Solutions to Exercises

Chapter 4

54. Assume that the set a is transitive. Show:
55. $a \in \mathbf{G}$ iff \in is well-founded on a,
56. $a \subset \mathbf{T R}$ iff \in is transitive on a.

Thus, an ordinal is the same as a transitive set on which \in is a transitive and well-founded relation. (This is the standard definition of the notion.)
Solution.

1. If $a \notin \mathbf{G}$, then there would exist a $b \ni a$ such that $\forall y \in b(y \cap b \neq \emptyset)$, and then $a \cap b$ would be a nonempty subset of a with no \in-minimal element (since for any $y \in a \cap b, y \subset a$ by transititive of a, and so $y \cap(a \cap b)=y \cap b \neq \emptyset)$. Conversely, if $c \subset a$ were a nonempty set without an \in-minimal element, then $b=c \cup\{a\}$ would satisfy $\forall y \in b: y \cap b \neq \emptyset$, and $a \notin \mathbf{G}$. It follows that $a \in \mathbf{G}$ iff \in is well-founded on a.
2. $a \subset \mathbf{T R}$ iff for all x, y, z with $z \in a,(x \in y \in z \Rightarrow x \in z)$.
\in is transitive on a iff for all x, y, z with $x, y, z \in a,(x \in y \in z \Rightarrow x \in z)$.
By transitivity of a, the two are equivalent.
3. Show:
4. $\alpha \leq \beta \Leftrightarrow \alpha \subset \beta$,
5. if K is a non-empty class of ordinals, then $\bigcap K$ is the least element of K,
6. if A is a set of ordinals, then $\bigcup A$ is an ordinal that is the sup of A (the least ordinal \geq every $\alpha \in A$).

Solution.

1. $(\alpha \in \beta \vee \alpha=\beta) \Rightarrow \alpha \subset \beta \Rightarrow \beta \notin \alpha \Rightarrow(\alpha \in \beta \vee \alpha=\beta)$
2. A reformulation of transfinite induction yields: if $K \subset O R$ is nonempty, then $\exists \alpha \in O R:(\forall \beta<$ $\alpha(\beta \notin K)) \wedge \alpha \in K$, i.e. K has a least element. Let $\alpha \in K$ be the least element. Then $\bigcap K \leq \alpha$, and $\alpha \leq \bigcap K$ is trivial.
3. $\bigcup K$ is the union of transitive sets of ordinals, therefore itself a transitive set of ordinals, therefore an ordinal. It is also the smallest set containing as subsets all the sets in K, so by (1) it is the sup of K.
4. Assume that (A, \prec) is a well-ordering and $B \subset A$.

Show that type $(B, \prec) \leqslant \operatorname{type}(A, \prec)$.
Solution. Suppose that α and β are the order types of A and B. If $\beta \nless \alpha$, then $\alpha<\beta$. Let $f: \beta \rightarrow B$ and $g: A \rightarrow \alpha$ be order-isomorphisms. Then $g f: \beta \rightarrow \alpha$ is an order-preserving injection such that $g f(\alpha)<\alpha$. This contradicts Lemma 4.8 (p. 29).
64. Prove Theorem 4.13: suppose that ε is a well-founded relation on the class \mathbf{U} such that for all $a \in \mathbf{U},\{b \in \mathbf{U} \mid b \varepsilon a\}$ is a set, then for every operation $H: \mathbf{V} \rightarrow \mathbf{V}$ there is a unique operation $F: \mathbf{U} \rightarrow \mathbf{V}$ such that for all $a \in \mathbf{U}$:

$$
F(a)=H(F \mid\{b \in \mathbf{U} \mid b \varepsilon a\})
$$

Solution
Let us call a function or operation f good if $\operatorname{Dom}(F) \subset \mathbf{U}$ and for all $a \in \operatorname{Dom}(F),\{b \in \mathbf{U} \mid$ $b \varepsilon a\} \subset \operatorname{Dom}(F)$ and $f(a)=H(f \mid\{b \in \mathbf{U} \mid b \varepsilon a\})$.
If f and g are both good, then they agree on their common domain: otherwise, if a is the ε-minimal element on which they disagree, then $f(a)=H(f \mid\{b \in \mathbf{U} \mid b \varepsilon a\})=H(g \mid\{b \in \mathbf{U} \mid b \varepsilon a\})=g(a)$, a contradiction. It follows that the union F of all good functions is an operation that satisfies the recursion equation on its domain.
Furthermore, $\operatorname{Dom}(F)=\mathbf{U}$. For otherwise, let a be the ε-minimal element of $\mathbf{U}-\operatorname{Dom}(F)$. Then $\left\{b \in \mathbf{U} \mid b \varepsilon^{*} a\right\}$ would be a set, and setting $\left.f=F \mid\left\{b \in \mathbf{U} \mid b \varepsilon^{*} a\right\}\right)$ and $f^{\prime}=f \cup\{a, H(f)\}$ we would obtain a good function f^{\prime} with $f^{\prime} \not \subset F$, a contradiction.
Since good operations on \mathbf{U} have to agree on their domain, F is unique.
65. Let $a_{0} \in \mathbf{V}$ be a set and $G: \mathbf{V} \rightarrow \mathbf{V}$ an operation. Show: there exists a unique operation $F:$ OR $\rightarrow \mathbf{V}$ on OR such that

- $F(0)=a_{0}$,
- $F(\alpha+1)=G(F(\alpha))$,
- for limits $\gamma: F(\gamma)=\bigcup_{\xi<\gamma} F(\xi)$.

Solution
Applying the Recursion Theorem on OR to the operation H defined by

- $H(f)=G(f(\alpha))$ if $\operatorname{Dom}(f)=\alpha+1, \alpha \in \mathrm{OR}$
- $H(f)=\bigcup_{\xi<\gamma} f(\xi)$ if $\operatorname{Dom}(f)=\gamma$ and γ is a limit ordinal $\neq 0$.
- $H(x)=a_{0}$ otherwise
yields an operation satisfying the requirements.

70. Show that the single recursion equation $H \uparrow \alpha=\bigcup_{\xi<\alpha} H(H \uparrow \xi)$ defines the same operation as the one defined in Definition 4.14 by three equations. (And, of course, $H \downarrow \alpha=\bigcap_{\xi<\alpha} H(H \downarrow \xi)$ is a single equation defining the greatest fixed point hierarchy - cf. Exercise 72.)
Solution.
Claim: $H \uparrow \alpha \subset H \uparrow(\alpha+1)$.
Induction. Obviously, $H \uparrow 0 \subset H \uparrow 1$. And if $H \uparrow \alpha \subset H \uparrow(\alpha+1)$, then, by monotonicity, $H \uparrow(\alpha+1) \subset$ $H \uparrow(\alpha+2)$. Finally, if γ is a limit, then, if $\xi<\gamma, H \uparrow \xi \subset \bigcup_{\xi<\gamma} H \uparrow \xi$, hence, $H(H \uparrow \xi) \subset H\left(\bigcup_{\xi<\gamma} H \uparrow \xi\right)$; and so $H \uparrow \gamma=\bigcup_{\xi<\gamma} H \uparrow \xi \subset \bigcup_{\xi<\gamma} H(H \uparrow \xi) \subset H\left(\bigcup_{\xi<\gamma} H \uparrow \xi\right)=H \uparrow(\gamma+1)$.
Now:
$H \uparrow 0=\emptyset=\bigcup_{\xi<0} H(H \uparrow \xi) ;$
$H \uparrow(\alpha+1)=H(H \uparrow \alpha)=H(H \uparrow \alpha) \cup H \uparrow \alpha($ since $H \uparrow \alpha \subset H(H \uparrow \alpha))=H(H \uparrow \alpha) \cup \bigcup_{\xi<\alpha} H(H \uparrow \xi)($ by IH $)$ $=\bigcup_{\xi<\alpha+1} H(H \uparrow \xi)$;
$H \uparrow \gamma=\bigcup_{\xi<\gamma} H \uparrow \xi=\bigcup_{\xi<\gamma} H(H \uparrow \xi)$ (since $H \uparrow \xi \subset H \uparrow(\xi+1) \subset H \uparrow \gamma$).
72 Let H be a monotone operator over a set \mathbf{U}. The greatest fixed point hierarchy is the sequence $\{H \downarrow \alpha\}_{\alpha}$ recursively defined by

- $H \downarrow 0=\mathbf{U}$,
- $H \downarrow(\alpha+1)=H(H \downarrow \alpha)$,
- $H \downarrow \gamma=\bigcap_{\xi<\gamma} H \downarrow \xi($ for limits $\gamma)$.

Show that:

1. the hierarchy is descending, i.e., that $\alpha<\beta \Rightarrow H \Downarrow \beta \subset H \downarrow \alpha$.
2. some stage $H \rrbracket \alpha_{0}$ is a fixed point of H.
3. $H \rrbracket \alpha_{0}=\bigcap_{\alpha} H \downarrow \alpha$ is the greatest fixed point of H.

Try to generalize for the case where \mathbf{U} may be a proper class.
Solution.
Consider the dual operator of $H^{d}: \wp\left(\mathbf{U}_{\rightarrow} \wp(\mathbf{U})\right.$ of H defined by $H^{d}(X)={ }_{\text {def }} \mathbf{U}-H(\mathbf{U}-X)$. By exercise 52 , the least fixed point of H^{d} corresponds to the greatest fixed point of H. It is easy to see that the least fixed point hierarchy of H^{d} also corresponds exactly to the greatest fixed point hierarchy of H, i.e. $H \downarrow \alpha=\mathbf{U}-H^{d} \uparrow \alpha$ for $\alpha \in O R$. The desired properties follow.
If \mathbf{U} is a class, then the first property will still hold, but the second and third properties may fail. For instance, consider the operator $H: \mathbf{V} \rightarrow \mathbf{V}$ given by $H(X)=X-\{\alpha\}$ if α is the least ordinal in X, and $H(X)=\emptyset$ if X does not contain any ordinals. Then for all ordinals $\alpha, H \downarrow \alpha=\mathbf{V}-\alpha$, and yet the only fixed point of H is $H \downarrow=H \uparrow=\emptyset$.

