Solutions to Exercises

Chapter 4

75. Show:
76. Every V_{α} is transitive,
77. $x \subset y \in \mathrm{~V}_{\alpha} \Rightarrow x \in \mathrm{~V}_{\alpha}$,
78. $\alpha<\beta \Rightarrow \mathrm{V}_{\alpha} \in \mathrm{V}_{\beta} ; \alpha \leq \beta \Rightarrow \mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta}$,
79. $\alpha \subset \mathrm{V}_{\alpha} ; \alpha \notin \mathrm{V}_{\alpha} ; \alpha=\mathrm{OR} \cap \mathrm{V}_{\alpha}$,
80. $\mathrm{OR} \cap\left(\mathrm{V}_{\alpha+1}-\mathrm{V}_{\alpha}\right)=\{\alpha\}$.

Solution.

1. From Exercise 22 we know that for all A, if every $x \in A$ is transitive, then so is $\bigcup A$, and if A itself is transitive, then so is $\wp(A)$. Since \emptyset is transitive, it follows by transfinite induction that V_{α} is transitive for all α.
2. By induction on α : if $x \subset y \in \mathrm{~V}_{\alpha+1}=\wp\left(\mathrm{V}_{\alpha}\right)$, then $x \subset y \subset \mathrm{~V}_{\alpha}$, so $x \in \mathrm{~V}_{\alpha+1}$. If $x \subset y \in \mathrm{~V}_{\gamma}$ for a limit γ, then $x \subset y \in \mathrm{~V}_{\xi}$ for some $\xi<\gamma$, so $x \in \mathrm{~V}_{\xi} \subset \mathrm{V}_{\gamma}$.
3. For all $\beta \geq \alpha, \mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta}$. This holds by definition for $\beta=\alpha$ and for limits β, and for successor ordinals we have by induction on β that $\mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta} \subset \wp\left(\mathrm{V}_{\beta}\right)=\mathrm{V}_{\beta+1}$ (since V_{β} is transitive). Consequentially, for all $\beta>\alpha, \mathrm{V}_{\alpha} \in \mathrm{V}_{\alpha+1} \subset \mathrm{~V}_{\beta}$.
4. By induction, $\mathrm{OR} \cap \mathrm{V}_{\alpha}=\alpha$ for all α. For we have $\mathrm{OR} \cap \mathrm{V}_{0}=0, \mathrm{OR} \cap \mathrm{V}_{\beta+1}=\{\xi \in \mathrm{OR} \mid$ $\left.\xi \subset \mathrm{V}_{\beta}\right\}=\{\xi \in \mathrm{OR} \mid \xi \subset \beta\}=\beta+1$. and $\mathrm{OR} \cap \mathrm{V}_{\gamma}=\bigcup_{\xi<\gamma}\left(\mathrm{OR} \cap \mathrm{V}_{\xi}\right)=\bigcup_{\xi<\gamma} \xi=\gamma$. Consequentially, for all $\alpha, \alpha \subset V_{\alpha}$ and $\alpha \notin V_{\alpha}$.
5. $\mathrm{OR} \cap\left(\mathrm{V}_{\alpha+1}-\mathrm{V}_{\alpha}\right)=(\alpha+1)-(\alpha)=\{\alpha\}$.

76 Show:

1. $\rho(\alpha)=\rho\left(\mathrm{V}_{\alpha}\right)=\alpha$,
2. $\mathrm{V}_{\alpha}=\{a \mid \rho(a)<\alpha\} ; a \in b \Rightarrow \rho(a)<\rho(b)$,
3. $\rho(a)=\bigcup\{\rho(b)+1 \mid b \in a\}=\{\rho(b) \mid b \in \mathrm{TC}(a)\}$
4. express $\rho(a \cup b), \rho(\bigcup a), \rho(\wp(a)), \rho(\{a\}), \rho((a, b))$ and $\rho(\mathrm{TC}(a))$ in terms of $\rho(a)$ and $\rho(b)$.

Solution.

1. From Lemma 4.17 it follows that $\alpha \subset \mathrm{V}_{\beta}$ and $\mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta}$ are both equivalent to $\alpha \leq \beta$.
2. If $\rho(a)<\alpha$, then $a \subset \mathrm{~V}_{\rho(a)} \in \mathrm{V}_{\alpha}$, so $a \in \mathrm{~V}_{\alpha}$. Conversely, if $a \in \mathrm{~V}_{\alpha}$, then $a \subset \mathrm{~V}_{\beta}$ for some $\beta<\alpha$, so $\rho(a)<\alpha$. If $a \in b$, then $a \in b \subset \mathrm{~V}_{\rho(b)}$, so $\rho(a)<\rho(b)$.
3. $a \subset \mathrm{~V}_{\alpha}$ iff $\forall b \in a\left[b \in \mathrm{~V}_{\alpha}\right]$, iff $\forall b \in a[\rho(b)+1 \leq \alpha]$, iff $\alpha \geq \bigcup\{\rho(b)+1 \mid b \in a\}$.

The other follows by \in-induction: $\rho(a)=\bigcup\{\rho(b)+1 \mid b \in a\}=\bigcup\{\rho(b) \cup\{\rho(b)\} \mid b \in a\}=$ $\bigcup\{\{\rho(c) \mid c \in T C(b) \vee c=b\} \mid b \in a\}=\{\rho(c) \mid c \in T C(a)\}$.
4. $\rho(a \cup b)=\rho(a) \cup \rho(b), \rho(\bigcup a)=\bigcup(\rho(a)), \rho(\wp(a))=\rho(a)+1, \rho(\{a\})=\rho(a)+1, \rho((a, b))=$ $(\rho(a) \cup \rho(b))+2, \rho(\mathrm{TC}(a))=\rho(a)$.

78 Assuming the Foundation Axiom, prove the Collection Principle:
$\forall x \in a \exists y \Phi(x, y) \Rightarrow \exists b \forall x \in a \exists y \in b \Phi(x, y)$ (b not free in Φ).
Solution.
Assume that $\forall x \in a \exists y \Phi(x, y)$. For all x, $\operatorname{Bottom}(\{y \mid \Phi(x, y)\})$ is a nonempty set. So $b=$ $\bigcup\{\operatorname{Bottom}(\{y \mid \Phi(x, y)\}) \mid x \in a\}$ satisfies the given condition, as well as the condition for the Strong Collection Principle from Exercise 79.
85 Show that the function $h: \mathrm{V}_{\omega} \rightarrow \mathbb{N}$ recursively defined by

$$
h(x)=\sum_{y \in x} 2^{h(y)}
$$

is a bijection.

Solution.

Define $i: \mathbb{N} \rightarrow \mathrm{V}_{\omega}$ recursively by setting, for all n,

$$
i(n)=\{i(m) \mid \text { the } m \text {-th least significant bit of } n \text { is } 1\}
$$

Then for all $n, h(i(n))=\sum\left\{2^{h(i(m))} \mid\right.$ the m-th least significant bit of n is 1$\}$ so by induction on $n, \forall n[h(i(n))=n]$. Conversely, if $x \in \mathrm{~V}_{\omega}$ and $\forall y \in x[i(h(y))=y]$, then h is injective on x, so $i(h(x))=\{i(h(y)) \mid y \in x\}=x$, and by \in-induction it follows that for all $x \in \mathrm{~V}_{\omega}, i(h(x))=x$.
91 Prove Lemma 4.30:

1. every ω_{α} is an initial,
2. every initial has the form ω_{α},
3. $\alpha<\beta \Rightarrow \omega_{\alpha}<\omega_{\beta}$.

Solution.

1. From Lemma 4.28 it follows directly that ω_{0} and $\omega_{\alpha+1}$ are initials. If γ is a limit ordinal and $\xi<\omega_{\gamma}$, then $\xi<\omega_{\beta}$ for some $\beta<\gamma$, so $\xi \leqslant_{1} \omega_{\beta}<_{1} \omega_{\beta+1} \leqslant_{1} \omega_{\gamma}$.
2. Let β be an initial, and let α^{\prime} be the least ordinal such that $\beta<\omega_{\alpha^{\prime}}$. If α^{\prime} were a limit ordinal, then for some $\xi<\alpha^{\prime}, \beta<\omega_{\xi}$, contradicting our choice of α^{\prime}. So $\alpha^{\prime}=\alpha+1$ for some α, and $\omega_{\alpha} \leq \beta<\omega_{\alpha+1}$. Since β is an initial and $\omega_{\alpha+1}$ is the least initial $>\omega_{\alpha}$, it follows that $\beta=\omega_{\alpha}$.
3. By induction on β. First, $\omega_{\alpha}<\Gamma\left(\omega_{\alpha}\right)=\omega_{\alpha+1}$. Second, if $\omega_{\alpha}<\omega_{\beta}$, then $\omega_{\alpha}<\omega_{\beta}<$ $\Gamma\left(\omega_{\beta}\right)=\omega_{\beta+1}$. Finally, if $\gamma>\alpha$ is a limit ordinal, then there exists a β with $\alpha<\beta<\gamma$, and then $\omega_{\alpha}<\omega_{\beta} \leq \bigcup_{\xi<\gamma} \omega_{x} i=\omega_{\gamma}$.

93 Let $\alpha \in$ OR be arbitrary. Recursively define $\alpha_{0}=\alpha$ and $\alpha_{n+1}=\omega_{\alpha_{n}}$. Put $\beta:=\bigcup_{n} \alpha_{n}$. Show: β is the least ordinal $\gamma \geqslant \alpha$ for which $\omega_{\gamma}=\gamma$.

Solution.

If $\gamma \geq \alpha$ is such that $\omega_{\gamma}=\gamma$, then for all $\xi \leq \gamma, \omega_{\xi} \leq \gamma$ (by Lemma 4.30). By induction on n it follows that $\alpha_{n} \leq \gamma$ for all n, and hence $\beta \leq \gamma$.
For the converse, if $\alpha=\omega_{\alpha}$, then $\beta=\alpha$ and we are done, so assume $\alpha<\omega_{\alpha}$. Then by induction on $n, \alpha_{n}<\alpha_{n+1}$ for all n. For all $\xi<\beta$ there exists an n with $\xi<\alpha_{n}$, and therefore both $\xi+1<\alpha_{n+1} \leq \beta$ and $\omega_{\xi}<\alpha_{n+1} \leq \beta$. It follows that β is a limit, and $\omega_{\beta}=\bigcup_{\xi<\beta} \omega_{\xi} \leq \beta$.

95 For $\alpha \geqslant \omega$, the following are equivalent:

1. α is critical for $+; 2 . \beta<\alpha \Rightarrow \beta+\alpha=\alpha ; 3$. $\exists \xi\left(\alpha=\omega^{\xi}\right)$.

Solution.
$(1) \Rightarrow(2)$: Let α be critical for + , and $\beta<\alpha$. Now, α is a limit ordinal (for if $\alpha=\alpha^{\prime}+1$, then α would not be critical for +). So $\beta+\alpha=\bigcup_{\xi<\alpha}(\beta+\xi) \leq \alpha$. On the other hand, it is straightforward to show by induction that for all $\xi, \xi^{\prime}, \xi+\xi^{\prime} \geq \xi^{\prime}$. It follows that $\beta+\alpha=\alpha$.
$\neg(3) \Rightarrow \neg(2)$: First, for all $\alpha>0$ there exists a ξ such that $\omega^{\xi} \leq \alpha<\omega^{\xi+1}$. For let ξ^{\prime} be the least ordinal such that $\alpha<\omega^{\xi^{\prime}}$. Now, if ξ^{\prime} were a limit, then by Definition 4.31 there would exist a $\xi^{\prime \prime}<\xi^{\prime}$ with $\alpha<\omega^{\xi^{\prime \prime}}$, contradicting our choice of ξ^{\prime}. So $\xi^{\prime}=\xi+1$ for some ξ, and $\omega^{\xi} \leq \alpha<\omega^{\xi+1}$. Similarly, there exists an $n \in \omega$ such that $\omega^{\xi} \cdot n \leq \alpha<\omega^{\xi} \cdot(1+n)$. This implies $\alpha<\omega^{\xi}+\omega^{\xi} \cdot n \leq$ $\omega^{\xi}+\alpha$. Now if $\alpha \neq \omega^{\xi}$, then this contradicts (2).
$(3) \Rightarrow(1)$: Let $\alpha=\omega^{\xi}$, and let $\beta, \gamma<\alpha$. Then there exist $\xi^{\prime}<\xi$ and $n \in \omega$ such that $\beta, \gamma<\omega^{\xi^{\prime}} \cdot n$, and hence $\beta+\gamma<\omega^{\xi^{\prime}} \cdot 2 n<\omega^{\xi^{\prime}} \cdot \omega=\omega^{\xi^{\prime}+1} \leq \omega^{\xi}=\alpha$.

