Solutions for Exercises

Chapter 7

125. Recall (Exercise 16 p. 12 and Theorem 4.18 p. 34) that (**G** is the least class such that) $\wp(\mathbf{G}) = \mathbf{G}$. Show, in ZF *minus* Foundation:

- 1. If K is a class such that $\wp(K) = K$, then every ZF axiom —with the possible exception of Foundation—holds in K.
- 2. Foundation is true in **G**.

Thus, \mathbf{G} is an inner model for ZF *including* Foundation in ZF *minus* Foundation. Therefore, if the latter theory is consistent, then so is the former.

Solution.

1. Assume that $K = \wp(K)$, i.e. for all $a, a \in K \iff a \subset K$. We will prove that the relativization of all the axioms with respect to K holds. In most cases, it suffices to show that the set whose existence is postulated by the axiom is in K, since the defining formula is bounded or Π_1^{ZF} , and K is a transitive inner model.

Extensionality For all $a, b \in K$, if $\forall x \in K : [x \in a \iff x \in b]$, then $a \cap K = b \cap K$. Now since also $a, b \subset K$, it follows that a = b.

Separation Let $a \in K$, and let Φ be a formula that doesn't contain b freely. Set $b = \{x \in a \mid \Phi^K(x, a)\}$. Then $b \subset a \subset K$, so $b \in K$.

Pairing For all $a, b \in K$, $\{a, b\} \subset K$, so $\{a, b\} \in K$.

Sumset Let $a \in K$. For all $b \in a$, $b \subset K$, so $\bigcup a \subset K$, so $\bigcup a \in K$.

Powerset Let $a \in K$. Then $a \subset K$, so $\wp(a) \subset \wp(K) = K$, so $\wp(a) \in K$.

Substitution Let $a \in K$, and let Ψ be a formula, not containing b freely, such that $\forall x \in a \exists ! y \in K \Psi^K$. Then by Substitution $b = \{y \mid y \in K \land \exists x \in a \Psi^K\}$ is a set. Since $b \subset K$, we have $b \in K$, and $\forall y \in K(y \in b \leftrightarrow \exists x \in a \Psi^K)$.

Infinity Since $\mathbf{T}(K) \subset \wp(K) = K$, we have $OR \subset K$, so $\omega \in K$.

2. Let $a \in \mathbf{G}$. Since $a \in a \cup \{a\}$, we can find an $x \in a \cup \{a\}$ such that $x \cap (a \cup \{a\}) = \emptyset$. It follows that either $x = a = \emptyset$, or $x \in a \subset \mathbf{G}$ and $x \cap a = \emptyset$. Thus, Foundation holds in \mathbf{G} . \Box

127 Show that the following ZF axioms cannot be deduced from the others (modulo a consistency assumption):

- 1. Infinity,
- 2. Powerset,
- 3. Substitution (e.g., existence of $\omega + \omega$ is unprovable),
- 4. Sumsets.

Solution.

1. The class $K_1 = \{x \in \mathbf{G} \mid \forall y \in \{x\} | y \text{ is finite}\}\)$ of hereditary finite sets satisfies all axioms of ZFC except Infinity. All the axioms follow easily from the property that $\forall x [x \in K_1 \leftrightarrow (x \in K_1 \land x \text{ is finite})]\)$. Note that it can be shown that $K_1 = V_{\omega}$.

```
Since \omega \notin K_1, Infinity does not hold in K_1.
```

2. For any cardinal \aleph_{α} , the class $K_2 = \{x \in \mathbf{G} \mid \forall y \in \{x\} [|y| \leq \aleph_{\alpha}]\}$ of hereditary \aleph_{α} cardinality sets satisfies all axioms of ZFC except Powerset. All the axioms follow easily
from the property that $\forall x [x \in K_2 \leftrightarrow (x \subset K_2 \land |x| \leq \aleph_{\alpha})]$. Note that it can be shown that $K_2 \subset V_{\omega_{\alpha+1}}$.

Since $\wp(\omega_{\alpha}) \subset K_2$ and $\wp(\omega_{\alpha}) \notin K_2$, Powerset does not hold in K_2 .

3. For any limit ordinal $\alpha > \omega$ (and in particular, for $\alpha = \omega + \omega$), the class $K_3 = V_\alpha$ satisfies all axioms except Substitution. All the axioms follow easily from the property that for all $\beta < \alpha$ and $n \in \omega$, $\beta + n < \alpha$ (and for Infinity, that $\alpha > \omega$).

For $\alpha = \omega + \omega$, Substitution does not hold in K_3 : the set $\{\omega, \omega + 1, \omega + 2, \ldots\}$ is not in K_3 , even though it is constructible from ω using Substitution with the operator $(\omega + \cdot)$.

4. For any strong limit cardinal \aleph_{α} (for instance, \aleph_{ω} under GCH) the class $K_4 = \{x \in \mathbf{G} \mid \forall y \in^* \{x\} : [|y| < \aleph_{\alpha}]\}$ of hereditary cardinality-less-than- \aleph_{α} sets satisfies all axioms of ZFC except Sumset. All the axioms follow easily from the property that $\forall x[x \in K_4 \leftrightarrow (x \subset K_4 \land |x| <_1 \aleph_{\alpha})]$ (and for Powerset, that α is a limit ordinal). Note that it can be shown that $K_4 \subset V_{\omega_{\alpha+1}}$.

If \aleph_{α} is singular (as \aleph_{ω} is), then there exists a cofinal subset $B \subset \omega_{\alpha}$ with $|B| < \aleph_{\alpha}$ (and hence $B \in K_4$), and since $\bigcup B = \omega_{\alpha} \notin K_4$, Sumset does not hold in K_4 .

134 Prove a few items of Lemma 7.12: give bounded formulas expressing the following. *Solution*.

1. $x = \emptyset \iff \forall u \in x (u \neq u)$ 2. $x \subset y \Leftrightarrow \forall u \in x(u \in y)$ 3. $z = \{x\} \iff x \in z \land \forall u \in z(z = x)$ $z = \{x, y\} \iff x \in z \land y \in z \land \forall u \in z (z = x \lor z = y)$ 4. $z = x \cup y \iff x \subset z \land y \subset z \land \forall u \in z (u \in x \lor u \in y)$ $z = x \cup \{y\} \iff x \subset z \land y \in z \land \forall u \in z (u \in x \lor u = y)$ 5. $x = 0, x = 1, x = 2, x = 3, \ldots$ $x = n + 1 \iff \exists y \in x (x = y \cup \{y\} \land y = n).$ 6. $x = V_0, x = V_1, x = V_2, x = V_3, \dots$ $x = \mathcal{V}_{n+1} \iff \exists y \in x (y = \mathcal{V}_n \land \forall z \in x (z \subset y) \land \emptyset \in x \land \forall z \in x \forall i \in y (z \cup \{i\} \in x).$ 7. x is 0, S-closed $\Leftrightarrow \emptyset \in x \land \forall y \in x \exists z \in x (z = y \cup \{y\})),$ 8. $x \in OR \iff x$ is a transitive set of transitive sets $\iff \forall y \in x \forall z \in y (z \in x \land \forall u \in z (u \in y))$ (cf. Exercise 130), 9. α is a successor ordinal $\Leftrightarrow \alpha \in OR \land \exists x \in \alpha (\alpha = x \cup \{x\})$ α is a limit ordinal $\Leftrightarrow \alpha \in OR \land \neg(\alpha = \emptyset) \land \neg(\alpha \text{ is a successor ordinal})$ 10. $x \in \omega \iff x \in OR \land \neg \lim(x) \land \forall y \in x \neg (\lim(y))$ $x = \omega \iff x \in \mathrm{OR} \land \lim(x) \land \forall y \in x \neg (\lim(y))$ 11. $y = []x \iff \forall z \in x \forall u \in z (u \in y) \land \forall u \in y \exists z \in x (u \in z)$ 12. $z = (x, y) \iff \exists u \in z \exists v \in z (u = \{x, x\} \land v = \{x, y\} \land z = \{u, v\})$

- 13. p is an ordered pair $\Leftrightarrow \exists u \in p \exists x \in u \exists y \in u (p = (x, y))$
- 14. R is a relation $\Leftrightarrow \forall p \in R(p \text{ is an ordered pair})$ $xRy \Leftrightarrow \exists z \in R(z = (x, y))$
- 15. f is a function \Leftrightarrow f is a relation $\land \forall p \in f \forall u \in p \forall x \in u \forall y \in u \forall p' \in f \forall u' \in p' \forall x' \in u' \forall y' \in u'$ $((p = (x, y) \land p' = (x', y') \land x = x') \rightarrow y = y')$ $f(x) = y \Leftrightarrow \exists z \in R(z = (x, y))$ f is an injection $\Leftrightarrow f$ is a function $\land \forall p \in f \forall u \in p \forall x \in u \forall y \in u \forall p' \in f \forall u' \in p' \forall x' \in u' \forall y' \in u'$ $((p = (x, y) \land p' = (x', y') \land y = y') \rightarrow x = x')$ f is an surjection onto $Y \Leftrightarrow f$ is a function $\land Y = \operatorname{Ran}(f),$ f is a bijection $X \rightarrow Y \Leftrightarrow f$ is an injective function $\land X = \operatorname{Dom}(f) \land Y = \operatorname{Ran}(f)$
- 16. $\begin{aligned} X &= \operatorname{Dom}(f) &\Leftrightarrow \forall x \in X \exists p \in f \exists u \in p \exists y \in u (p = (x, y)) \land \forall p \in f \forall u \in p \forall x \in u \forall y \in u \\ (p = (x, y) \to x \in X) \end{aligned}$ $\begin{aligned} Y &= \operatorname{Ran}(f) &\Leftrightarrow \forall y \in Y \exists p \in f \exists u \in p \exists x \in u (p = (x, y)) \land \forall p \in f \forall u \in p \forall x \in u \forall y \in u \\ (p = (x, y) \to y \in Y) \end{aligned}$ $\begin{aligned} g &= f | A \iff g \subset f \land \forall p \in f \forall u \in p \forall x \in u \forall y \in u ((p = (x, y) \land x \in A) \to p \in g) \end{aligned}$

136

- 1. Decide which ZF Axioms/Axiom schemas hold in V_{ω} , and which are false.
- 2. Same question for $V_{\omega+\omega}$.
- 3. Same question for V_{ω_1} .
- 4. Obtain some relative consistency results from 1–3.
- 5. What about the truth of Theorem 4.10 (p. 29) (every well-ordering has a type) in the above models?
- 6. Suppose that Theorem 4.10 holds in V_{α} and $\alpha > \omega$. Can you give lower bounds for α ? And if AC holds in V_{α} ?

Solution.

See also exercise 127.

- 1. All ZF Axioms except Infinity hold in V_{ω} .
- 2. All ZF Axioms except Substitution hold in $V_{\omega+\omega}$
- 3. All ZF Axioms except Substitution hold in V_{ω_1} (note that $V_{\omega+4}$ contains a well-ordering of type ω_1 , namely the well-ordering of all the well-orderings (modulo order-isomorphism) of ω , ordered by inclusion).
- 4. If ZF is consistent, then so are (ZF-Infinity)+¬Infinity and (ZF-Substitution)+¬Substitution.
- 5. In V_{ω} , every set is finite, so every well-ordering has a finite type, which is in V_{ω} . In $V_{\omega+\omega}$ and V_{ω_1} , the aforementioned set of all well-orderings of ω has no type.
- 6. If V_{β} contains a well-ordering for a set x, then $V_{\beta+4}$ contains a well-ordering of type $\Gamma(x)$ (namely the well-ordering of all the well-orderings (modulo order-isomorphism) of x). By induction on β , this implies that for all β , $V_{\omega+4\cdot\beta+1}$ contains a well-ordering of type ω_{β} Thus, α must satisfy $\forall \beta(\omega+4\cdot\beta<\alpha\rightarrow\omega_{\beta}<\alpha$. It follows that α is an initial and $\omega_{\alpha}=\alpha$. The smallest α which satisfies this is $\alpha=\bigcup\{\omega,\omega_{\omega},\omega_{\omega_{\omega}},\ldots\}$. Note that α might need to satisfy other contraints as well, so this is just a lower bound.

If we assume AC, then we also have that for all $\beta < \alpha$, V_{β} has a well-ordering with type in α , so $|V_{\beta}| < |alpha|$. It follows that $\alpha = |V_{\alpha}|$. The smallest $\alpha > \omega$ which satisfies this is $\alpha = \bigcup \{\omega + 1, |V_{\omega+1}|, |V_{|V_{\omega+1}|}|, \ldots \}$. For this α , if $x \in V_{\alpha}$, then $x \in V_{\beta}$ for some $\beta < \alpha$, and then $|x| \leq |V_{\beta}| < |V_{\alpha}| = \alpha$, thus any well-orderings of x have type in V_{α} : it follows that this is not merely a lower bound but also a valid choice for α .

Note that under GCH, these two choices for (the lower bound of) α are of equal value.