Solutions to Exercises

Chapter 4

54. Assume that the set a is transitive. Show:
1. a € G iff € is well-founded on a,
2. a C TR iff € is transitive on a.

Thus, an ordinal is the same as a transitive set on which € is a transitive and well-founded relation.
(This is the standard definition of the notion.)

Solution.

1. If a € G, then there would exist a b 3 a such that Yy € b(y Nb # 0), and then a N b would be a
nonempty subset of a with no €-minimal element (since for any y € a Nb, y C a by transititive of
a, and so y N (aNb) =yNb#0P). Conversely, if ¢ C a were a nonempty set without an €-minimal
element, then b = ¢ U {a} would satisfy Vy € b: yNb # 0, and a € G. It follows that a € G iff €
is well-founded on a.

2. aC TR iff for all z,y,z with z € a, (t €y € 2 = x € 2).

€ is transitive on a iff for all z,y, z with z,y,z €a, (x €y € 2 = z € 2).

By transitivity of a, the two are equivalent. O

58. Show:
1. a<f & aCp,
2. if K is a non-empty class of ordinals, then [ K is the least element of K,

3. if A is a set of ordinals, then |JA is an ordinal that is the sup of A (the least ordinal >
every a € A).

Solution.

l.laefVa=p) = aCcff = fda = («€fV a=[)

2. A reformulation of transfinite induction yields: if K C OR is nonempty, then 3o € OR : (V3 <
a(B¢€ K)) A a€ K, ie. K has aleast element. Let a € K be the least element. Then (K < «,
and o < (K is trivial.

3. UK is the union of transitive sets of ordinals, therefore itself a transitive set of ordinals,
therefore an ordinal. Tt is also the smallest set containing as subsets all the sets in K, so by (1) it
is the sup of K. O

61. Assume that (A, <) is a well-ordering and B C A.

Show that type(B, <) < type(4, <).

Solution. Suppose that a and 3 are the order types of A and B. If 8 € «, then a < (3. Let
f:8 — Band g : A — « be order-isomorphisms. Then gf : § — « is an order-preserving
injection such that gf(a) < o. This contradicts Lemma 4.8 (p. 29). O

64. Prove Theorem 4.13: suppose that ¢ is a well-founded relation on the class U such that for
alla € U, {b € U|bea} is a set, then for every operation H : V — V there is a unique operation
F : U — V such that for all a € U:

F(a) = H(F|{be U | bea}).



Solution

Let us call a function or operation f good if Dom(F) C U and for all @ € Dom(F), {b € U |
bea} C Dom(F) and f(a) = H(f|{b € U |bea}).

If f and g are both good, then they agree on their common domain: otherwise, if a is the -minimal
element on which they disagree, then f(a) = H(f|{b € U |bea}) = H(g|{b € U | bea}) = g(a),
a contradiction. It follows that the union F' of all good functions is an operation that satisfies the
recursion equation on its domain.

Furthermore, Dom(F') = U. For otherwise, let a be the e-minimal element of U — Dom(F). Then
{b € U | be*a} would be a set, and setting f = F|{b € U | be*a}) and f' = fU {a, H(f)} we
would obtain a good function f’ with f/ ¢ F, a contradiction.

Since good operations on U have to agree on their domain, F' is unique. O
65. Let ag € V be a set and G : V — V an operation. Show: there exists a unique operation
F : OR — V on OR such that

L F(O) = ap ,
e Fla+1)=G(F(a)),
e for limits y: F(v) = Ue, F(§).

Solution
Applying the Recursion Theorem on OR to the operation H defined by

e H(f)=G(f(a)) if Dom(f) =a+1, a € OR
e H(f) =, f(§) if Dom(f) =~ and v is a limit ordinal # 0.
e H(z) = ap otherwise

yields an operation satisfying the requirements. |
70. Show that the single recursion equation Hla = Ug <o H(HT) defines the same operation as
the one defined in Definition 4.14 by three equations. (And, of course, Hlaw = ﬂ§<a H(H) is a
single equation defining the greatest fixed point hierarchy — cf. Exercise 72.)

Solution.

Claim: Hla C Hl(a+ 1).

Induction. Obviously, H0 C Hfl. And if Hla C H|(aw + 1), then, by monotonicity, Hf(« + 1) C
Hi(ca+ 2). Finally, if v is a limit, then, if { <+, HI{ C U, HI, hence, H(HI§) C H (U, HIE);
and so Hy = U, HiE C Ug, H(HE) € H(Ug., HE) = Hi(y + 1).

Now:

HI0 =0 = Ug<o H(HE);

Hi(a +1) = H(Hla) = H(Hla) U Hle (since Hla C H(Hla)) = H(Hla) U U, H(HIE) (by IH)
= U§<a+1 H(HIE);

Hy = U, HIE = U, HHIE) (since HIE C HIE+1) C HPy). 0
72 Let H be a monotone operator over a set U. The greatest fixed point hierarchy is the sequence
{Hla}o recursively defined by

e HI0=TU,
o Hl(a+1) = H(Hla),
o Hly =\, H (for limits 7).
Show that:
1. the hierarchy is descending, i.e., that o < 6 = H|G C Hla.
2. some stage H|ag is a fixed point of H.
3. Hlag = (), Hlo is the greatest fixed point of H.



Try to generalize for the case where U may be a proper class.

Solution.

Consider the dual operator of H? : p(U_,p(U) of H defined by H¢(X) =4, U — H(U — X). By
exercise 52, the least fixed point of H¢ corresponds to the greatest fixed point of H. It is easy to
see that the least fixed point hierarchy of H¢ also corresponds exactly to the greatest fixed point
hierarchy of H, i.e. Hlo = U — H%a for o € OR. The desired properties follow.

If U is a class, then the first property will still hold, but the second and third properties may fail.
For instance, consider the operator H : V — V given by H(X) = X — {a} if « is the least ordinal
in X, and H(X) = 0 if X does not contain any ordinals. Then for all ordinals a, Hlo = V — «,
and yet the only fixed point of H is H| = H} = (. O



