Solutions for Exercises

Chapter 6

111. (AC) Suppose that p, q, r, s are cardinals such that p < q and r < s. Show that p + r < q + s. Solution.

If p and q are finite, then so is p + q, and the result is either trivial (if r or s are infinite) or follows from arithmetic (if r and s are both finite). Otherwise, since $p, r \leq \max\{q, s\}$ we have by Lemma 6.8 that $p + r = \max\{p, r\} < \max\{q, s\} = q + s$.

114. Prove Lemma 6.22:

1.
$$\aleph_{\alpha}^{\mathrm{cf}(\aleph_{\alpha})} > \aleph_{\alpha}$$

2.
$$\operatorname{cf}(2^{\aleph_{\alpha}}) > \aleph_{\alpha}$$
.

Solution.

1.
$$\aleph_{\alpha} = \sum_{\xi < cf(\omega_{\alpha})} p_{\xi} < \prod_{\xi} \aleph_{\alpha} = \aleph^{cf(\aleph_{\alpha})}.$$

2. If not, then: $2^{\aleph_{\alpha}} = \sum_{\xi < \omega_{\alpha}} p_{\xi} < \prod_{\xi} 2^{\aleph_{\alpha}} = (2^{\aleph_{\alpha}})^{\aleph_{\alpha}} = 2^{\aleph_{\alpha}}.$

116. (Hausdorff) Prove that $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$. Solution. If $\aleph_{\beta} \leq \aleph_{\alpha}$, then: $\aleph_{\alpha+1}^{\aleph_{\beta}} = |\bigcup_{\xi < \omega_{\alpha+1}} \xi^{\omega_{\beta}}| \leq \sum_{\xi < \omega_{\alpha+1}} \aleph_{\alpha}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} \leq \aleph_{\alpha+1}^{\aleph_{\beta}}$. If $\aleph_{\beta} \geq \aleph_{\alpha+1}$, then: $\aleph_{\alpha+1}^{\aleph_{\beta}} \leq (2^{\aleph_{\alpha}})^{\aleph_{\beta}} = 2^{\aleph_{\beta}} \leq \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1} \leq \aleph_{\alpha+1}^{\aleph_{\beta}}$.

120. Show: if κ is a strongly inaccesible initial number, then

1. $\beta < \kappa \implies V_{\beta} <_1 \kappa$,

2.
$$V_{\kappa} =_1 \kappa$$
,

- 3. (V_{κ}, \in) satisfies all ZFC Axioms,
- 4. if κ is the *least* strong inaccessible, then $(V_{\kappa}, \in) \models$ "there is no strong inaccessible".

Solution.

- 1. By induction on β : $V_0 <_1 \kappa$ (since κ is uncountable), if $V_\beta <_1 \kappa$ then $V_{\beta+1} = \wp(V_\beta) <_1 \kappa$ (since κ is a strong limit), and if $\gamma < \kappa$ is a limit and $\forall \xi < \gamma[V_\xi <_1 \kappa]$, then $\gamma <_1 \operatorname{cf}(\kappa)$ (since κ is regular) and hence $V_\gamma = \bigcup_{\xi < \gamma} V_{\xi} <_1 \kappa$.
- 2. $\kappa \subset V_{\kappa}$, and conversely $|V_{\kappa}| = |\bigcup_{\beta < \kappa} V_{\beta}| \le \sum_{\beta < \kappa} |V_{\beta}| \le \sum_{\beta < \kappa} |\kappa| = |\kappa| \cdot |\kappa| = |\kappa|.$
- 3. By Lemma 4.17 and Theorem 4.18, for any limit ordinal α , (V_{α}, \in) is a model of all the axioms of ZFC (assuming AC) except Substitution. So all we need to do is to show that V_{κ} satisfies Substitution. Now let $a \in V_{\kappa}$, and let F be an operation such that $(V_{\kappa}, \in, a) \models \forall x \in a \exists y [y = F(x)]$. We can define the operation $F' : a \to V_{\kappa}$ by setting $F'(x) = y \Leftrightarrow (V_{\kappa}, \in, x, y) \models F(x) = y$. We need to show that $F'[a] \in V_{\kappa}$. Now first, for all $x \in a$, $\rho(F'(x)) <_1 \kappa$. Second, we have $a \subset V_{\beta}$ for some $\beta < \kappa$, and hence $a <_1 \kappa$. Since κ is regular, this implies $\rho(F'[a]) = \bigcup_{x \in a} \{\rho(F'(x)) + 1\} <_1 \kappa$. We conclude that $F'[a] \in V_{\kappa}$.

4. Let $\alpha < \kappa$. If α is not an uncountable strong limit initial, there exists an injection witnessing $\omega \ge_1 \alpha$ or $\beta \ge_1 \alpha$ or $\wp(\beta) \ge_1 \alpha$ (for some $\beta < \alpha$). This injection is an element of $V_{\alpha+3} \subset V_{\kappa}$. Similarly, if α is singular, then there exists a partition P of α and an injection from P into $\beta < \alpha$, and P and the injection are both elements of $V_{\alpha+5} \subset V_{\kappa}$.

By induction on formulas it can be shown that for any 'bound' formula ϕ (where all quantifiers are of the form $\exists x \in y \text{ or } \forall x \in y$) and any $\vec{x} \in V_{\kappa}$, $(V_{\kappa} \models \phi(\vec{x}) \Leftrightarrow \phi(\vec{x})$. Since all the above mentioned conditions depend on a bound formula and the existence of a witness, it follows that if α is not strongly inaccessible, then $(V_{\kappa}, \in) \models \alpha$ is not strongly inaccessible. \Box

122.

- 1. Suppose that $X \subset \alpha$ is cofinal in α . Show that α has a cofinal subset Y of type $cf(\alpha)$ such that $Y \subset X$.
- 2. Show: if α and β have cofinal subsets of the same type, then $cf(\alpha) = cf(\beta)$.
- 3. Show: if α is a limit, then $cf(\omega_{\alpha}) = cf(\alpha)$.

Solution.

- 1. Suppose that $f : cf(\alpha) \to \alpha$ has Ran(f) cofinal in α . Define $g : cf(\alpha) \to X$ by $g(\xi) = \bigcap \{\delta \in X \mid f(\xi) \leq \delta\}$. Clearly, Ran(g) is cofinal in α . Applying Lemma 6.26 (p. 51) yields an orderpreserving function $h \subset g$ with $Y := Ran(h) \subset X$ cofinal in α . Now $cf(\alpha) \leq type(Y)$ (since Yis cofinal in α) and $type(Y) \leq cf(\alpha)$ (since type(Y) = type(Dom(h)) and $Dom(h) \subset cf(\alpha)$).
- 2. Suppose that $X \subset \alpha$ and $Y \subset \beta$ have the same type. By 1., let $X' \subset X$ be cofinal in α and have type $cf(\alpha)$. By the order-isomorphism between X and Y, X' corresponds to some $Y' \subset Y$ that has the same type as X'. This shows $cf(\beta) \leq type(X') = cf(\alpha)$. By symmetry, $cf(\alpha) \leq cf(\beta)$.
- 3. ω_{α} and α have cofinal subsets of the same type: $\{\omega_{\xi} \mid \xi < \alpha\}$, resp., α itself.