Solutions to Exercises

Chapter 4

75. Show:

- 1. Every V_{α} is transitive,
- 2. $x \subset y \in V_{\alpha} \Rightarrow x \in V_{\alpha}$,
- 3. $\alpha < \beta \implies V_{\alpha} \in V_{\beta}; \alpha \leq \beta \implies V_{\alpha} \subset V_{\beta},$
- 4. $\alpha \subset V_{\alpha}$; $\alpha \notin V_{\alpha}$; $\alpha = OR \cap V_{\alpha}$,
- 5. OR \cap (V_{α +1} V_{α}) = { α }.

Solution.

- 1. From Exercise 22 we know that for all A, if every $x \in A$ is transitive, then so is $\bigcup A$, and if A itself is transitive, then so is $\wp(A)$. Since \emptyset is transitive, it follows by transfinite induction that V_{α} is transitive for all α .
- 2. By induction on α : if $x \subset y \in V_{\alpha+1} = \wp(V_{\alpha})$, then $x \subset y \subset V_{\alpha}$, so $x \in V_{\alpha+1}$. If $x \subset y \in V_{\gamma}$ for a limit γ , then $x \subset y \in V_{\xi}$ for some $\xi < \gamma$, so $x \in V_{\xi} \subset V_{\gamma}$.
- 3. For all $\beta \geq \alpha$, $V_{\alpha} \subset V_{\beta}$. This holds by definition for $\beta = \alpha$ and for limits β , and for successor ordinals we have by induction on β that $V_{\alpha} \subset V_{\beta} \subset \wp(V_{\beta}) = V_{\beta+1}$ (since V_{β} is transitive). Consequentially, for all $\beta > \alpha$, $V_{\alpha} \in V_{\alpha+1} \subset V_{\beta}$.
- 4. By induction, $OR \cap V_{\alpha} = \alpha$ for all α . For we have $OR \cap V_0 = 0$, $OR \cap V_{\beta+1} = \{\xi \in OR \mid \xi \subset V_{\beta}\} = \{\xi \in OR \mid \xi \subset \beta\} = \beta + 1$. and $OR \cap V_{\gamma} = \bigcup_{\xi < \gamma} (OR \cap V_{\xi}) = \bigcup_{\xi < \gamma} \xi = \gamma$. Consequentially, for all α , $\alpha \subset V_{\alpha}$ and $\alpha \notin V_{\alpha}$.
- 5. OR \cap (V_{\alpha+1} V_{\alpha}) = (\alpha + 1) (\alpha) = {\alpha}.

76 Show:

- 1. $\rho(\alpha) = \rho(V_{\alpha}) = \alpha$,
- 2. $V_{\alpha} = \{a \mid \rho(a) < \alpha\}; a \in b \Rightarrow \rho(a) < \rho(b),$
- 3. $\rho(a) = \bigcup \{ \rho(b) + 1 \mid b \in a \} = \{ \rho(b) \mid b \in \mathrm{TC}(a) \}$
- 4. express $\rho(a \cup b)$, $\rho(\bigcup a)$, $\rho(\varphi(a))$, $\rho(\{a\})$, $\rho((a,b))$ and $\rho(\operatorname{TC}(a))$ in terms of $\rho(a)$ and $\rho(b)$.

Solution.

- 1. From Lemma 4.17 it follows that $\alpha \subset V_{\beta}$ and $V_{\alpha} \subset V_{\beta}$ are both equivalent to $\alpha \leq \beta$.
- 2. If $\rho(a) < \alpha$, then $a \subset V_{\rho(a)} \in V_{\alpha}$, so $a \in V_{\alpha}$. Conversely, if $a \in V_{\alpha}$, then $a \subset V_{\beta}$ for some $\beta < \alpha$, so $\rho(a) < \alpha$. If $a \in b$, then $a \in b \subset V_{\rho(b)}$, so $\rho(a) < \rho(b)$.

- 3. $a \in V_{\alpha}$ iff $\forall b \in a[b \in V_{\alpha}]$, iff $\forall b \in a[\rho(b) + 1 \le \alpha]$, iff $\alpha \ge \bigcup \{\rho(b) + 1 \mid b \in a\}$. The other follows by \in -induction: $\rho(a) = \bigcup \{\rho(b) + 1 \mid b \in a\} = \bigcup \{\rho(b) \cup \{\rho(b)\} \mid b \in a\} = \bigcup \{\{\rho(c) \mid c \in TC(b) \lor c = b\} \mid b \in a\} = \{\rho(c) \mid c \in TC(a)\}.$
- 4. $\rho(a \cup b) = \rho(a) \cup \rho(b), \ \rho(\bigcup a) = \bigcup(\rho(a)), \ \rho(\wp(a)) = \rho(a) + 1, \ \rho(\{a\}) = \rho(a) + 1, \ \rho((a,b)) = (\rho(a) \cup \rho(b)) + 2, \ \rho(\operatorname{TC}(a)) = \rho(a).$

78 Assuming the Foundation Axiom, prove the Collection Principle:

 $\forall x \in a \exists y \Phi(x, y) \Rightarrow \exists b \forall x \in a \exists y \in b \Phi(x, y) (b \text{ not free in } \Phi).$ Solution.

Assume that $\forall x \in a \exists y \Phi(x, y)$. For all x, Bottom($\{y \mid \Phi(x, y)\}$) is a nonempty set. So $b = \bigcup \{Bottom(\{y \mid \Phi(x, y)\}) \mid x \in a\}$ satisfies the given condition, as well as the condition for the Strong Collection Principle from Exercise 79.

85 Show that the function $h: \mathcal{V}_{\omega} \to \mathbb{N}$ recursively defined by

$$h(x) = \sum_{y \in x} 2^{h(y)}$$

is a bijection. Solution. Define $i: \mathbb{N} \to \mathcal{V}_{\omega}$ recursively by setting, for all n,

 $i(n) = \{i(m) \mid \text{the } m\text{-th least significant bit of } n \text{ is } 1\}$

Then for all n, $h(i(n)) = \sum \{2^{h(i(m))} \mid \text{the } m\text{-th least significant bit of } n \text{ is } 1\}$ so by induction on n, $\forall n[h(i(n)) = n]$. Conversely, if $x \in V_{\omega}$ and $\forall y \in x[i(h(y)) = y]$, then h is injective on x, so $i(h(x)) = \{i(h(y)) \mid y \in x\} = x$, and by \in -induction it follows that for all $x \in V_{\omega}$, i(h(x)) = x. \Box

91 Prove Lemma 4.30:

- 1. every ω_{α} is an initial,
- 2. every initial has the form ω_{α} ,

3. $\alpha < \beta \Rightarrow \omega_{\alpha} < \omega_{\beta}$.

Solution.

- 1. From Lemma 4.28 it follows directly that ω_0 and $\omega_{\alpha+1}$ are initials. If γ is a limit ordinal and $\xi < \omega_{\gamma}$, then $\xi < \omega_{\beta}$ for some $\beta < \gamma$, so $\xi \leq_1 \omega_{\beta} <_1 \omega_{\beta+1} \leq_1 \omega_{\gamma}$.
- 2. Let β be an initial, and let α' be the least ordinal such that $\beta < \omega_{\alpha'}$. If α' were a limit ordinal, then for some $\xi < \alpha', \beta < \omega_{\xi}$, contradicting our choice of α' . So $\alpha' = \alpha + 1$ for some α , and $\omega_{\alpha} \leq \beta < \omega_{\alpha+1}$. Since β is an initial and $\omega_{\alpha+1}$ is the least initial $> \omega_{\alpha}$, it follows that $\beta = \omega_{\alpha}$.
- 3. By induction on β . First, $\omega_{\alpha} < \Gamma(\omega_{\alpha}) = \omega_{\alpha+1}$. Second, if $\omega_{\alpha} < \omega_{\beta}$, then $\omega_{\alpha} < \omega_{\beta} < \Gamma(\omega_{\beta}) = \omega_{\beta+1}$. Finally, if $\gamma > \alpha$ is a limit ordinal, then there exists a β with $\alpha < \beta < \gamma$, and then $\omega_{\alpha} < \omega_{\beta} \leq \bigcup_{\xi < \gamma} \omega_{x} i = \omega_{\gamma}$.

93 Let $\alpha \in OR$ be arbitrary. Recursively define $\alpha_0 = \alpha$ and $\alpha_{n+1} = \omega_{\alpha_n}$. Put $\beta := \bigcup_n \alpha_n$. Show: β is the least ordinal $\gamma \ge \alpha$ for which $\omega_{\gamma} = \gamma$. Solution.

If $\gamma \geq \alpha$ is such that $\omega_{\gamma} = \gamma$, then for all $\xi \leq \gamma$, $\omega_{\xi} \leq \gamma$ (by Lemma 4.30). By induction on *n* it follows that $\alpha_n \leq \gamma$ for all *n*, and hence $\beta \leq \gamma$.

For the converse, if $\alpha = \omega_{\alpha}$, then $\beta = \alpha$ and we are done, so assume $\alpha < \omega_{\alpha}$. Then by induction on $n, \alpha_n < \alpha_{n+1}$ for all n. For all $\xi < \beta$ there exists an n with $\xi < \alpha_n$, and therefore both $\xi + 1 < \alpha_{n+1} \leq \beta$ and $\omega_{\xi} < \alpha_{n+1} \leq \beta$. It follows that β is a limit, and $\omega_{\beta} = \bigcup_{\xi < \beta} \omega_{\xi} \leq \beta$. \Box **95** For $\alpha \ge \omega$, the following are equivalent:

1. α is critical for +; 2. $\beta < \alpha \Rightarrow \beta + \alpha = \alpha$; 3. $\exists \xi \ (\alpha = \omega^{\xi})$. Solution.

(1) \Rightarrow (2): Let α be critical for +, and $\beta < \alpha$. Now, α is a limit ordinal (for if $\alpha = \alpha' + 1$, then α would not be critical for +). So $\beta + \alpha = \bigcup_{\xi < \alpha} (\beta + \xi) \le \alpha$. On the other hand, it is straightforward to show by induction that for all $\xi, \xi', \xi + \xi' \ge \xi'$. It follows that $\beta + \alpha = \alpha$. $\neg(3) \Rightarrow \neg(2)$: First, for all $\alpha > 0$ there exists a ξ such that $\omega^{\xi} \le \alpha < \omega^{\xi+1}$. For let ξ' be the least ordinal such that $\alpha < \omega^{\xi'}$. Now, if ξ' were a limit, then by Definition 4.31 there would exist a

 $\neg(3) \Rightarrow \neg(2)$: First, for all $\alpha > 0$ there exists a ξ such that $\omega^{\xi} \leq \alpha < \omega^{\xi+1}$. For let ξ' be the least ordinal such that $\alpha < \omega^{\xi'}$. Now, if ξ' were a limit, then by Definition 4.31 there would exist a $\xi'' < \xi'$ with $\alpha < \omega^{\xi''}$, contradicting our choice of ξ' . So $\xi' = \xi + 1$ for some ξ , and $\omega^{\xi} \leq \alpha < \omega^{\xi+1}$. Similarly, there exists an $n \in \omega$ such that $\omega^{\xi} \cdot n \leq \alpha < \omega^{\xi} \cdot (1+n)$. This implies $\alpha < \omega^{\xi} + \omega^{\xi} \cdot n \leq \omega^{\xi} + \alpha$. Now if $\alpha \neq \omega^{\xi}$, then this contradicts (2).

 $(3) \Rightarrow (1): \text{Let } \alpha = \omega^{\xi}, \text{ and let } \beta, \gamma < \alpha. \text{ Then there exist } \xi' < \xi \text{ and } n \in \omega \text{ such that } \beta, \gamma < \omega^{\xi'} \cdot n, \text{ and hence } \beta + \gamma < \omega^{\xi'} \cdot 2n < \omega^{\xi'} \cdot \omega = \omega^{\xi'+1} \le \omega^{\xi} = \alpha.$