
Solutions for Exercises

Chapter 7

125. Recall (Exercise 16 p. 12 and Theorem 4.18 p. 34) that (G is the least class such that)
℘(G) = G. Show, in ZF minus Foundation:

1. If K is a class such that ℘(K) = K, then every ZF axiom —with the possible exception of
Foundation— holds in K.

2. Foundation is true in G.

Thus, G is an inner model for ZF including Foundation in ZF minus Foundation. Therefore, if
the latter theory is consistent, then so is the former.

Solution.

1. Assume that K = ℘(K), i.e. for all a, a ∈ K ⇐⇒ a ⊂ K. We will prove that the
relativization of all the axioms with respect to K holds. In most cases, it suffices to show
that the set whose existence is postulated by the axiom is in K, since the defining formula
is bounded or ΠZF

1 , and K is a transitive inner model.

Extensionality For all a, b∈K, if ∀x∈K : [x∈ a ⇐⇒ x∈ b], then a ∩K = b ∩K. Now
since also a, b ⊂ K, it follows that a = b.

Separation Let a ∈ K, and let Φ be a formula that doesn’t contain b freely. Set b =
{x∈a | ΦK(x, a)}. Then b ⊂ a ⊂ K, so b∈K.

Pairing For all a, b∈K, {a, b} ⊂ K, so {a, b}∈K.

Sumset Let a∈K. For all b∈a, b ⊂ K, so
⋃

a ⊂ K, so
⋃

a∈K.

Powerset Let a∈K. Then a ⊂ K, so ℘(a) ⊂ ℘(K) = K, so ℘(a)∈K.

Substitution Let a ∈ K, and let Ψ be a formula, not containing b freely, such that
∀x ∈ a∃!y ∈ KΨK . Then by Substitution b = {y | y ∈ K ∧ ∃x ∈ aΨK} is a set.
Since b ⊂ K, we have b∈K, and ∀y∈K(y∈b↔ ∃x∈aΨK).

Infinity Since T(K) ⊂ ℘(K) = K, we have OR ⊂ K, so ω∈K.

2. Let a∈G. Since a∈a∪{a}, we can find an x∈a∪{a} such that x∩ (a∪{a}) = ∅. It follows
that either x = a = ∅, or x∈a ⊂ G and x ∩ a = ∅. Thus, Foundation holds in G. ¤

127 Show that the following ZF axioms cannot be deduced from the others (modulo a consistency
assumption):

1. Infinity,

2. Powerset,

3. Substitution (e.g., existence of ω + ω is unprovable),

4. Sumsets.



Solution.

1. The class K1 = {x∈G | ∀y ∈∗ {x}[y is finite]} of hereditary finite sets satisfies all axioms
of ZFC except Infinity. All the axioms follow easily from the property that ∀x[x ∈K1 ↔
(x ⊂ K1 ∧ x is finite)]. Note that it can be shown that K1 = Vω.

Since ω 6∈K1, Infinity does not hold in K1.

2. For any cardinal ℵα, the class K2 = {x ∈ G | ∀y ∈∗ {x}[|y| 6 ℵα]} of hereditary ℵα-
cardinality sets satisfies all axioms of ZFC except Powerset. All the axioms follow easily
from the property that ∀x[x∈K2 ↔ (x ⊂ K2 ∧ |x| 61 ℵα)]. Note that it can be shown that
K2 ⊂ Vωα+1

.

Since ℘(ωα) ⊂ K2 and ℘(ωα) 6∈K2, Powerset does not hold in K2.

3. For any limit ordinal α > ω (and in particular, for α = ω + ω), the class K3 = Vα satisfies
all axioms except Substitution. All the axioms follow easily from the property that for all
β < α and n∈ω, β + n < α (and for Infinity, that α > ω).

For α = ω + ω, Substitution does not hold in K3: the set {ω, ω + 1, ω + 2, . . .} is not in K3,
even though it is constructible from ω using Substitution with the operator (ω + ·).

4. For any strong limit cardinal ℵα (for instance, ℵω under GCH) the class K4 = {x ∈G |
∀y ∈∗ {x} : [|y| < ℵα]} of hereditary cardinality-less-than-ℵα sets satisfies all axioms of
ZFC except Sumset. All the axioms follow easily from the property that ∀x[x ∈ K4 ↔
(x ⊂ K4 ∧ |x| <1 ℵα)] (and for Powerset, that α is a limit ordinal). Note that it can be
shown that K4 ⊂ Vωα+1

.

If ℵα is singular (as ℵω is), then there exists a cofinal subset B ⊂ ωα with |B| < ℵα (and
hence B∈K4), and since

⋃

B = ωα 6∈K4, Sumset does not hold in K4. ¤

134 Prove a few items of Lemma 7.12: give bounded formulas expressing the following.
Solution.

1. x = ∅ ⇔ ∀u∈x(u 6= u)

2. x ⊂ y ⇔ ∀u∈x(u∈y)

3. z = {x} ⇔ x∈z ∧ ∀u∈z(z = x)
z = {x, y} ⇔ x∈z ∧ y∈z ∧ ∀u∈z(z = x ∨ z = y)

4. z = x ∪ y ⇔ x ⊂ z ∧ y ⊂ z ∧ ∀u∈z(u∈x ∨ u∈y)
z = x ∪ {y} ⇔ x ⊂ z ∧ y∈z ∧ ∀u∈z(u∈x ∨ u = y)

5. x = 0, x = 1, x = 2, x = 3,. . . ,

x = n+ 1 ⇔ ∃y∈x(x = y ∪ {y} ∧ y = n).

6. x = V0, x = V1, x = V2, x = V3,. . . ,

x = Vn+1 ⇔ ∃y∈x(y = Vn ∧ ∀z∈x(z ⊂ y) ∧ ∅∈x ∧ ∀z∈x∀i∈y(z ∪ {i}∈x).

7. x is 0,S-closed ⇔ ∅∈x ∧ ∀y∈x∃z∈x(z = y ∪ {y})),

8. x∈OR ⇔ x is a transitive set of transitive sets ⇔ ∀y ∈x∀z ∈ y(z ∈x ∧ ∀u∈ z(u∈ y))
(cf. Exercise 130),

9. α is a successor ordinal ⇔ α∈OR ∧ ∃x∈α(α = x ∪ {x})

α is a limit ordinal ⇔ α∈OR ∧ ¬(α = ∅) ∧ ¬(α is a successor ordinal)

10. x∈ω ⇔ x∈OR ∧ ¬lim(x) ∧ ∀y∈x¬(lim(y))

x = ω ⇔ x∈OR ∧ lim(x) ∧ ∀y∈x¬(lim(y))

11. y =
⋃

x ⇔ ∀z∈x∀u∈z(u∈y) ∧ ∀u∈y∃z∈x(u∈z)

12. z = (x, y) ⇔ ∃u∈z∃v∈z(u = {x, x} ∧ v = {x, y} ∧ z = {u, v})



13. p is an ordered pair ⇔ ∃u∈p∃x∈u∃y∈u(p = (x, y))

14. R is a relation ⇔ ∀p∈R(p is an ordered pair)

xRy ⇔ ∃z∈R(z = (x, y))

15. f is a function ⇔ f is a relation ∧ ∀p∈ f∀u∈ p∀x∈u∀y∈u∀p′ ∈ f∀u′ ∈ p′∀x′ ∈u′∀y′ ∈u′

((p = (x, y) ∧ p′ = (x′, y′) ∧ x = x′)→ y = y′)

f(x) = y ⇔ ∃z∈R(z = (x, y))

f is an injection ⇔ f is a function ∧ ∀p∈f∀u∈p∀x∈u∀y∈u∀p′∈f∀u′∈p′∀x′∈u′∀y′∈u′

((p = (x, y) ∧ p′ = (x′, y′) ∧ y = y′)→ x = x′)

f is an surjection onto Y ⇔ f is a function ∧ Y = Ran(f),

f is a bijection X → Y ⇔ f is an injective function ∧ X = Dom(f) ∧ Y = Ran(f)

16. X = Dom(f) ⇔ ∀x ∈ X∃p ∈ f∃u ∈ p∃y ∈ u(p = (x, y)) ∧ ∀p ∈ f∀u ∈ p∀x ∈ u∀y ∈ u

(p = (x, y)→ x∈X)

Y = Ran(f) ⇔ ∀y ∈ Y ∃p ∈ f∃u ∈ p∃x ∈ u(p = (x, y)) ∧ ∀p ∈ f∀u ∈ p∀x ∈ u∀y ∈ u

(p = (x, y)→ y∈Y )

g = f |A ⇔ g ⊂ f ∧ ∀p∈f∀u∈p∀x∈u∀y∈u((p = (x, y) ∧ x∈A)→ p∈g) ¤

136

1. Decide which ZF Axioms/Axiom schemas hold in Vω, and which are false.

2. Same question for Vω+ω.

3. Same question for Vω1
.

4. Obtain some relative consistency results from 1–3.

5. What about the truth of Theorem 4.10 (p. 29) (every well-ordering has a type) in the above
models?

6. Suppose that Theorem 4.10 holds in Vα and α > ω. Can you give lower bounds for α? And
if AC holds in Vα?

Solution.

See also exercise 127.

1. All ZF Axioms except Infinity hold in Vω.

2. All ZF Axioms except Substitution hold in Vω+ω

3. All ZF Axioms except Substitution hold in Vω1
(note that Vω+4 contains a well-ordering of

type ω1, namely the well-ordering of all the well-orderings (modulo order-isomorphism) of
ω, ordered by inclusion).

4. If ZF is consistent, then so are (ZF-Infinity)+¬Infinity and (ZF-Substitution)+¬Substitution.

5. In Vω, every set is finite, so every well-ordering has a finite type, which is in Vω. In Vω+ω

and Vω1
, the aforementioned set of all well-orderings of ω has no type.

6. If Vβ contains a well-ordering for a set x, then Vβ+4 contains a well-ordering of type Γ(x)
(namely the well-ordering of all the well-orderings (modulo order-isomorphism) of x). By
induction on β, this implies that for all β, Vω+4·β+1 contains a well-ordering of type ωβ Thus,
α must satisfy ∀β(ω + 4 · β < α→ ωβ < α. It follows that α is an initial and ωα = α. The
smallest α which satisfies this is α =

⋃

{ω, ωω, ωωω , . . .}. Note that α might need to satisfy
other contraints as well, so this is just a lower bound.

If we assume AC, then we also have that for all β < α, Vβ has a well-ordering with type in
α, so |Vβ | < |alpha|. It follows that α = |Vα|. The smallest α > ω which satisfies this is
α =

⋃

{ω + 1, |Vω+1|, |V|Vω+1||, . . .}. For this α, if x∈ Vα, then x∈ Vβ for some β < α, and
then |x| ≤ |Vβ | < |Vα| = α, thus any well-orderings of x have type in Vα: it follows that this
is not merely a lower bound but also a valid choice for α.

Note that under GCH, these two choices for (the lower bound of) α are of equal value. ¤


