
Solutions to Exercises

Chapter 4

98 Show: every initial is critical for addition, multiplication and exponentiation.
Solution.
If β.γ < ω, then β, γ are finite, and it is easy to show by induction that then β + γ, β · γ and βγ

are also finite. Hence, ω is critical for addition, multiplication and exponentiation.
For higher initials we need Corollary 4.35: ωα × ωα =1 ωα for all initials ωα.
First, for all initials ωα and all β, γ 61 ωα, β + γ 61 ωα This follows by induction on γ: for γ = 0
this holds trivially, for γ + 1 this follows from β + (γ + 1) = (β + γ)∪ {β + γ} 61 (β + γ)× ωα 61

ωα × ωα 61 ωα, and for limits γ we have β + γ =
⋃

ξ<γ(β + ξ) 61

⋃

ξ<γ(β + ξ) × {ξ} 61
⋃

ξ<γ ωα × {ξ} = ωα × γ ⊂ ωα × ωα 61 ωα. In the last part we simultaneously select injections
β+ξ → ωα for all ξ < γ; the use of AC for this can be avoided by defining the injection recursively
using this same induction.
Similarly, we have that for all β, γ 61 ωα, β ·γ 61 ωα: the proof is analogous, except that for γ+1
we have that if β · γ 61 ωα, then applying the result for + yields β · (γ + 1) = (β · γ) + β 61 ωα.
Finally, we also have that for all β, γ, βγ 61 β ∪ γ ∪ ω: the proof is again analogous, except that
for γ + 1 we have that if β · γ 61 ωα, then applying the result for · yields β

γ+1 = (βγ) · β 61 ωα.
Now, if ωα′ is an initial > ω, and β, γ < ωα′ , then for some initial ωα <1 ωα′ , β, γ 61 ωα, so then
β + γ, β · γ, βγ 61 ωα <1 ωα′ , and hence β + γ, β · γ, βγ < ωα′ . We conclude that ωα′ is critical for
addition, multiplication and exponentiation. ¤

99 Show:

1. < well-orders OR×OR,

2. every product γ × γ is an initial segment

(if (α, β) < (α′, β′) ∈ γ × γ, then (α, β) ∈ γ × γ),

3. the product ω × ω is well-ordered in type ω,

4. every product ωα × ωα (α > 0) is well-ordered in type ωα.

Solution.

1. Let K ⊂ OR×OR be a class.
Set γ to be the smallest ordinal satisfying ∃α∃β[(α, β) ∈ K ∧ max(α, α) = γ].
Set α to be the smallest ordinal satisfying ∃β[(α, β) ∈ K ∧ max(α, β) = γ].
Finally, set β to be the smallest ordinal satisfying (α, β) ∈ K ∧max(α, β) = γ. Then (α, β) ∈
K. Furthermore, for all (α′, β′) ∈ K, either max(α′, β′)>γ, or max(α′, β′)=γ ∧ α′>α, or
max(α′, β′)=γ ∧ α′>α ∧ β′≥β. It follows that (α, β) is a <-minimal element of K.

2. If (α, β) < (α′, β′) ∈ γ × γ, then max(α, β) ≤ max(α′, β′) < γ, so (α, β) ∈ γ × γ.

3. By the previous point, for any (α, β) ∈ OR × OR, {(α′, β′) | (α′, β′) < (α, β)} ⊂ γ × γ

is a set (where γ = max(α, β)). Then we can use Theorem 4.13 to construct a unique
order-preserving map Γ : OR×OR ⇒ OR.

Now suppose that Γ(ω, ω) > ω. Then there exist (n,m) ∈ ω×ω such that Γ(n,m) = ω. But
then ω 61 max(n,m)×max(n,m) = (max(n,m))

2 would be finite, a contradiction.



4. For any α, Γ(ωα, ωα) = ωα, by induction on α. For if Γ(ωα, ωα) > ωα, then there exist
(β, γ) ∈ ωα × ωα such that Γ(ωα, ωα) = ωα, Since β, γ < ωα, there must exist a ξ < α such
that max(β, γ) 61 ωξ. Then ωξ <1 ωα 61 max(β, γ)×max(β, γ) 61 ωξ × ωξ, contradicting
the induction hypothesis.

¤

Chapter 5

101

1. Assume AC. Prove DC: if the set A is non-empty and the relation R ⊂ A2 is such that
∀a∈A∃b∈A(aRb), then a function f : ω → A exists such that for all n ∈ ω, f(n)Rf(n+ 1).

2. Show the version of DC where A can be a proper class and R ⊂ A2 is also provable from
AC. (Use Foundation.)

3. Show that a relation ≺ is well-founded (every non-empty set has a ≺-minimal element) iff
there is no function f on ω such that for all n ∈ ω, f(n+ 1) ≺ f(n).

Solution.

1. Let j be a choice function for ℘(A). Recursively define f : ω → A by f(0) = f(A) and
f(n+ 1) = j({a ∈ A | f(n)Ra}) (by assumption, {a ∈ A | bRa} 6= ∅ for all b ∈ A).

2. If we have Foundation, then we can use the Bottom operator of Definition 4.21 to define the
operator H(X) =

⋃

x∈X Bottom({y ∈ A | xRy}). Then H is a finite operator, so H↑= H↑ω
is a set, and ∀a ∈ H↑∃b ∈ H↑ [aRb]. Now we can apply DC on sets to H↑.

3. If there exists a function f with the given property, then {f(n) | n ∈ ω} is a set with no
≺-minimal element. Conversely, if A is a set with no ≺-minimal element, then we can use
DC to find a function f : ω → A with the desired property.

¤

103 (AC) Show: if A is infinite, then ω 61 A.
Show without AC that: if A is infinite, then ω 61 ℘(℘(A)).
Solution.
(i) Let j be a choice function for ℘(A). Recursively, define f : ω → A by f(n) = j(A − {f(m) |
m < n}) as long as A− {f(m) | m < n}) 6= ∅. Obviously, since A is infinite, if f |n is an injection
then A− {f(m) | m < n}) 6= ∅. By induction on n it follows that for all n, f |n is defined and an
injection. Thus, f is an injection as well.
(ii) If B ⊂ A satisfies |B| = n, then A−B 6= ∅ and for all a ∈ A−B, |B ∪ {a}| = n+1. It follows
by induction that for all n, {B ⊂ A | |B| = n} is nonempty. Since all these subsets of ℘(A) are
disjoint, this is the required injection. ¤

105 Show that the following are equivalent for every two sets A and B:

1. A <1 B, i.e.: there is no bijection : A→ B and A 61 B,

2. there is no surjection : A→ B and A 61 B,

3. there is no surjection : A→ B and B 6= ∅.

For which of the six implications do you need AC?
Solution.

2 ⇒ 1 if there is no surjection A→ B, then there certainly is no bijection.

2 ⇒ 3 if A 61 B and B = ∅, then A = ∅ and there would exist a (trivial) surjection A → B.
Conversely, if 2) holds, then B 6= ∅.

1 ⇒ 2 if there exists a surjection : A → B and an injection : A → B, then by Theorem 6.6 there
exists a bijection : A→ B. Conversely, if 1) holds then there exists no surjection : A→ B.



¬1 ⇒ ¬3 (AC) If A 6<1 B, then B 61 A, i.e. there exists an injection f : B → A. Now either B = ∅,
or we can define a surjection g : A → B by setting, for some b0 ∈ B, g(y) = x if f(x) = y,
and g(y) = b0 otherwise.

3 ⇒ 1 and 3 ⇒ 2 are the only implications that seem to need AC. ¤

108 The Teichmüller-Tukey Lemma is the following statement.

Suppose that ∅ 6= A ⊂ ℘(X), and for all Y ⊂ X, Y is in A iff every finite subset of Y
is in A. Then A has a (⊂-) maximal element.

Show that this is equivalent with Zorn’s Lemma.
Solution.
Zorn⇒ TT:
Suppose that A is as in the TT Lemma. For A to have a maximal element, by Zorn, it suffices to
show that it is closed under unions of chains. Thus, suppose that K ⊂ A is a chain. In order that
⋃

K ∈ A, it suffices to show that every finite subset is in A. Thus, suppose that C ⊂
⋃

K is finite.
Then for some Y ∈ K, we have that C ⊂ Y . Therefore, C ∈ A.
TT⇒ Zorn:
Let P be a non-empty poset in which chains have upper bounds. Let A be the set of all chains
of P . Then A satisfies the TT condition: (i) a finite subset of a chain is a chain, and (ii) if every
finite subset of K ⊂ A is a chain, then K is a chain (if a, b ∈ K, then {a, b} is a finite subset, hence
a 6 b or b 6 a). By TT, A has a maximal element, which is a maximal chain of P . An upper
bound of this chain is maximal in P . ¤


