
Solutions To Exercises

Chapter 3

36 Prove Lemma 3.19.1–3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1–3.
Solution.

1. a = TC(a, 0) ⊂ TC(a).
2. If x ∈ y ∈ TC(a), then, for some n ∈ ω, y ∈ TC(a, n). Thus, x ∈

⋃

TC(a, n) = TC(a,S(n)) ⊂
TC(a).
3. Suppose b ⊃ a is transitive. Then a = TC(a, 0) ⊂ b, and if for some n, TC(a, n) ⊂ b, then
TC(a, Sn) =

⋃

TC(a, n) ⊂
⋃

b ⊂ b. Thus, by induction on n, TC(a, n) ⊂ b for all n, and therefore
TC(a) ⊂ b.
4. ⊃: First, a ⊂ TC(a). Next, if b ∈ a, then b ∈ TC(a) (since a ⊂ TC(a)), b ⊂ TC(a) (since TC(a)
is transitive), and TC(b) ⊂ TC(a) (by property 3).
⊂: By property 3, it suffices to show that a∪

⋃

b∈a
TC(b) is a transitive superset of a. Transitivity:

if x ∈ y ∈ a ∪
⋃

b∈a
TC(b), then y ∈ a, or b ∈ a exists such that y ∈ TC(b). In the first case,

x ∈ TC(y) ⊂ a ∪
⋃

b∈a
TC(b). In the second, x ∈ TC(b) ⊂ a ∪

⋃

b∈a
TC(b). ¤

39 Show that x ∈ TC(a) iff x ∈? a.
Solution 1.

Define xRy ≡def x ∈ y and R′ ≡def x ∈ TC(y). Now R and R′ satisfy parts 1-3 of Lemma 3.21:
1. if a ∈ b, then a ∈ TC(b), since b ⊂ TC(b).
2. if a ∈ TC(b) and b ∈ TC(c), then by transitivity of TC(c) we have that b ⊂ TC(c) and
TC(b) ⊂ TC(c), and therefore a ∈ TC(c).
3. Assume R ⊂ S and S is transitive. It suffices to show that for any b, {x | xR′b} ⊂ {x | xSb}.
This follows from {x | xR′b} = TC(b) and the observation that {x | xSb} is a transitive set (since
for all x, y, if ySb and x ∈ y, then xSy and xSb).
It follows that R′ = R? . ¤

Solution 2.

Define Rn by

aRnb :≡def ∃f [Dom(f) = n+2 ∧ f(0) = a ∧ f(n+1) = b ∧ ∀i < n+1(f(i)Rf(i+1))]

It can easily be seen that R0 = R, that for all a, b and n, aRn+1b ⇔ ∃c[aRc ∧ cRnb], and that
for all a and b: aR∗b ⇔ ∃n∈ω : aRnb. Now we can show by induction on n that for all n, x and
a, x∈n a ⇔ x∈TC(a, n). For n = 0 it is trivial:

x∈0 a ⇔ x∈a ⇔ x∈TC(a, 0)

If we assume that for a given n and a and for all y, y∈n a ⇔ y∈TC(a, n), then for all x,

x∈n+1 a ⇔ ∃y[x∈y∈n a] ⇔ ∃y[x∈y∈TC(a, n)] ⇔ x∈
⋃

TC(a, n) = TC(a, n+1)

Therefore x ∈∗ a ⇔ ∃nx ∈n a ⇔ ∃nx ∈ TC(a, n) ⇔ x ∈ TC(a). ¤

43 ZZ is the set of integers. Define H : ℘(ZZ)→ ℘(ZZ) by H(X) =def {0}∪{S(x) | x ∈ X}. Identify
the fixed points of H.



Solution.

H is a finite operator, so H↑= IN is the least fixed point of H. For any fixed point K of H, by
induction on n, −1 ∈ K iff for all n ∈ ω, −(1 + n) ∈ K. It follows that the only other fixed point
of H is ZZ. ¤

44 Prove Theorem 3.27.
Solution.

1. We prove the equivalent statement that that for all n,m, H↑n ⊂ H↑(n+m), by induction w.r.t.
n:
Basis n = 0: H↑n = ∅ ⊂ H↑(n+m) is obvious.
Induction step: if H↑n ⊂ H↑(n+m). then H↑(n+1) = H(H↑n) ⊂ H(H↑(n+m)) = H↑(n+1+m).
2. Suppose that H(X) ⊂ X. By induction on n, it follows that H↑n ⊂ X:
Basis n = 0: H↑0 = ∅ ⊂ X is obvious.
Induction step: if H↑n ⊂ X. then H↑(n+1) = H(H↑n) ⊂ H(X) ⊂ X.
3. If Y ⊂ H↑ω =

⋃

n
H↑n is finite, then n exists s.t. Y ⊂ H↑n: induction w.r.t. nr of elements of Y .

Basis, Y = ∅. Then Y ⊂ ∅ = H↑0.
Induction step. IH: for n-element Y , the statement holds. Now let Y ⊂

⋃

n
H↑n have n + 1

elements. For instance, Y = Y ′ ∪ {y}, where Y ′ has n elements. By IH, n1 exists s.t. Y ⊂ H↑n1.
Furthermore, n2 exists s.t. y ∈ H↑n2. Let m = max(n1, n2). Then clearly (by 1), Y ⊂ H↑m.
4. H(H↑ω) ⊂ H↑ω:
Assume that a ∈ H(H↑ω). By finiteness, a finite Y ⊂ H↑ω exists s.t. a ∈ H(Y ). By 3 we can
assume that for some n, Y ⊂ H↑n. Then a ∈ H(Y ) ⊂ H(H↑n) = H↑n+ 1 ⊂ H↑ω. ¤

45 Let A = ω ∪ {ω} and define H : ℘(A)→ ℘(A) by H(X) = {0} ∪ {S(x) | x ∈ X} ∩A if ω 6⊂ X,
and H(X) = A otherwise. Show: H is monotone, H is not finite, H↑= A, ∀n ∈ ω H↑n = n. Thus,
H↑ 6=

⋃

n
H↑n.

Solution.

H is monotone: Let X ⊂ Y ⊂ A. If ω ⊂ Y , then H(X) ⊂ A = H(Y ). Otherwise, ω 6⊂ X,Y , so
H(X) = {0} ∪ {S(x) | x ∈ X} ⊂ {0} ∪ {S(x) | x ∈ X} = H(Y ).
H is not finite: Since ω ∈ H(ω), and for all finite sets X ⊂ ω, ω 6∈ H(X), we see that H is not
finite.
For all n, H↑n = n, by induction on n: For n = 0, H↑0 = ∅ = 0. If H↑n = n, then H↑n+ 1 =
H(H↑n) = H(n) = {0} ∪ {suc(x) | x ∈ n} = n+ 1.
H↑= A: Studying the proof of Theorem 3.24 it is apparent that

⋃

n
H↑n is inductive even if H is

not finite. So ω =
⋃

n
H↑n ⊂ H↑. Therefore A = H(ω) ⊂ H(H↑) = H↑. We conclude that H↑= A.

¤

51 (Simultaneous inductive definitions.) Suppose that Π,∆ : ℘(A)× ℘(A)→ ℘(A) are monotone
operators in the sense that if X1, Y1, X2, Y2 ⊂ A are such that X1 ⊂ X2 and Y1 ⊂ Y2, then
Π(X1, Y1) ⊂ Π(X2, Y2) (and similarly for ∆). Show that K,L exist such that

1. Π(K,L) ⊂ K, ∆(K,L) ⊂ L; in fact, Π(K,L) = K, ∆(K,L) = L,

2. if Π(X,Y ) ⊂ X and ∆(X,Y ) ⊂ Y , then K ⊂ X and L ⊂ Y .

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.
Solution.

Consider the operatorH : ℘(A×A)→ ℘(A×A) defined byH(Z) = Π(π1[Z], π2[Z])×∆(π1[Z], π2[Z])
(where, as usual, π1 and π2 denote the projection onto the first and second coordinates).
H is monotone: assume that Z ⊂ Z ′ ⊂ (A × A). Then π1[Z] ⊂ π1[Z

′] and π2[Z] ⊂ π2[Z
′]. So by

our assumption for Π, Π(π1[Z], π2[Z]) ⊂ Π(π1[Z
′], π2[Z

′]), and analogous for ∆. It follows that
H(Z) ⊂ H(Z ′).
Since H is monotone, it has a least fixed point H↑. Setting K = π1[H↑], L = π2[H↑], we have that
H↑ = H(H↑) = Π(K,L) × ∆(K,L), so K = π1[H↑] = Π(K,L) and L = π2[H↑] = ∆(K,L) (and
H↑= K × L).
For the second part, assume that forX,Y ⊂ A, Π(X,Y ) ⊂ X and ∆(X,Y ) ⊂ Y . ThenH(X×Y ) =
Π(X,Y )×∆(X,Y ) ⊂ X × Y , and hence K × L = H↑⊂ X × Y . Therefore K ⊂ X and L ⊂ Y .



¤


