
Solutions to Exercises

Chapter 4

75. Show:

1. Every Vα is transitive,

2. x ⊂ y ∈ Vα ⇒ x ∈ Vα,

3. α < β ⇒ Vα ∈ Vβ; α ≤ β ⇒ Vα ⊂ Vβ,

4. α ⊂ Vα; α 6∈ Vα; α = OR ∩Vα,

5. OR ∩ (Vα+1 −Vα) = {α}.

Solution.

1. From Exercise 22 we know that for all A, if every x ∈ A is transitive, then so is
⋃

A, and if
A itself is transitive, then so is ℘(A). Since ∅ is transitive, it follows by transfinite induction
that Vα is transitive for all α.

2. By induction on α: if x ⊂ y ∈ Vα+1 = ℘(Vα), then x ⊂ y ⊂ Vα, so x ∈ Vα+1. If x ⊂ y ∈ Vγ

for a limit γ, then x ⊂ y ∈ Vξ for some ξ < γ, so x ∈ Vξ ⊂ Vγ .

3. For all β ≥ α, Vα ⊂ Vβ . This holds by definition for β = α and for limits β, and for
successor ordinals we have by induction on β that Vα ⊂ Vβ ⊂ ℘(Vβ) = Vβ+1 (since Vβ is
transitive). Consequentially, for all β > α, Vα ∈ Vα+1 ⊂ Vβ .

4. By induction, OR ∩ Vα = α for all α. For we have OR ∩ V0 = 0, OR ∩ Vβ+1 = {ξ ∈ OR |
ξ ⊂ Vβ} = {ξ ∈ OR | ξ ⊂ β} = β + 1. and OR ∩ Vγ =

⋃

ξ<γ(OR ∩ Vξ) =
⋃

ξ<γ ξ = γ.
Consequentially, for all α, α ⊂ Vα and α 6∈ Vα.

5. OR ∩ (Vα+1 −Vα) = (α+ 1)− (α) = {α}.

¤

76 Show:

1. ρ(α) = ρ(Vα) = α,

2. Vα = {a | ρ(a) < α}; a ∈ b ⇒ ρ(a) < ρ(b),

3. ρ(a) =
⋃

{ρ(b) + 1 | b ∈ a} = {ρ(b) | b ∈ TC(a)}

4. express ρ(a ∪ b), ρ(
⋃

a), ρ(℘(a)), ρ({a}), ρ((a, b)) and ρ(TC(a)) in terms of ρ(a) and ρ(b).

Solution.

1. From Lemma 4.17 it follows that α ⊂ Vβ and Vα ⊂ Vβ are both equivalent to α ≤ β.

2. If ρ(a) < α, then a ⊂ Vρ(a) ∈ Vα, so a ∈ Vα. Conversely, if a ∈ Vα, then a ⊂ Vβ for some
β < α, so ρ(a) < α. If a ∈ b, then a ∈ b ⊂ Vρ(b), so ρ(a) < ρ(b).



3. a ⊂ Vα iff ∀b ∈ a[b ∈ Vα], iff ∀b ∈ a[ρ(b) + 1 ≤ α], iff α ≥
⋃

{ρ(b) + 1 | b ∈ a}.

The other follows by ∈-induction: ρ(a) =
⋃

{ρ(b) + 1 | b ∈ a} =
⋃

{ρ(b) ∪ {ρ(b)} | b ∈ a} =
⋃

{{ρ(c) | c ∈ TC(b) ∨ c = b} | b ∈ a} = {ρ(c) | c ∈ TC(a)}.

4. ρ(a ∪ b) = ρ(a) ∪ ρ(b), ρ(
⋃

a) =
⋃

(ρ(a)), ρ(℘(a)) = ρ(a) + 1, ρ({a}) = ρ(a) + 1, ρ((a, b)) =
(ρ(a) ∪ ρ(b)) + 2, ρ(TC(a)) = ρ(a).

¤

78 Assuming the Foundation Axiom, prove the Collection Principle:
∀x∈a ∃y Φ(x, y) ⇒ ∃b ∀x∈a ∃y∈b Φ(x, y) (b not free in Φ).
Solution.

Assume that ∀x ∈ a ∃y Φ(x, y). For all x, Bottom({y | Φ(x, y)}) is a nonempty set. So b =
⋃

{Bottom({y | Φ(x, y)}) | x ∈ a} satisfies the given condition, as well as the condition for the
Strong Collection Principle from Exercise 79. ¤

85 Show that the function h : Vω → IN recursively defined by

h(x) =
∑

y∈x

2h(y)

is a bijection.
Solution.

Define i : IN→ Vω recursively by setting, for all n,

i(n) = {i(m) | the m-th least significant bit of n is 1}

Then for all n, h(i(n)) =
∑

{2h(i(m)) | the m-th least significant bit of n is 1} so by induction on
n, ∀n[h(i(n)) = n]. Conversely, if x ∈ Vω and ∀y ∈ x[i(h(y)) = y], then h is injective on x, so
i(h(x)) = {i(h(y)) | y ∈ x} = x, and by ∈-induction it follows that for all x ∈ Vω, i(h(x)) = x. ¤

91 Prove Lemma 4.30:

1. every ωα is an initial,

2. every initial has the form ωα,

3. α < β ⇒ ωα < ωβ .

Solution.

1. From Lemma 4.28 it follows directly that ω0 and ωα+1 are initials. If γ is a limit ordinal
and ξ < ωγ , then ξ < ωβ for some β < γ, so ξ 61 ωβ <1 ωβ+1 61 ωγ .

2. Let β be an initial, and let α′ be the least ordinal such that β < ωα′ . If α′ were a limit
ordinal, then for some ξ < α′, β < ωξ, contradicting our choice of α

′. So α′ = α+1 for some
α, and ωα ≤ β < ωα+1. Since β is an initial and ωα+1 is the least initial > ωα, it follows
that β = ωα.

3. By induction on β. First, ωα < Γ(ωα) = ωα+1. Second, if ωα < ωβ , then ωα < ωβ <

Γ(ωβ) = ωβ+1. Finally, if γ > α is a limit ordinal, then there exists a β with α < β < γ,
and then ωα < ωβ ≤

⋃

ξ<γ ωxi = ωγ .

¤

93 Let α ∈ OR be arbitrary. Recursively define α0 = α and αn+1 = ωαn
. Put β :=

⋃

n αn. Show:
β is the least ordinal γ > α for which ωγ = γ.
Solution.

If γ ≥ α is such that ωγ = γ, then for all ξ ≤ γ, ωξ ≤ γ (by Lemma 4.30). By induction on n it
follows that αn ≤ γ for all n, and hence β ≤ γ.
For the converse, if α = ωα, then β = α and we are done, so assume α < ωα. Then by induction
on n, αn < αn+1 for all n. For all ξ < β there exists an n with ξ < αn, and therefore both
ξ + 1 < αn+1 ≤ β and ωξ < αn+1 ≤ β. It follows that β is a limit, and ωβ =

⋃

ξ<β ωξ ≤ β. ¤



95 For α > ω, the following are equivalent:
1. α is critical for +; 2. β < α ⇒ β + α = α; 3. ∃ξ (α = ωξ).
Solution.

(1) ⇒ (2): Let α be critical for +, and β < α. Now, α is a limit ordinal (for if α = α′ + 1, then α

would not be critical for +). So β+α =
⋃

ξ<α(β+ξ) ≤ α. On the other hand, it is straightforward
to show by induction that for all ξ, ξ′, ξ + ξ′ ≥ ξ′. It follows that β + α = α.
¬(3) ⇒ ¬(2): First, for all α > 0 there exists a ξ such that ωξ ≤ α < ωξ+1. For let ξ′ be the
least ordinal such that α < ωξ′

. Now, if ξ′ were a limit, then by Definition 4.31 there would exist a
ξ′′ < ξ′ with α < ωξ′′

, contradicting our choice of ξ′. So ξ′ = ξ+1 for some ξ, and ωξ ≤ α < ωξ+1.
Similarly, there exists an n ∈ ω such that ωξ · n ≤ α < ωξ · (1 + n). This implies α < ωξ +ωξ · n ≤
ωξ + α. Now if α 6= ωξ, then this contradicts (2).
(3) ⇒ (1): Let α = ωξ, and let β, γ < α. Then there exist ξ′ < ξ and n ∈ ω such that β, γ < ωξ′

·n,
and hence β + γ < ωξ′

· 2n < ωξ′

· ω = ωξ′+1 ≤ ωξ = α.
¤


