Solutions To Exercises

Chapter 3

36 Prove Lemma 3.19.1–3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1-3. Solution.

1. $a = TC(a, 0) \subset TC(a)$.

2. If $x \in y \in TC(a)$, then, for some $n \in \omega$, $y \in TC(a, n)$. Thus, $x \in \bigcup TC(a, n) = TC(a, S(n)) \subset TC(a)$.

3. Suppose $b \supset a$ is transitive. Then $a = \text{TC}(a, 0) \subset b$, and if for some n, $\text{TC}(a, n) \subset b$, then $\text{TC}(a, Sn) = \bigcup \text{TC}(a, n) \subset \bigcup b \subset b$. Thus, by induction on n, $\text{TC}(a, n) \subset b$ for all n, and therefore $\text{TC}(a) \subset b$.

4. \supset : First, $a \subset TC(a)$. Next, if $b \in a$, then $b \in TC(a)$ (since $a \subset TC(a)$), $b \subset TC(a)$ (since TC(a) is transitive), and $TC(b) \subset TC(a)$ (by property 3).

 \subset : By property 3, it suffices to show that $a \cup \bigcup_{b \in a} \operatorname{TC}(b)$ is a transitive superset of a. Transitivity: if $x \in y \in a \cup \bigcup_{b \in a} \operatorname{TC}(b)$, then $y \in a$, or $b \in a$ exists such that $y \in \operatorname{TC}(b)$. In the first case, $x \in \operatorname{TC}(y) \subset a \cup \bigcup_{b \in a} \operatorname{TC}(b)$. In the second, $x \in \operatorname{TC}(b) \subset a \cup \bigcup_{b \in a} \operatorname{TC}(b)$. \Box

39 Show that $x \in TC(a)$ iff $x \in a$.

Solution 1.

Define $xRy \equiv_{\text{def}} x \in y$ and $R' \equiv_{\text{def}} x \in TC(y)$. Now R and R' satisfy parts 1-3 of Lemma 3.21: 1. if $a \in b$, then $a \in TC(b)$, since $b \subset TC(b)$.

2. if $a \in TC(b)$ and $b \in TC(c)$, then by transitivity of TC(c) we have that $b \subset TC(c)$ and $TC(b) \subset TC(c)$, and therefore $a \in TC(c)$.

3. Assume $R \subset S$ and S is transitive. It suffices to show that for any b, $\{x \mid xR'b\} \subset \{x \mid xSb\}$. This follows from $\{x \mid xR'b\} = TC(b)$ and the observation that $\{x \mid xSb\}$ is a transitive set (since for all x, y, if ySb and $x \in y$, then xSy and xSb). It follows that $R' = R^*$.

Solution 2. Define R_n by

 $aR_nb :\equiv_{\operatorname{def}} \exists f[\operatorname{Dom}(f) = n+2 \land f(0) = a \land f(n+1) = b \land \forall i < n+1(f(i)Rf(i+1))]$

It can easily be seen that $R_0 = R$, that for all a, b and $n, aR_{n+1}b \Leftrightarrow \exists c[aRc \land cR_nb]$, and that for all a and $b: aR^*b \Leftrightarrow \exists n \in \omega : aR_nb$. Now we can show by induction on n that for all n, x and $a, x \in a \Leftrightarrow x \in TC(a, n)$. For n = 0 it is trivial:

$$x \in a \Leftrightarrow x \in a \Leftrightarrow x \in TC(a, 0)$$

If we assume that for a given n and a and for all $y, y \in a \Rightarrow y \in TC(a, n)$, then for all x,

$$x \in_{n+1} a \Leftrightarrow \exists y [x \in y \in_n a] \Leftrightarrow \exists y [x \in y \in TC(a, n)] \Leftrightarrow x \in \bigcup TC(a, n) = TC(a, n+1)$$

Therefore $x \in a \Leftrightarrow \exists nx \in a \Leftrightarrow \exists nx \in TC(a, n) \Leftrightarrow x \in TC(a)$.

43 Z is the set of integers. Define $H : \wp(\mathbb{Z}) \to \wp(\mathbb{Z})$ by $H(X) =_{\text{def}} \{0\} \cup \{S(x) \mid x \in X\}$. Identify the fixed points of H.

Solution.

H is a finite operator, so $H\uparrow = \mathbb{N}$ is the least fixed point of *H*. For any fixed point *K* of *H*, by induction on $n, -1 \in K$ iff for all $n \in \omega, -(1+n) \in K$. It follows that the only other fixed point of *H* is \mathbb{Z} .

44 Prove Theorem 3.27.

Solution.

1. We prove the equivalent statement that for all $n, m, H \upharpoonright n \subset H \upharpoonright (n+m)$, by induction w.r.t. n:

Basis n = 0: $H \uparrow n = \emptyset \subset H \uparrow (n+m)$ is obvious.

Induction step: if $H \upharpoonright n \subset H \upharpoonright (n+m)$. then $H \upharpoonright (n+1) = H(H \upharpoonright n) \subset H(H \upharpoonright (n+m)) = H \upharpoonright (n+1+m)$.

2. Suppose that $H(X) \subset X$. By induction on n, it follows that $H \upharpoonright n \subset X$:

Basis n = 0: $H \uparrow 0 = \emptyset \subset X$ is obvious.

Induction step: if $H \upharpoonright n \subset X$. then $H \upharpoonright (n+1) = H(H \upharpoonright n) \subset H(X) \subset X$.

3. If $Y \subset H \upharpoonright \omega = \bigcup_n H \upharpoonright n$ is finite, then *n* exists s.t. $Y \subset H \upharpoonright n$: induction w.r.t. nr of elements of *Y*. Basis, $Y = \emptyset$. Then $Y \subset \emptyset = H \upharpoonright 0$.

Induction step. III: for *n*-element Y, the statement holds. Now let $Y \subset \bigcup_n H \upharpoonright n$ have n + 1 elements. For instance, $Y = Y' \cup \{y\}$, where Y' has n elements. By III, n_1 exists s.t. $Y \subset H \upharpoonright n_1$. Furthermore, n_2 exists s.t. $y \in H \upharpoonright n_2$. Let $m = \max(n_1, n_2)$. Then clearly (by 1), $Y \subset H \upharpoonright m$. 4. $H(H \upharpoonright \omega) \subset H \upharpoonright \omega$:

Assume that $a \in H(H \upharpoonright \omega)$. By finiteness, a finite $Y \subset H \upharpoonright \omega$ exists s.t. $a \in H(Y)$. By 3 we can assume that for some $n, Y \subset H \upharpoonright n$. Then $a \in H(Y) \subset H(H \upharpoonright n) = H \upharpoonright n + 1 \subset H \upharpoonright \omega$. \Box

45 Let $A = \omega \cup \{\omega\}$ and define $H : \wp(A) \to \wp(A)$ by $H(X) = \{0\} \cup \{S(x) \mid x \in X\} \cap A$ if $\omega \not\subset X$, and H(X) = A otherwise. Show: H is monotone, H is not finite, $H\uparrow = A$, $\forall n \in \omega H\uparrow n = n$. Thus, $H\uparrow \neq \bigcup_n H\uparrow n$.

Solution.

H is monotone: Let $X \subset Y \subset A$. If $\omega \subset Y$, then $H(X) \subset A = H(Y)$. Otherwise, $\omega \not\subset X, Y$, so $H(X) = \{0\} \cup \{S(x) \mid x \in X\} \subset \{0\} \cup \{S(x) \mid x \in X\} = H(Y)$.

H is not finite: Since $\omega \in H(\omega)$, and for all finite sets $X \subset \omega$, $\omega \notin H(X)$, we see that *H* is not finite.

For all n, $H \upharpoonright n = n$, by induction on n: For n = 0, $H \upharpoonright 0 = \emptyset = 0$. If $H \upharpoonright n = n$, then $H \upharpoonright n + 1 = H(H \upharpoonright n) = H(n) = \{0\} \cup \{suc(x) \mid x \in n\} = n + 1$.

 $H\uparrow = A$: Studying the proof of Theorem 3.24 it is apparent that $\bigcup_n H\uparrow n$ is inductive even if H is not finite. So $\omega = \bigcup_n H\uparrow n \subset H\uparrow$. Therefore $A = H(\omega) \subset H(H\uparrow) = H\uparrow$. We conclude that $H\uparrow = A$.

51 (Simultaneous inductive definitions.) Suppose that $\Pi, \Delta : \wp(A) \times \wp(A) \to \wp(A)$ are monotone operators in the sense that if $X_1, Y_1, X_2, Y_2 \subset A$ are such that $X_1 \subset X_2$ and $Y_1 \subset Y_2$, then $\Pi(X_1, Y_1) \subset \Pi(X_2, Y_2)$ (and similarly for Δ). Show that K, L exist such that

- 1. $\Pi(K,L) \subset K$, $\Delta(K,L) \subset L$; in fact, $\Pi(K,L) = K$, $\Delta(K,L) = L$,
- 2. if $\Pi(X,Y) \subset X$ and $\Delta(X,Y) \subset Y$, then $K \subset X$ and $L \subset Y$.

Show that, similarly, *greatest* (post-) fixed points exist. Generalize to more operators. *Solution.*

Consider the operator $H : \wp(A \times A) \to \wp(A \times A)$ defined by $H(Z) = \Pi(\pi_1[Z], \pi_2[Z]) \times \Delta(\pi_1[Z], \pi_2[Z])$ (where, as usual, π_1 and π_2 denote the projection onto the first and second coordinates).

H is monotone: assume that $Z \subset Z' \subset (A \times A)$. Then $\pi_1[Z] \subset \pi_1[Z']$ and $\pi_2[Z] \subset \pi_2[Z']$. So by our assumption for Π , $\Pi(\pi_1[Z], \pi_2[Z]) \subset \Pi(\pi_1[Z'], \pi_2[Z'])$, and analogous for Δ . It follows that $H(Z) \subset H(Z')$.

Since *H* is monotone, it has a least fixed point $H\uparrow$. Setting $K = \pi_1[H\uparrow]$, $L = \pi_2[H\uparrow]$, we have that $H\uparrow = H(H\uparrow) = \Pi(K,L) \times \Delta(K,L)$, so $K = \pi_1[H\uparrow] = \Pi(K,L)$ and $L = \pi_2[H\uparrow] = \Delta(K,L)$ (and $H\uparrow = K \times L$).

For the second part, assume that for $X, Y \subset A$, $\Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$. Then $H(X \times Y) = \Pi(X, Y) \times \Delta(X, Y) \subset X \times Y$, and hence $K \times L = H \uparrow \subset X \times Y$. Therefore $K \subset X$ and $L \subset Y$.