Solutions To Exercises

Chapter 3

36 Prove Lemma 3.19.1-3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1-3.
Solution.

1. $a=\mathrm{TC}(a, 0) \subset \mathrm{TC}(a)$.
2. If $x \in y \in \mathrm{TC}(a)$, then, for some $n \in \omega, y \in \mathrm{TC}(a, n)$. Thus, $x \in \bigcup \mathrm{TC}(a, n)=\mathrm{TC}(a, \mathrm{~S}(n)) \subset$

TC (a).
3. Suppose $b \supset a$ is transitive. Then $a=\operatorname{TC}(a, 0) \subset b$, and if for some $n, \mathrm{TC}(a, n) \subset b$, then $\mathrm{TC}(a, S n)=\bigcup \mathrm{TC}(a, n) \subset \bigcup b \subset b$. Thus, by induction on $n, \mathrm{TC}(a, n) \subset b$ for all n, and therefore $\mathrm{TC}(a) \subset b$.
4. \supset : First, $a \subset \mathrm{TC}(a)$. Next, if $b \in a$, then $b \in \mathrm{TC}(a)$ (since $a \subset \mathrm{TC}(a)), b \subset \mathrm{TC}(a)$ (since $\mathrm{TC}(a)$ is transitive), and $\mathrm{TC}(b) \subset \mathrm{TC}(a)$ (by property 3).
\subset : By property 3 , it suffices to show that $a \cup \bigcup_{b \in a} \mathrm{TC}(b)$ is a transitive superset of a. Transitivity: if $x \in y \in a \cup \bigcup_{b \in a} \mathrm{TC}(b)$, then $y \in a$, or $b \in a$ exists such that $y \in \mathrm{TC}(b)$. In the first case, $x \in \mathrm{TC}(y) \subset a \cup \bigcup_{b \in a} \mathrm{TC}(b)$. In the second, $x \in \mathrm{TC}(b) \subset a \cup \bigcup_{b \in a} \mathrm{TC}(b)$.

39 Show that $x \in \mathrm{TC}(a)$ iff $x \in^{\star} a$.

Solution 1.

Define $x R y \equiv_{\operatorname{def}} x \in y$ and $R^{\prime} \equiv_{\operatorname{def}} x \in T C(y)$. Now R and R^{\prime} satisfy parts 1-3 of Lemma 3.21:

1. if $a \in b$, then $a \in T C(b)$, since $b \subset T C(b)$.
2. if $a \in T C(b)$ and $b \in T C(c)$, then by transitivity of $T C(c)$ we have that $b \subset T C(c)$ and $T C(b) \subset T C(c)$, and therefore $a \in T C(c)$.
3. Assume $R \subset S$ and S is transitive. It suffices to show that for any $b,\left\{x \mid x R^{\prime} b\right\} \subset\{x \mid x S b\}$. This follows from $\left\{x \mid x R^{\prime} b\right\}=T C(b)$ and the observation that $\{x \mid x S b\}$ is a transitive set (since for all x, y, if $y S b$ and $x \in y$, then $x S y$ and $x S b)$.
It follows that $R^{\prime}=R^{\star}$.

Solution 2.

Define R_{n} by

$$
a R_{n} b: \equiv_{\operatorname{def}} \exists f[\operatorname{Dom}(f)=n+2 \wedge f(0)=a \wedge f(n+1)=b \wedge \forall i<n+1(f(i) R f(i+1))]
$$

It can easily be seen that $R_{0}=R$, that for all a, b and $n, a R_{n+1} b \Leftrightarrow \exists c\left[a R c \wedge c R_{n} b\right]$, and that for all a and $b: a R^{*} b \Leftrightarrow \exists n \in \omega: a R_{n} b$. Now we can show by induction on n that for all n, x and $a, x \in_{n} a \Leftrightarrow x \in T C(a, n)$. For $n=0$ it is trivial:

$$
x \in_{0} a \Leftrightarrow x \in a \Leftrightarrow x \in T C(a, 0)
$$

If we assume that for a given n and a and for all $y, y \in_{n} a \Leftrightarrow y \in T C(a, n)$, then for all x,

$$
x \in_{n+1} a \Leftrightarrow \exists y\left[x \in y \in_{n} a\right] \Leftrightarrow \exists y[x \in y \in T C(a, n)] \Leftrightarrow x \in \bigcup T C(a, n)=T C(a, n+1)
$$

Therefore $x \in^{*} a \Leftrightarrow \exists n x \in_{n} a \Leftrightarrow \exists n x \in T C(a, n) \Leftrightarrow x \in T C(a)$.
$43 \mathbb{Z}$ is the set of integers. Define $H: \wp(\mathbb{Z}) \rightarrow \wp(\mathbb{Z})$ by $H(X)={ }_{\operatorname{def}}\{0\} \cup\{\mathrm{S}(x) \mid x \in X\}$. Identify the fixed points of H.

Solution.
H is a finite operator, so $H \uparrow=\mathbb{N}$ is the least fixed point of H. For any fixed point K of H, by induction on $n,-1 \in K$ iff for all $n \in \omega,-(1+n) \in K$. It follows that the only other fixed point of H is \mathbb{Z}.

44 Prove Theorem 3.27.
Solution.

1. We prove the equivalent statement that that for all $n, m, H \uparrow n \subset H \uparrow(n+m)$, by induction w.r.t. n :
Basis $n=0: H \uparrow n=\emptyset \subset H \uparrow(n+m)$ is obvious.
Induction step: if $H \uparrow n \subset H \uparrow(n+m)$. then $H \uparrow(n+1)=H(H \uparrow n) \subset H(H \uparrow(n+m))=H \uparrow(n+1+m)$.
2. Suppose that $H(X) \subset X$. By induction on n, it follows that $H \uparrow n \subset X$:

Basis $n=0: H \uparrow 0=\emptyset \subset X$ is obvious.
Induction step: if $H \uparrow n \subset X$. then $H \uparrow(n+1)=H(H \uparrow n) \subset H(X) \subset X$.
3. If $Y \subset H \uparrow \omega=\bigcup_{n} H \uparrow n$ is finite, then n exists s.t. $Y \subset H \uparrow n$: induction w.r.t. nr of elements of Y. Basis, $Y=\emptyset$. Then $Y \subset \emptyset=H \uparrow 0$.
Induction step. IH : for n-element Y, the statement holds. Now let $Y \subset \bigcup_{n} H \uparrow n$ have $n+1$ elements. For instance, $Y=Y^{\prime} \cup\{y\}$, where Y^{\prime} has n elements. By IH, n_{1} exists s.t. $Y \subset H \uparrow n_{1}$. Furthermore, n_{2} exists s.t. $y \in H \uparrow n_{2}$. Let $m=\max \left(n_{1}, n_{2}\right)$. Then clearly (by 1), $Y \subset H \uparrow m$.
4. $H(H \uparrow \omega) \subset H \uparrow \omega$:

Assume that $a \in H(H \uparrow \omega)$. By finiteness, a finite $Y \subset H \uparrow \omega$ exists s.t. $a \in H(Y)$. By 3 we can assume that for some $n, Y \subset H \uparrow n$. Then $a \in H(Y) \subset H(H \uparrow n)=H \uparrow n+1 \subset H \uparrow \omega$.
45 Let $A=\omega \cup\{\omega\}$ and define $H: \wp(A) \rightarrow \wp(A)$ by $H(X)=\{0\} \cup\{\mathrm{S}(x) \mid x \in X\} \cap A$ if $\omega \not \subset X$, and $H(X)=A$ otherwise. Show: H is monotone, H is not finite, $H \uparrow=A, \forall n \in \omega H \uparrow n=n$. Thus, $H \uparrow \neq \bigcup_{n} H \uparrow n$.
Solution.
H is monotone: Let $X \subset Y \subset A$. If $\omega \subset Y$, then $H(X) \subset A=H(Y)$. Otherwise, $\omega \not \subset X, Y$, so $H(X)=\{0\} \cup\{\mathrm{S}(x) \mid x \in X\} \subset\{0\} \cup\{\mathrm{S}(x) \mid x \in X\}=H(Y)$.
H is not finite: Since $\omega \in H(\omega)$, and for all finite sets $X \subset \omega, \omega \notin H(X)$, we see that H is not finite.
For all $n, H \uparrow n=n$, by induction on n : For $n=0, H \uparrow 0=\emptyset=0$. If $H \uparrow n=n$, then $H \uparrow n+1=$ $H(H \uparrow n)=H(n)=\{0\} \cup\{\operatorname{suc}(x) \mid x \in n\}=n+1$.
$H \uparrow=A$: Studying the proof of Theorem 3.24 it is apparent that $\bigcup_{n} H \uparrow n$ is inductive even if H is not finite. So $\omega=\bigcup_{n} H \uparrow n \subset H \uparrow$. Therefore $A=H(\omega) \subset H(H \uparrow)=H \uparrow$. We conclude that $H \uparrow=A$.

51 (Simultaneous inductive definitions.) Suppose that $\Pi, \Delta: \wp(A) \times \wp(A) \rightarrow \wp(A)$ are monotone operators in the sense that if $X_{1}, Y_{1}, X_{2}, Y_{2} \subset A$ are such that $X_{1} \subset X_{2}$ and $Y_{1} \subset Y_{2}$, then $\Pi\left(X_{1}, Y_{1}\right) \subset \Pi\left(X_{2}, Y_{2}\right)$ (and similarly for $\left.\Delta\right)$. Show that K, L exist such that

1. $\Pi(K, L) \subset K, \Delta(K, L) \subset L$; in fact, $\Pi(K, L)=K, \Delta(K, L)=L$,
2. if $\Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$, then $K \subset X$ and $L \subset Y$.

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.
Solution.
Consider the operator $H: \wp(A \times A) \rightarrow \wp(A \times A)$ defined by $H(Z)=\Pi\left(\pi_{1}[Z], \pi_{2}[Z]\right) \times \Delta\left(\pi_{1}[Z], \pi_{2}[Z]\right)$ (where, as usual, π_{1} and π_{2} denote the projection onto the first and second coordinates).
H is monotone: assume that $Z \subset Z^{\prime} \subset(A \times A)$. Then $\pi_{1}[Z] \subset \pi_{1}\left[Z^{\prime}\right]$ and $\pi_{2}[Z] \subset \pi_{2}\left[Z^{\prime}\right]$. So by our assumption for $\Pi, \Pi\left(\pi_{1}[Z], \pi_{2}[Z]\right) \subset \Pi\left(\pi_{1}\left[Z^{\prime}\right], \pi_{2}\left[Z^{\prime}\right]\right)$, and analogous for Δ. It follows that $H(Z) \subset H\left(Z^{\prime}\right)$.
Since H is monotone, it has a least fixed point $H \uparrow$. Setting $K=\pi_{1}[H \uparrow], L=\pi_{2}[H \uparrow]$, we have that $H \uparrow=H(H \uparrow)=\Pi(K, L) \times \Delta(K, L)$, so $K=\pi_{1}[H \uparrow]=\Pi(K, L)$ and $L=\pi_{2}[H \uparrow]=\Delta(K, L)$ (and $H \uparrow=K \times L)$.
For the second part, assume that for $X, Y \subset A, \Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$. Then $H(X \times Y)=$ $\Pi(X, Y) \times \Delta(X, Y) \subset X \times Y$, and hence $K \times L=H \uparrow \subset X \times Y$. Therefore $K \subset X$ and $L \subset Y$.

