Solutions to Exercises

Chapter 4

54. Assume that the set a is transitive. Show:

- 1. $a \in \mathbf{G}$ iff \in is well-founded on a,
- 2. $a \subset \mathbf{TR}$ iff \in is transitive on a.

Thus, an ordinal is the same as a transitive set on which \in is a transitive and well-founded relation. (This is the standard definition of the notion.) Solution.

1. If $a \notin \mathbf{G}$, then there would exist a $b \ni a$ such that $\forall y \in b(y \cap b \neq \emptyset)$, and then $a \cap b$ would be a nonempty subset of a with no \in -minimal element (since for any $y \in a \cap b$, $y \subset a$ by transitive of a, and so $y \cap (a \cap b) = y \cap b \neq \emptyset$). Conversely, if $c \subset a$ were a nonempty set without an \in -minimal element, then $b = c \cup \{a\}$ would satisfy $\forall y \in b : y \cap b \neq \emptyset$, and $a \notin \mathbf{G}$. It follows that $a \in \mathbf{G}$ iff \in is well-founded on a.

2. $a \subset \mathbf{TR}$ iff for all x, y, z with $z \in a$, $(x \in y \in z \Rightarrow x \in z)$. \in is transitive on a iff for all x, y, z with $x, y, z \in a$, $(x \in y \in z \Rightarrow x \in z)$. By transitivity of a, the two are equivalent.

58. Show:

- $1. \ \alpha \leq \beta \ \Leftrightarrow \ \alpha \subset \beta,$
- 2. if K is a non-empty class of ordinals, then $\bigcap K$ is the least element of K,
- 3. if A is a set of ordinals, then $\bigcup A$ is an ordinal that is the sup of A (the least ordinal \geq every $\alpha \in A$).

Solution.

1. $(\alpha \in \beta \lor \alpha = \beta) \Rightarrow \alpha \subset \beta \Rightarrow \beta \notin \alpha \Rightarrow (\alpha \in \beta \lor \alpha = \beta)$

2. A reformulation of transfinite induction yields: if $K \subset OR$ is nonempty, then $\exists \alpha \in OR : (\forall \beta < \alpha(\beta \notin K)) \land \alpha \in K$, i.e. K has a least element. Let $\alpha \in K$ be the least element. Then $\bigcap K \leq \alpha$, and $\alpha \leq \bigcap K$ is trivial.

3. $\bigcup K$ is the union of transitive sets of ordinals, therefore itself a transitive set of ordinals, therefore an ordinal. It is also the smallest set containing as subsets all the sets in K, so by (1) it is the *sup* of K.

61. Assume that (A, \prec) is a well-ordering and $B \subset A$.

Show that $type(B, \prec) \leq type(A, \prec)$.

Solution. Suppose that α and β are the order types of A and B. If $\beta \leq \alpha$, then $\alpha < \beta$. Let $f : \beta \to B$ and $g : A \to \alpha$ be order-isomorphisms. Then $gf : \beta \to \alpha$ is an order-preserving injection such that $gf(\alpha) < \alpha$. This contradicts Lemma 4.8 (p. 29).

64. Prove Theorem 4.13: suppose that ε is a well-founded relation on the class **U** such that for all $a \in \mathbf{U}$, $\{b \in \mathbf{U} \mid b \varepsilon a\}$ is a set, then for every operation $H : \mathbf{V} \to \mathbf{V}$ there is a unique operation $F : \mathbf{U} \to \mathbf{V}$ such that for all $a \in \mathbf{U}$:

$$F(a) = H(F | \{ b \in \mathbf{U} \mid b \varepsilon a \}).$$

Solution

Let us call a function or operation $f \mod F$ or $F \subset U$ and for all $a \in \text{Dom}(F)$, $\{b \in U \mid b \in a\} \subset \text{Dom}(F)$ and $f(a) = H(f \mid \{b \in U \mid b \in a\})$.

If f and g are both good, then they agree on their common domain: otherwise, if a is the ε -minimal element on which they disagree, then $f(a) = H(f|\{b \in \mathbf{U} \mid b \varepsilon a\}) = H(g|\{b \in \mathbf{U} \mid b \varepsilon a\}) = g(a)$, a contradiction. It follows that the union F of all good functions is an operation that satisfies the recursion equation on its domain.

Furthermore, $\text{Dom}(F) = \mathbf{U}$. For otherwise, let a be the ε -minimal element of $\mathbf{U} - \text{Dom}(F)$. Then $\{b \in \mathbf{U} \mid b\varepsilon^*a\}$ would be a set, and setting $f = F \mid \{b \in \mathbf{U} \mid b\varepsilon^*a\}$ and $f' = f \cup \{a, H(f)\}$ we would obtain a good function f' with $f' \not\subset F$, a contradiction.

Since good operations on **U** have to agree on their domain, F is unique. \Box **65.** Let $a_0 \in \mathbf{V}$ be a set and $G : \mathbf{V} \to \mathbf{V}$ an operation. Show: there exists a unique operation $F : OR \to \mathbf{V}$ on OR such that

- $F(0) = a_0$,
- $F(\alpha + 1) = G(F(\alpha))$,
- for limits γ : $F(\gamma) = \bigcup_{\xi < \gamma} F(\xi)$.

Solution

Applying the Recursion Theorem on OR to the operation H defined by

- $H(f) = G(f(\alpha))$ if $Dom(f) = \alpha + 1, \alpha \in OR$
- $H(f) = \bigcup_{\xi < \gamma} f(\xi)$ if $\text{Dom}(f) = \gamma$ and γ is a limit ordinal $\neq 0$.
- $H(x) = a_0$ otherwise

yields an operation satisfying the requirements.

70. Show that the single recursion equation $H \uparrow \alpha = \bigcup_{\xi < \alpha} H(H \restriction \xi)$ defines the same operation as the one defined in Definition 4.14 by three equations. (And, of course, $H \downarrow \alpha = \bigcap_{\xi < \alpha} H(H \downarrow \xi)$ is a single equation defining the greatest fixed point hierarchy — cf. Exercise 72.) Solution.

Claim: $H \uparrow \alpha \subset H \uparrow (\alpha + 1)$.

Induction. Obviously, $H\uparrow 0 \subset H\uparrow 1$. And if $H\uparrow \alpha \subset H\uparrow (\alpha + 1)$, then, by monotonicity, $H\uparrow (\alpha + 1) \subset H\uparrow (\alpha + 2)$. Finally, if γ is a limit, then, if $\xi < \gamma$, $H\uparrow \xi \subset \bigcup_{\xi < \gamma} H\uparrow \xi$, hence, $H(H\uparrow \xi) \subset H(\bigcup_{\xi < \gamma} H\uparrow \xi)$; and so $H\uparrow \gamma = \bigcup_{\xi < \gamma} H\uparrow \xi \subset \bigcup_{\xi < \gamma} H(H\uparrow \xi) \subset H(\bigcup_{\xi < \gamma} H\uparrow \xi) = H\uparrow (\gamma + 1)$.

$$\begin{split} H &[0 = \emptyset = \bigcup_{\xi < 0} H(H \uparrow \xi); \\ H &[(\alpha + 1) = H(H \uparrow \alpha) = H(H \uparrow \alpha) \cup H \restriction \alpha \text{ (since } H \uparrow \alpha \subset H(H \restriction \alpha)) = H(H \restriction \alpha) \cup \bigcup_{\xi < \alpha} H(H \restriction \xi) \text{ (by IH)} \\ = \bigcup_{\xi < \alpha + 1} H(H \restriction \xi); \\ H &\uparrow \gamma = \bigcup_{\xi < \gamma} H \mid \xi = \bigcup_{\xi < \gamma} H(H \restriction \xi) \text{ (since } H \restriction \xi \subset H \restriction (\xi + 1) \subset H \restriction \gamma). \end{split}$$

72 Let *H* be a monotone operator over a set **U**. The greatest fixed point hierarchy is the sequence $\{H|\alpha\}_{\alpha}$ recursively defined by

- $H\downarrow 0 = \mathbf{U},$
- $H \downarrow (\alpha + 1) = H(H \downarrow \alpha),$
- $H \downarrow \gamma = \bigcap_{\xi < \gamma} H \downarrow \xi$ (for limits γ).

Show that:

- 1. the hierarchy is descending, i.e., that $\alpha < \beta \Rightarrow H \mid \beta \subset H \mid \alpha$.
- 2. some stage $H \downarrow \alpha_0$ is a fixed point of H.
- 3. $H \downarrow \alpha_0 = \bigcap_{\alpha} H \downarrow \alpha$ is the greatest fixed point of H.

Try to generalize for the case where ${\bf U}$ may be a proper class.

Solution.

Consider the dual operator of H^d : $\wp(\mathbf{U}_{\rightarrow}\wp(\mathbf{U}))$ of H defined by $H^d(X) =_{\text{def}} \mathbf{U} - H(\mathbf{U} - X)$. By exercise 52, the least fixed point of H^d corresponds to the greatest fixed point of H. It is easy to see that the least fixed point hierarchy of H^d also corresponds exactly to the greatest fixed point hierarchy of H, i.e. $H|\alpha = \mathbf{U} - H^d|\alpha$ for $\alpha \in OR$. The desired properties follow.

If **U** is a class, then the first property will still hold, but the second and third properties may fail. For instance, consider the operator $H : \mathbf{V} \to \mathbf{V}$ given by $H(X) = X - \{\alpha\}$ if α is the least ordinal in X, and $H(X) = \emptyset$ if X does not contain any ordinals. Then for all ordinals α , $H \downarrow \alpha = \mathbf{V} - \alpha$, and yet the only fixed point of H is $H \downarrow = H \uparrow = \emptyset$.