Solutions to Exercises

Chapter 4

98 Show: every initial is critical for addition, multiplication and exponentiation. *Solution.*

If $\beta \cdot \gamma < \omega$, then β, γ are finite, and it is easy to show by induction that then $\beta + \gamma, \beta \cdot \gamma$ and β^{γ} are also finite. Hence, ω is critical for addition, multiplication and exponentiation.

For higher initials we need Corollary 4.35: $\omega_{\alpha} \times \omega_{\alpha} =_{1} \omega_{\alpha}$ for all initials ω_{α} .

First, for all initials ω_{α} and all $\beta, \gamma \leq_1 \omega_{\alpha}, \beta + \gamma \leq_1 \omega_{\alpha}$ This follows by induction on γ : for $\gamma = 0$ this holds trivially, for $\gamma + 1$ this follows from $\beta + (\gamma + 1) = (\beta + \gamma) \cup \{\beta + \gamma\} \leq_1 (\beta + \gamma) \times \omega_{\alpha} \leq_1 \omega_{\alpha} \times \omega_{\alpha} \leq_1 \omega_{\alpha}$, and for limits γ we have $\beta + \gamma = \bigcup_{\xi < \gamma} (\beta + \xi) \leq_1 \bigcup_{\xi < \gamma} (\beta + \xi) \times \{\xi\} \leq_1 \bigcup_{\xi < \gamma} \omega_{\alpha} \times \{\xi\} = \omega_{\alpha} \times \gamma \subset \omega_{\alpha} \times \omega_{\alpha} \leq_1 \omega_{\alpha}$. In the last part we simultaneously select injections $\beta + \xi \to \omega_{\alpha}$ for all $\xi < \gamma$; the use of AC for this can be avoided by defining the injection recursively using this same induction.

Similarly, we have that for all $\beta, \gamma \leq_1 \omega_{\alpha}, \beta \cdot \gamma \leq_1 \omega_{\alpha}$: the proof is analogous, except that for $\gamma + 1$ we have that if $\beta \cdot \gamma \leq_1 \omega_{\alpha}$, then applying the result for + yields $\beta \cdot (\gamma + 1) = (\beta \cdot \gamma) + \beta \leq_1 \omega_{\alpha}$. Finally, we also have that for all $\beta, \gamma, \beta^{\gamma} \leq_1 \beta \cup \gamma \cup \omega$: the proof is again analogous, except that for $\gamma + 1$ we have that if $\beta \cdot \gamma \leq_1 \omega_{\alpha}$, then applying the result for \cdot yields $\beta^{\gamma+1} = (\beta^{\gamma}) \cdot \beta \leq_1 \omega_{\alpha}$. Now, if $\omega_{\alpha'}$ is an initial $> \omega$, and $\beta, \gamma < \omega_{\alpha'}$, then for some initial $\omega_{\alpha} <_1 \omega_{\alpha'}, \beta, \gamma \leq_1 \omega_{\alpha}$, so then $\beta + \gamma, \beta \cdot \gamma, \beta^{\gamma} \leq_1 \omega_{\alpha} <_1 \omega_{\alpha'}$, and hence $\beta + \gamma, \beta \cdot \gamma, \beta^{\gamma} < \omega_{\alpha'}$. We conclude that $\omega_{\alpha'}$ is critical for addition, multiplication and exponentiation.

99 Show:

- 1. < well-orders $OR \times OR$,
- 2. every product $\gamma \times \gamma$ is an initial segment

 $(\text{if } (\alpha,\beta)<(\alpha',\beta')\in\gamma\times\gamma, \text{ then } (\alpha,\beta)\in\gamma\times\gamma),$

- 3. the product $\omega \times \omega$ is well-ordered in type ω ,
- 4. every product $\omega_{\alpha} \times \omega_{\alpha}$ ($\alpha > 0$) is well-ordered in type ω_{α} .

Solution.

1. Let $K \subset OR \times OR$ be a class.

Set γ to be the smallest ordinal satisfying $\exists \alpha \exists \beta [(\alpha, \beta) \in K \land \max(\alpha, \alpha) = \gamma].$

Set α to be the smallest ordinal satisfying $\exists \beta [(\alpha, \beta) \in K \land \max(\alpha, \beta) = \gamma].$

Finally, set β to be the smallest ordinal satisfying $(\alpha, \beta) \in K \land \max(\alpha, \beta) = \gamma$. Then $(\alpha, \beta) \in K$. Furthermore, for all $(\alpha', \beta') \in K$, either $\max(\alpha', \beta') > \gamma$, or $\max(\alpha', \beta') = \gamma \land \alpha' > \alpha$, or $\max(\alpha', \beta') = \gamma \land \alpha' > \alpha \land \beta' \geq \beta$. It follows that (α, β) is a <-minimal element of K.

- 2. If $(\alpha, \beta) < (\alpha', \beta') \in \gamma \times \gamma$, then $\max(\alpha, \beta) \le \max(\alpha', \beta') < \gamma$, so $(\alpha, \beta) \in \gamma \times \gamma$.
- 3. By the previous point, for any $(\alpha, \beta) \in OR \times OR$, $\{(\alpha', \beta') \mid (\alpha', \beta') < (\alpha, \beta)\} \subset \gamma \times \gamma$ is a set (where $\gamma = \max(\alpha, \beta)$). Then we can use Theorem 4.13 to construct a unique order-preserving map $\Gamma : OR \times OR \Rightarrow OR$.

Now suppose that $\Gamma(\omega, \omega) > \omega$. Then there exist $(n, m) \in \omega \times \omega$ such that $\Gamma(n, m) = \omega$. But then $\omega \leq_1 \max(n, m) \times \max(n, m) = (\max(n, m))^2$ would be finite, a contradiction.

4. For any α , $\Gamma(\omega_{\alpha}, \omega_{\alpha}) = \omega_{\alpha}$, by induction on α . For if $\Gamma(\omega_{\alpha}, \omega_{\alpha}) > \omega_{\alpha}$, then there exist $(\beta, \gamma) \in \omega_{\alpha} \times \omega_{\alpha}$ such that $\Gamma(\omega_{\alpha}, \omega_{\alpha}) = \omega_{\alpha}$, Since $\beta, \gamma < \omega_{\alpha}$, there must exist a $\xi < \alpha$ such that $\max(\beta, \gamma) \leq_1 \omega_{\xi}$. Then $\omega_{\xi} <_1 \omega_{\alpha} \leq_1 \max(\beta, \gamma) \times \max(\beta, \gamma) \leq_1 \omega_{\xi} \times \omega_{\xi}$, contradicting the induction hypothesis.

Chapter 5

101

- 1. Assume AC. Prove DC: if the set A is non-empty and the relation $R \subset A^2$ is such that $\forall a \in A \exists b \in A(aRb)$, then a function $f : \omega \to A$ exists such that for all $n \in \omega$, f(n)Rf(n+1).
- 2. Show the version of DC where A can be a proper class and $R \subset A^2$ is also provable from AC. (Use Foundation.)
- 3. Show that a relation \prec is well-founded (every non-empty set has a \prec -minimal element) iff there is no function f on ω such that for all $n \in \omega$, $f(n+1) \prec f(n)$.

Solution.

- 1. Let j be a choice function for $\wp(A)$. Recursively define $f : \omega \to A$ by f(0) = f(A) and $f(n+1) = j(\{a \in A \mid f(n)Ra\})$ (by assumption, $\{a \in A \mid bRa\} \neq \emptyset$ for all $b \in A$).
- 2. If we have Foundation, then we can use the Bottom operator of Definition 4.21 to define the operator $H(X) = \bigcup_{x \in X} \text{Bottom}(\{y \in A \mid xRy\})$. Then H is a finite operator, so $H\uparrow = H\uparrow\omega$ is a set, and $\forall a \in H\uparrow \exists b \in H\uparrow [aRb]$. Now we can apply DC on sets to $H\uparrow$.
- 3. If there exists a function f with the given property, then $\{f(n) \mid n \in \omega\}$ is a set with no \prec -minimal element. Conversely, if A is a set with no \prec -minimal element, then we can use DC to find a function $f : \omega \to A$ with the desired property.

103 (AC) Show: if A is infinite, then $\omega \leq_1 A$. Show without AC that: if A is infinite, then $\omega \leq_1 \wp(\wp(A))$. Solution.

(i) Let j be a choice function for $\wp(A)$. Recursively, define $f : \omega \to A$ by $f(n) = j(A - \{f(m) \mid m < n\})$ as long as $A - \{f(m) \mid m < n\} \neq \emptyset$. Obviously, since A is infinite, if f|n is an injection then $A - \{f(m) \mid m < n\} \neq \emptyset$. By induction on n it follows that for all n, f|n is defined and an injection. Thus, f is an injection as well.

(ii) If $B \subset A$ satisfies |B| = n, then $A - B \neq \emptyset$ and for all $a \in A - B$, $|B \cup \{a\}| = n + 1$. It follows by induction that for all n, $\{B \subset A \mid |B| = n\}$ is nonempty. Since all these subsets of $\wp(A)$ are disjoint, this is the required injection.

105 Show that the following are equivalent for every two sets A and B:

- 1. $A <_1 B$, i.e.: there is no bijection : $A \to B$ and $A \leq_1 B$,
- 2. there is no surjection : $A \to B$ and $A \leq_1 B$,
- 3. there is no surjection : $A \to B$ and $B \neq \emptyset$.

For which of the six implications do you need AC? *Solution.*

- $2 \Rightarrow 1$ if there is no surjection $A \rightarrow B$, then there certainly is no bijection.
- $2 \Rightarrow 3$ if $A \leq_1 B$ and $B = \emptyset$, then $A = \emptyset$ and there would exist a (trivial) surjection $A \to B$. Conversely, if 2) holds, then $B \neq \emptyset$.
- $1 \Rightarrow 2$ if there exists a surjection : $A \rightarrow B$ and an injection : $A \rightarrow B$, then by Theorem 6.6 there exists a bijection : $A \rightarrow B$. Conversely, if 1) holds then there exists no surjection : $A \rightarrow B$.

- $\neg 1 \Rightarrow \neg 3$ (AC) If $A \not\leq_1 B$, then $B \leq_1 A$, i.e. there exists an injection $f : B \to A$. Now either $B = \emptyset$, or we can define a surjection $g : A \to B$ by setting, for some $b_0 \in B$, g(y) = x if f(x) = y, and $g(y) = b_0$ otherwise.
 - $3 \Rightarrow 1$ and $3 \Rightarrow 2$ are the only implications that seem to need AC.

108 The Teichmüller-Tukey Lemma is the following statement.

Suppose that $\emptyset \neq A \subset \wp(X)$, and for all $Y \subset X$, Y is in A iff every finite subset of Y is in A. Then A has a (\subset -) maximal element.

Show that this is equivalent with Zorn's Lemma.

Solution.

 $\operatorname{Zorn} \Rightarrow \operatorname{TT}:$

Suppose that A is as in the TT Lemma. For A to have a maximal element, by Zorn, it suffices to show that it is closed under unions of chains. Thus, suppose that $K \subset A$ is a chain. In order that $\bigcup K \in A$, it suffices to show that every finite subset is in A. Thus, suppose that $C \subset \bigcup K$ is finite. Then for some $Y \in K$, we have that $C \subset Y$. Therefore, $C \in A$. TT \Rightarrow Zorn:

Let P be a non-empty poset in which chains have upper bounds. Let A be the set of all chains of P. Then A satisfies the TT condition: (i) a finite subset of a chain is a chain, and (ii) if every finite subset of $K \subset A$ is a chain, then K is a chain (if $a, b \in K$, then $\{a, b\}$ is a finite subset, hence $a \leq b$ or $b \leq a$). By TT, A has a maximal element, which is a maximal chain of P. An upper bound of this chain is maximal in P.