
Solutions for Exercises

Chapter 7

140 Show that the following are ΠZF1 or ΠZFC1 .
Solution.

1. y = ℘(x) ⇔ ∀z(z ⊂ x↔ z∈y)

2. x <1 y ⇔ ZFC ∀z¬(z is an injection y → x)

3. α is an initial number ⇔ α∈OR ∧ α 6∈ω ∧ ∀β∈α(β <1 α)

4. γ < cf(α) ⇔ ∀x((x ⊂ α ∧
⋃

x = α)→ γ <1 x)

5. α is regular ⇔ ∀γ < α(γ < cf(α))

What about the following?

1. x 61 y

2. x =1 y

4. β = cf(α)

These formulas are not ΠZFC1 : if φ(x, y) is a formula equivalent in ZFC to x 61 y or x =1 y or
y = cf(x), then ZFC proves ∃x ∈ OR¬φ(x, y). If K is a countable transitive inner model of
ZFC (or of a sufficient fragment of ZFC to prove the above sentence), then for some ordinal
α ∈ K, ¬φK(α, ω). But since K is countable, α must be countable, so φ(α, ω) holds, and
hence φ does not persist downward and is not Π1.

3. α = ω1 is not Π
ZFC
1 : if we have an inner transitive model K of (a sufficient fragment of)

ZFC containing ω1 such that for some countable α ∈ K, K does not contain any bijection
between α and ω, then ωK

1 ≤ α < ω1. Constructing such a model is beyond the scope of
this exercise, though.

5. “α is weakly inaccessible” is ΠZF1 : it can be written as
“α is an initial ∧ α is regular ∧ ∀β < α∃γ < α(β <1 γ)”.

¤

142 Every Lα is transitive. L is transitive.
Solution.

Induction w.r.t. α. The only non-trivial case is the successor step. Suppose that x ∈ Lα+1 and
y ∈ x. Then x ⊂ Lα and hence y ∈ Lα. By IH, y ⊂ Lα. Thus, y = {u ∈ Lα | (u ∈ y)Lα} ∈ Lα+1.
¤

150

1. For a ∈ L, if L ∩ ℘(a) ⊂ Lα, then L ∩ ℘(a) ∈ Lα+1.

2. If a ∈ L, then L ∩ ℘(a) ∈ L.

3. Thus, the Powerset Axiom holds in L.

Solution.



1. If a ∈ L, and L ∩ ℘(a) ⊂ Lα, then a ∈ Lα, and we can write
L ∩ ℘(a) = {y ∈ Lα | (y ⊂ a)Lα} ∈ Def(Lα) = Lα+1.

2. Define the operation h : L → OR by h(x) = “the least ξ such that x∈Lξ”. If a∈L, then
since L∩℘(a) ⊂ L we have L∩℘(a) ⊂ Lα and L∩℘(a) ∈ Lα+1 ⊂ L for α =

⋃

x∈L∩℘(a) h(x).

3. Now for any a, b ∈ L, b ∈ L ∩ ℘(a) ⇔ b ∈ ℘(a) ⇔ b ⊂ a ⇔ (b ⊂ a)L. So the Powerset
Axiom holds in L, and (℘(a))L = ℘(a) ∩ L. ¤

152 Show that Collection holds in L.
Solution.

Let a ∈ L, and suppose that ∀x ∈ a∃y ∈ LΨL. Define the operation h : a → OR by h(x) = the
least ξ such that ∃y ∈ LξΨ

L. Now construct α =
⋃

{h(x) | x ∈ a}. Then ∀x ∈ a∃y ∈ LαΨ
L. Since

Lα ∈ Def(Lα) = Lα+1 ⊂ L, Collection holds. ¤

157 Prove Lemma 7.28:

1. The intersection of two clubs is a club,

2. if each Cx (for every element x of a set a) is club, then so is
⋂

x∈a Cx,

3. if each Cξ (ξ ∈ OR) is club, then so is
{

α ∈ OR | α ∈
⋂

ξ<α Cξ

}

.

Solution.

1. This is a special case of (ii).

2. Let Cx be club for all x ∈ a. Now, if α is a limit ordinal in which
⋂

x∈a Cx is unbounded,
then all the Cx are unbounded in α, so α ∈

⋂

x∈a Cx. To show that
⋂

x∈a Cx is unbounded,
let α ∈ OR, We can define a sequence αi∈ω by setting α0 = α, αn+1,x = “the smallest
ordinal ≥ αn in Cx”, and αn+1 =

⋃

x∈a αn+1,x. Now either α
′ =

⋃

n∈ω αn is equal to αn

for some n ∈ ω, or it is a limit ordinal in which all the Cx are unbounded. In both cases,
α′ ∈

⋂

x∈a Cx.

3. Let Cξ be club for all ξ ∈ OR, and let C =
{

α ∈ OR | α ∈
⋂

ξ<α Cξ

}

. If α is a limit ordinal

in which C is unbounded, then for all ξ, Cξ ∪ (ξ + 1) ⊃ C is unbounded in α, and therefore
for ξ < α so is Cξ, and α ∈ Cξ. It follows that α ∈ C. To show that C is unbounded, let
α ∈ OR. We can define a sequence αi∈ω by setting α0 = α and αn+1 = “the smallest ordinal
≥ αn in

⋂

ξ<αn
Cξ”. Now either α

′ =
⋃

n∈ω αn is equal to αn for some n ∈ ω, or it is a limit
ordinal in which all the Cξ are unbounded for ξ < α′. In both cases, α′ ∈ C. ¤

159. Show that, in the reflection principle, {α | Aα ≺Σ A} is closed.
Solution.

Assume that CΣ = {ξ ∈ OR | Aξ ≺Σ A} is unbounded in the limit ordinal α. We need to show
that, for Φ ∈ Σ, the equivalence ΦAα ↔ ΦA holds on parameters from Aα.
Induction w.r.t. the nr of logical symbols in Φ. The only problem arises when Φ is a quantification;
say, Φ = ∃zΨ(x, y, z). Assume that a, b ∈ Aα.
(⇒ ) Suppose that [∃zΨ(a, b, z)]Aα . Say, c ∈ Aα is such that [Ψ(a, b, c)]

Aα . By IH on Ψ, it follows
that [Ψ(a, b, c)]A. Hence, [∃zΨ(a, b, z)]A.
(⇐) Conversely, suppose that [∃zΨ(a, b, z)]A. Choose ξ < α in CΣ such that a, b ∈ Aξ. Then since
ξ ∈ CΣ, we also have that [∃zΨ(a, b, z)]

Aξ . Thus, c ∈ Aξ exists such that [Ψ(a, b, c)]
Aξ , and it

follows that [Ψ(a, b, c)]A. By IH on Ψ, [Ψ(a, b, c)]Aα . Therefore, [∃zΨ(a, b, z)]Aα .
Note that, by the Reflection Principle, {α | Aα ≺Σ A} is unbounded as well, and therefore club.
¤

160. Suppose that the initial λ is strongly inaccessible (Definition 6.24 p. 50). Show that α < λ

exists such that Vα ≺ Vλ. Show that the smallest such α has cf(α) = ω.
Solution.
Since Vλ models ZF, for any finite subformula-closed set of formulas Σ, CΣ = {α | Aα ≺Σ A}



is closed and unbounded in λ. Let αΣ be the smallest element of CΣ. Technically we need the
apparatus from Section 7.6 to be able to use the notion of satisfaction and range over sets of
formulas. Assuming this apparatus, set A = {αΣ | Σ a finite subformula-closed set of formulas}
and α =

⋃

A.
Let Σ be an arbitrary finite subformula-closed set of formulas. Now for any β < α we can find Σ′

such that β < αΣ′ , and hence β < αΣ∪Σ′ ∈ CΣ. It follows that either α = αΣ∪Σ′ for some Σ′, or
A ∩ CΣ is unbounded in α, and in both cases α ∈ CΣ and Vα ≺Σ Vλ. Since we chose Σ arbitrary,
Vα ≺ Vλ. For any β with this property, we have αΣ ≤ β for all Σ, and therefore α ≤ β.
Now for any finite Σ, ∃β(Vβ ≺Σ V) can be expressed as a first-order formula, Obviously this formula
holds in Vλ. If it were to hold in VαΣ , then for some β < αΣ we would have Vβ ≺Σ VαΣ ≺Σ Vλ,
contradicting the minimality of αΣ. Thus VαΣ 6≺ Vλ, and αΣ < α. It follows that {αΣ} is a
countable cofinal subset of α. ¤


