \gamma < \alpha (\beta <_1 \gamma)$ ".

142 Every L_{α} is transitive. **L** is transitive. *Solution*.

Induction w.r.t. α . The only non-trivial case is the successor step. Suppose that $x \in L_{\alpha+1}$ and $y \in x$. Then $x \subset L_{\alpha}$ and hence $y \in L_{\alpha}$. By IH, $y \subset L_{\alpha}$. Thus, $y = \{u \in L_{\alpha} \mid (u \in y)^{L_{\alpha}}\} \in L_{\alpha+1}$. \Box

150

- 1. For $a \in \mathbf{L}$, if $\mathbf{L} \cap \wp(a) \subset \mathbf{L}_{\alpha}$, then $\mathbf{L} \cap \wp(a) \in \mathbf{L}_{\alpha+1}$.
- 2. If $a \in \mathbf{L}$, then $\mathbf{L} \cap \wp(a) \in \mathbf{L}$.
- 3. *Thus*, the Powerset Axiom holds in L.

Solution.

- 1. If $a \in \mathbf{L}$, and $\mathbf{L} \cap \wp(a) \subset \mathcal{L}_{\alpha}$, then $a \in \mathcal{L}_{\alpha}$, and we can write $\mathbf{L} \cap \wp(a) = \{ y \in \mathcal{L}_{\alpha} \mid (y \subset a)^{\mathcal{L}_{\alpha}} \} \in \mathrm{Def}(\mathcal{L}_{\alpha}) = \mathcal{L}_{\alpha+1}.$
- 2. Define the operation $h : \mathbf{L} \to OR$ by h(x) = "the least ξ such that $x \in L_{\xi}$ ". If $a \in \mathbf{L}$, then since $\mathbf{L} \cap \wp(a) \subset \mathbf{L}$ we have $\mathbf{L} \cap \wp(a) \subset L_{\alpha}$ and $\mathbf{L} \cap \wp(a) \in L_{\alpha+1} \subset \mathbf{L}$ for $\alpha = \bigcup_{x \in \mathbf{L} \cap \wp(a)} h(x)$.
- 3. Now for any $a, b \in \mathbf{L}$, $b \in \mathbf{L} \cap \wp(a) \Leftrightarrow b \in \wp(a) \Leftrightarrow b \subset a \Leftrightarrow (b \subset a)^{\mathbf{L}}$. So the Powerset Axiom holds in \mathbf{L} , and $(\wp(a))^{\mathbf{L}} = \wp(a) \cap \mathbf{L}$.

152 Show that Collection holds in **L**. *Solution.*

Let $a \in \mathbf{L}$, and suppose that $\forall x \in a \exists y \in \mathbf{L}\Psi^{\mathbf{L}}$. Define the operation $h : a \to OR$ by h(x) = the least ξ such that $\exists y \in \mathcal{L}_{\xi}\Psi^{\mathbf{L}}$. Now construct $\alpha = \bigcup \{h(x) \mid x \in a\}$. Then $\forall x \in a \exists y \in \mathcal{L}_{\alpha}\Psi^{\mathbf{L}}$. Since $\mathcal{L}_{\alpha} \in \mathrm{Def}(\mathcal{L}_{\alpha}) = \mathcal{L}_{\alpha+1} \subset \mathbf{L}$, Collection holds.

157 Prove Lemma 7.28:

- 1. The intersection of two clubs is a club,
- 2. if each C_x (for every element x of a set a) is club, then so is $\bigcap_{x \in a} C_x$,

3. if each C_{ξ} ($\xi \in OR$) is club, then so is $\left\{ \alpha \in OR \mid \alpha \in \bigcap_{\xi < \alpha} C_{\xi} \right\}$.

Solution.

- 1. This is a special case of (ii).
- 2. Let C_x be club for all $x \in a$. Now, if α is a limit ordinal in which $\bigcap_{x \in a} C_x$ is unbounded, then all the C_x are unbounded in α , so $\alpha \in \bigcap_{x \in a} C_x$. To show that $\bigcap_{x \in a} C_x$ is unbounded, let $\alpha \in OR$, We can define a sequence $\alpha_{i \in \omega}$ by setting $\alpha_0 = \alpha$, $\alpha_{n+1,x} =$ "the smallest ordinal $\geq \alpha_n$ in C_x ", and $\alpha_{n+1} = \bigcup_{x \in a} \alpha_{n+1,x}$. Now either $\alpha' = \bigcup_{n \in \omega} \alpha_n$ is equal to α_n for some $n \in \omega$, or it is a limit ordinal in which all the C_x are unbounded. In both cases, $\alpha' \in \bigcap_{x \in a} C_x$.
- 3. Let C_{ξ} be club for all $\xi \in OR$, and let $C = \left\{ \alpha \in OR \mid \alpha \in \bigcap_{\xi < \alpha} C_{\xi} \right\}$. If α is a limit ordinal in which C is unbounded, then for all ξ , $C_{\xi} \cup (\xi + 1) \supset C$ is unbounded in α , and therefore for $\xi < \alpha$ so is C_{ξ} , and $\alpha \in C_{\xi}$. It follows that $\alpha \in C$. To show that C is unbounded, let $\alpha \in OR$. We can define a sequence $\alpha_{i \in \omega}$ by setting $\alpha_0 = \alpha$ and $\alpha_{n+1} =$ "the smallest ordinal $\geq \alpha_n$ in $\bigcap_{\xi < \alpha_n} C_{\xi}$ ". Now either $\alpha' = \bigcup_{n \in \omega} \alpha_n$ is equal to α_n for some $n \in \omega$, or it is a limit ordinal in which all the C_{ξ} are unbounded for $\xi < \alpha'$. In both cases, $\alpha' \in C$.

159. Show that, in the reflection principle, $\{\alpha \mid A_{\alpha} \prec_{\Sigma} A\}$ is closed. *Solution*.

Assume that $C_{\Sigma} = \{\xi \in \text{OR} \mid A_{\xi} \prec_{\Sigma} A\}$ is unbounded in the limit ordinal α . We need to show that, for $\Phi \in \Sigma$, the equivalence $\Phi^{A_{\alpha}} \leftrightarrow \Phi^{A}$ holds on parameters from A_{α} .

Induction w.r.t. the nr of logical symbols in Φ . The only problem arises when Φ is a quantification; say, $\Phi = \exists z \Psi(x, y, z)$. Assume that $a, b \in A_{\alpha}$.

 (\Rightarrow) Suppose that $[\exists z \Psi(a, b, z)]^{A_{\alpha}}$. Say, $c \in A_{\alpha}$ is such that $[\Psi(a, b, c)]^{A_{\alpha}}$. By IH on Ψ , it follows that $[\Psi(a, b, c)]^{A}$. Hence, $[\exists z \Psi(a, b, z)]^{A}$.

 (\Leftarrow) Conversely, suppose that $[\exists z \Psi(a, b, z)]^A$. Choose $\xi < \alpha$ in C_{Σ} such that $a, b \in A_{\xi}$. Then since $\xi \in C_{\Sigma}$, we also have that $[\exists z \Psi(a, b, z)]^{A_{\xi}}$. Thus, $c \in A_{\xi}$ exists such that $[\Psi(a, b, c)]^{A_{\xi}}$, and it follows that $[\Psi(a, b, c)]^A$. By IH on Ψ , $[\Psi(a, b, c)]^{A_{\alpha}}$. Therefore, $[\exists z \Psi(a, b, z)]^{A_{\alpha}}$.

Note that, by the Reflection Principle, $\{\alpha \mid A_{\alpha} \prec_{\Sigma} A\}$ is unbounded as well, and therefore club.

160. Suppose that the initial λ is strongly inaccessible (Definition 6.24 p. 50). Show that $\alpha < \lambda$ exists such that $V_{\alpha} \prec V_{\lambda}$. Show that the smallest such α has $cf(\alpha) = \omega$. Solution.

Since V_{λ} models ZF, for any finite subformula-closed set of formulas Σ , $C_{\Sigma} = \{ \alpha \mid A_{\alpha} \prec_{\Sigma} A \}$

is closed and unbounded in λ . Let α_{Σ} be the smallest element of C_{Σ} . Technically we need the apparatus from Section 7.6 to be able to use the notion of satisfaction and range over sets of formulas. Assuming this apparatus, set $A = \{\alpha_{\Sigma} \mid \Sigma \text{ a finite subformula-closed set of formulas}\}$ and $\alpha = \bigcup A$.

Let Σ be an arbitrary finite subformula-closed set of formulas. Now for any $\beta < \alpha$ we can find Σ' such that $\beta < \alpha_{\Sigma'}$, and hence $\beta < \alpha_{\Sigma \cup \Sigma'} \in C_{\Sigma}$. It follows that either $\alpha = \alpha_{\Sigma \cup \Sigma'}$ for some Σ' , or $A \cap C_{\Sigma}$ is unbounded in α , and in both cases $\alpha \in C_{\Sigma}$ and $V_{\alpha} \prec_{\Sigma} V_{\lambda}$. Since we chose Σ arbitrary, $V_{\alpha} \prec V_{\lambda}$. For any β with this property, we have $\alpha_{\Sigma} \leq \beta$ for all Σ , and therefore $\alpha \leq \beta$.

Now for any finite Σ , $\exists \beta(V_{\beta} \prec_{\Sigma} V)$ can be expressed as a first-order formula, Obviously this formula holds in V_{λ} . If it were to hold in $V_{\alpha_{\Sigma}}$, then for some $\beta < \alpha_{\Sigma}$ we would have $V_{\beta} \prec_{\Sigma} V_{\alpha_{\Sigma}} \prec_{\Sigma} V_{\lambda}$, contradicting the minimality of α_{Σ} . Thus $V_{\alpha_{\Sigma}} \not\prec V_{\lambda}$, and $\alpha_{\Sigma} < \alpha$. It follows that $\{\alpha_{\Sigma}\}$ is a countable cofinal subset of α .