Solutions to Exercises

Chapter 4

98 Show: every initial is critical for addition, multiplication and exponentiation.

Solution.

If $\beta . \gamma<\omega$, then β, γ are finite, and it is easy to show by induction that then $\beta+\gamma, \beta \cdot \gamma$ and β^{γ} are also finite. Hence, ω is critical for addition, multiplication and exponentiation.
For higher initials we need Corollary 4.35: $\omega_{\alpha} \times \omega_{\alpha}={ }_{1} \omega_{\alpha}$ for all initials ω_{α}.
First, for all initials ω_{α} and all $\beta, \gamma \leqslant 1 \omega_{\alpha}, \beta+\gamma \leqslant 1 \omega_{\alpha}$ This follows by induction on γ : for $\gamma=0$ this holds trivially, for $\gamma+1$ this follows from $\beta+(\gamma+1)=(\beta+\gamma) \cup\{\beta+\gamma\} \leqslant_{1}(\beta+\gamma) \times \omega_{\alpha} \leqslant_{1}$ $\omega_{\alpha} \times \omega_{\alpha} \leqslant 1 \omega_{\alpha}$, and for limits γ we have $\beta+\gamma=\bigcup_{\xi<\gamma}(\beta+\xi) \leqslant_{1} \bigcup_{\xi<\gamma}(\beta+\xi) \times\{\xi\} \leqslant_{1}$ $\bigcup_{\xi<\gamma} \omega_{\alpha} \times\{\xi\}=\omega_{\alpha} \times \gamma \subset \omega_{\alpha} \times \omega_{\alpha} \leqslant 1 \omega_{\alpha}$. In the last part we simultaneously select injections $\beta+\xi \rightarrow \omega_{\alpha}$ for all $\xi<\gamma$; the use of AC for this can be avoided by defining the injection recursively using this same induction.
Similarly, we have that for all $\beta, \gamma \leqslant 1 \omega_{\alpha}, \beta \cdot \gamma \leqslant 1 \omega_{\alpha}$: the proof is analogous, except that for $\gamma+1$ we have that if $\beta \cdot \gamma \leqslant 1 \omega_{\alpha}$, then applying the result for + yields $\beta \cdot(\gamma+1)=(\beta \cdot \gamma)+\beta \leqslant 1 \omega_{\alpha}$. Finally, we also have that for all $\beta, \gamma, \beta^{\gamma} \leqslant 1 \beta \cup \gamma \cup \omega$: the proof is again analogous, except that for $\gamma+1$ we have that if $\beta \cdot \gamma \leqslant 1 \omega_{\alpha}$, then applying the result for \cdot yields $\beta^{\gamma+1}=\left(\beta^{\gamma}\right) \cdot \beta \leqslant 1 \omega_{\alpha}$. Now, if $\omega_{\alpha^{\prime}}$ is an initial $>\omega$, and $\beta, \gamma<\omega_{\alpha^{\prime}}$, then for some initial $\omega_{\alpha}<_{1} \omega_{\alpha^{\prime}}, \beta, \gamma \leqslant 1 \omega_{\alpha}$, so then $\beta+\gamma, \beta \cdot \gamma, \beta^{\gamma} \leqslant 1 \omega_{\alpha}<_{1} \omega_{\alpha^{\prime}}$, and hence $\beta+\gamma, \beta \cdot \gamma, \beta^{\gamma}<\omega_{\alpha^{\prime}}$. We conclude that $\omega_{\alpha^{\prime}}$ is critical for addition, multiplication and exponentiation.
99 Show:

1. $<$ well-orders $\mathrm{OR} \times \mathrm{OR}$,
2. every product $\gamma \times \gamma$ is an initial segment

$$
\text { (if } \left.(\alpha, \beta)<\left(\alpha^{\prime}, \beta^{\prime}\right) \in \gamma \times \gamma \text {, then }(\alpha, \beta) \in \gamma \times \gamma\right) \text {, }
$$

3. the product $\omega \times \omega$ is well-ordered in type ω,
4. every product $\omega_{\alpha} \times \omega_{\alpha}(\alpha>0)$ is well-ordered in type ω_{α}.

Solution.

1. Let $K \subset \mathrm{OR} \times \mathrm{OR}$ be a class.

Set γ to be the smallest ordinal satisfying $\exists \alpha \exists \beta[(\alpha, \beta) \in K \wedge \max (\alpha, \alpha)=\gamma]$.
Set α to be the smallest ordinal satisfying $\exists \beta[(\alpha, \beta) \in K \wedge \max (\alpha, \beta)=\gamma]$.
Finally, set β to be the smallest ordinal satisfying $(\alpha, \beta) \in K \wedge \max (\alpha, \beta)=\gamma$. Then $(\alpha, \beta) \in$ K. Furthermore, for all $\left(\alpha^{\prime}, \beta^{\prime}\right) \in K$, either $\max \left(\alpha^{\prime}, \beta^{\prime}\right)>\gamma$, or $\max \left(\alpha^{\prime}, \beta^{\prime}\right)=\gamma \wedge \alpha^{\prime}>\alpha$, or $\max \left(\alpha^{\prime}, \beta^{\prime}\right)=\gamma \wedge \alpha^{\prime}>\alpha \wedge \beta^{\prime} \geq \beta$. It follows that (α, β) is a $<$-minimal element of K.
2. If $(\alpha, \beta)<\left(\alpha^{\prime}, \beta^{\prime}\right) \in \gamma \times \gamma$, then $\max (\alpha, \beta) \leq \max \left(\alpha^{\prime}, \beta^{\prime}\right)<\gamma$, so $(\alpha, \beta) \in \gamma \times \gamma$.
3. By the previous point, for any $(\alpha, \beta) \in \mathrm{OR} \times \mathrm{OR},\left\{\left(\alpha^{\prime}, \beta^{\prime}\right) \mid\left(\alpha^{\prime}, \beta^{\prime}\right)<(\alpha, \beta)\right\} \subset \gamma \times \gamma$ is a set (where $\gamma=\max (\alpha, \beta)$). Then we can use Theorem 4.13 to construct a unique order-preserving map $\Gamma: \mathrm{OR} \times \mathrm{OR} \Rightarrow \mathrm{OR}$.
Now suppose that $\Gamma(\omega, \omega)>\omega$. Then there exist $(n, m) \in \omega \times \omega$ such that $\Gamma(n, m)=\omega$. But then $\omega \leqslant_{1} \max (n, m) \times \max (n, m)=(\max (n, m))^{2}$ would be finite, a contradiction.
4. For any $\alpha, \Gamma\left(\omega_{\alpha}, \omega_{\alpha}\right)=\omega_{\alpha}$, by induction on α. For if $\Gamma\left(\omega_{\alpha}, \omega_{\alpha}\right)>\omega_{\alpha}$, then there exist $(\beta, \gamma) \in \omega_{\alpha} \times \omega_{\alpha}$ such that $\Gamma\left(\omega_{\alpha}, \omega_{\alpha}\right)=\omega_{\alpha}$, Since $\beta, \gamma<\omega_{\alpha}$, there must exist a $\xi<\alpha$ such that $\max (\beta, \gamma) \leqslant_{1} \omega_{\xi}$. Then $\omega_{\xi}<_{1} \omega_{\alpha} \leqslant_{1} \max (\beta, \gamma) \times \max (\beta, \gamma) \leqslant_{1} \omega_{\xi} \times \omega_{\xi}$, contradicting the induction hypothesis.

Chapter 5

101

1. Assume AC. Prove DC: if the set A is non-empty and the relation $R \subset A^{2}$ is such that $\forall a \in A \exists b \in A(a R b)$, then a function $f: \omega \rightarrow A$ exists such that for all $n \in \omega, f(n) R f(n+1)$.
2. Show the version of DC where A can be a proper class and $R \subset A^{2}$ is also provable from AC. (Use Foundation.)
3. Show that a relation \prec is well-founded (every non-empty set has a \prec-minimal element) iff there is no function f on ω such that for all $n \in \omega, f(n+1) \prec f(n)$.

Solution.

1. Let j be a choice function for $\wp(A)$. Recursively define $f: \omega \rightarrow A$ by $f(0)=f(A)$ and $f(n+1)=j(\{a \in A \mid f(n) R a\})$ (by assumption, $\{a \in A \mid b R a\} \neq \emptyset$ for all $b \in A$).
2. If we have Foundation, then we can use the Bottom operator of Definition 4.21 to define the operator $H(X)=\bigcup_{x \in X} \operatorname{Bottom}(\{y \in A \mid x R y\})$. Then H is a finite operator, so $H \uparrow=H \uparrow \omega$ is a set, and $\forall a \in H \uparrow \exists b \in H \uparrow[a R b]$. Now we can apply DC on sets to $H \uparrow$.
3. If there exists a function f with the given property, then $\{f(n) \mid n \in \omega\}$ is a set with no \prec-minimal element. Conversely, if A is a set with no \prec-minimal element, then we can use $D C$ to find a function $f: \omega \rightarrow A$ with the desired property.

103 (AC) Show: if A is infinite, then $\omega \leqslant_{1} A$.
Show without AC that: if A is infinite, then $\omega \leqslant 1 \wp(\wp(A))$.
Solution.
(i) Let j be a choice function for $\wp(A)$. Recursively, define $f: \omega \rightarrow A$ by $f(n)=j(A-\{f(m) \mid$ $m<n\}$) as long as $A-\{f(m) \mid m<n\}) \neq \emptyset$. Obviously, since A is infinite, if $f \mid n$ is an injection then $A-\{f(m) \mid m<n\}) \neq \emptyset$. By induction on n it follows that for all $n, f \mid n$ is defined and an injection. Thus, f is an injection as well.
(ii) If $B \subset A$ satisfies $|B|=n$, then $A-B \neq \emptyset$ and for all $a \in A-B,|B \cup\{a\}|=n+1$. It follows by induction that for all $n,\{B \subset A| | B \mid=n\}$ is nonempty. Since all these subsets of $\wp(A)$ are disjoint, this is the required injection.

105 Show that the following are equivalent for every two sets A and B :

1. $A<_{1} B$, i.e.: there is no bijection : $A \rightarrow B$ and $A \leqslant_{1} B$,
2. there is no surjection : $A \rightarrow B$ and $A \leqslant_{1} B$,
3. there is no surjection : $A \rightarrow B$ and $B \neq \emptyset$.

For which of the six implications do you need AC?
Solution.
$2 \Rightarrow 1$ if there is no surjection $A \rightarrow B$, then there certainly is no bijection.
$2 \Rightarrow 3$ if $A \leqslant_{1} B$ and $B=\emptyset$, then $A=\emptyset$ and there would exist a (trivial) surjection $A \rightarrow B$. Conversely, if 2) holds, then $B \neq \emptyset$.
$1 \Rightarrow 2$ if there exists a surjection : $A \rightarrow B$ and an injection : $A \rightarrow B$, then by Theorem 6.6 there exists a bijection : $A \rightarrow B$. Conversely, if 1) holds then there exists no surjection : $A \rightarrow B$.
$\neg 1 \Rightarrow \neg 3$ (AC) If $A \not{ }_{1} B$, then $B \leqslant_{1} A$, i.e. there exists an injection $f: B \rightarrow A$. Now either $B=\emptyset$, or we can define a surjection $g: A \rightarrow B$ by setting, for some $b_{0} \in B, g(y)=x$ if $f(x)=y$, and $g(y)=b_{0}$ otherwise.
$3 \Rightarrow 1$ and $3 \Rightarrow 2$ are the only implications that seem to need AC.
108 The Teichmüller-Tukey Lemma is the following statement.
Suppose that $\emptyset \neq A \subset \wp(X)$, and for all $Y \subset X, Y$ is in A iff every finite subset of Y is in A. Then A has a (С-) maximal element.
Show that this is equivalent with Zorn's Lemma.
Solution.
Zorn \Rightarrow TT:
Suppose that A is as in the TT Lemma. For A to have a maximal element, by Zorn, it suffices to show that it is closed under unions of chains. Thus, suppose that $K \subset A$ is a chain. In order that $\bigcup K \in A$, it suffices to show that every finite subset is in A. Thus, suppose that $C \subset \bigcup K$ is finite. Then for some $Y \in K$, we have that $C \subset Y$. Therefore, $C \in A$.
TT \Rightarrow Zorn:
Let P be a non-empty poset in which chains have upper bounds. Let A be the set of all chains of P. Then A satisfies the TT condition: (i) a finite subset of a chain is a chain, and (ii) if every finite subset of $K \subset A$ is a chain, then K is a chain (if $a, b \in K$, then $\{a, b\}$ is a finite subset, hence $a \leqslant b$ or $b \leqslant a$). By TT, A has a maximal element, which is a maximal chain of P. An upper bound of this chain is maximal in P.

