Solutions To Exercises

Chapter 3

36 Prove Lemma 3.19.1-3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1-3.

Solution.

1. a = TC(a,0) C TC(a).

2. If x € y € TC(a), then, for some n € w, y € TC(a,n). Thus, x € |JTC(a,n) = TC(a,S(n)) C
TC(a).

3. Suppose b D a is transitive. Then a = TC(a,0) C b, and if for some n, TC(a,n) C b, then
TC(a, Sn) =|JTC(a,n) C |Jb C b. Thus, by induction on n, TC(a,n) C b for all n, and therefore
TC(a) Cb.

4. D: First, a C TC(a). Next, if b € a, then b € TC(a) (since a C TC(a)), b C TC(a) (since TC(a)
is transitive), and TC(b) C TC(a) (by property 3).

C: By property 3, it suffices to show that aU(J,, TC(b) is a transitive superset of a. Transitivity:
if v €y € aUlUpe, TC(b), then y € a, or b € a exists such that y € TC(b). In the first case,
€ TC(y) C aU Uy, TC(b). In the second, x € TC(b) C a U J,e, TC(b). O

39 Show that € TC(a) iff z €* a.

Solution 1.

Define xRy =qof © € y and R =gop ¢ € TC(y). Now R and R’ satisfy parts 1-3 of Lemma 3.21:
1. if @ € b, then a € TC(b), since b C TC(b).

2. if a € TC(b) and b € TC(c), then by transitivity of TC(c) we have that b C TC(c) and
TC(b) C TC(c), and therefore a € TC(c).

3. Assume R C S and S is transitive. It suffices to show that for any b, {z | zR'b} C {x | 2Sb}.
This follows from {z | xR'b} = T'C'(b) and the observation that {x | 2Sb} is a transitive set (since
for all z,y, if ySb and = € y, then =Sy and xSb).

It follows that R’ = R*. O

Solution 2.
Define R,, by

aRpb =g If[Dom(f) =n+2 A f(0)=a A f(n+1)=b A Vi <n+1(f(i)Rf(i+1))]

It can easily be seen that Ry = R, that for all a, b and n, aRp4+1b < Jc[aRc A ¢R,b], and that
for all @ and b: aR*b < dn€w : aR,b. Now we can show by induction on n that for all n, x and
a, z€pa & r€TC(a,n). For n =0 it is trivial:

r€pa & z€a < 2€TC(a,0)
If we assume that for a given n and a and for all y, y€,,a & yeTC(a,n), then for all x,
TEpna & ylreye,al & JylzeyeTC(a,n)] & erTC(a,n) =TC(a,n+1)

Therefore x €* a & Inz €, a < Inx € TC(a,n) & x € TC(a). O

43 7 is the set of integers. Define H : p(Z) — o(Z) by H(X) =qef {0} U{S(2) | € X}. Identify
the fixed points of H.



Solution.

H is a finite operator, so HT = IN is the least fixed point of H. For any fixed point K of H, by
induction on n, —1 € K iff for all n € w, —(1 + n) € K. It follows that the only other fixed point
of H is 7. U

44 Prove Theorem 3.27.

Solution.

1. We prove the equivalent statement that that for all n,m, Hn C H{(n+m), by induction w.r.t.
n:

Basis n = 0: Hin =0 C Hl|(n+m) is obvious.

Induction step: if Hin C Hl(n+m). then Hl(n+1) = H(Hn) C H(H|{(n+m)) = H{(n+14+m).

2. Suppose that H(X) C X. By induction on n, it follows that Hin C X:

Basis n = 0: HJ0 = C X is obvious.

Induction step: if Hin C X. then Hl(n+1) = H(Hn) C H(X) C X.

3. If Y C Hlw = J,, HIn is finite, then n exists s.t. Y C Hn: induction w.r.t. nr of elements of Y.
Basis, Y = (. Then Y C () = HJ0.

Induction step. IH: for n-element Y, the statement holds. Now let Y C |J,, Hln have n + 1
elements. For instance, Y = Y’ U {y}, where Y’ has n elements. By IH, n; exists s.t. Y C Hlny.
Furthermore, ny exists s.t. y € Hny. Let m = max(nq, ng). Then clearly (by 1), Y C Him.

4. H(Hlw) C Hlw:

Assume that a € H(Hw). By finiteness, a finite Y C Hlw exists s.t. a € H(Y). By 3 we can
assume that for some n, Y C Hin. Then a € H(Y) C H(Hn) = Hin+ 1 C Hjw. O

45 Let A = wU {w} and define H : p(A) — p(A) by H(X)={0}U{S(z) |z e X} NAifw ¢ X,
and H(X) = A otherwise. Show: H is monotone, H is not finite, Hl = A, Vn € w Hln = n. Thus,
H#U,, Hin.

Solution.

H is monotone: Let X CY C A. If w C Y, then H(X) C A = H(Y). Otherwise, w ¢ X,Y, so
H(X)={0}U{S(z) |z € X} c{0}U{S(z) |z € X} = H(Y).

H is not finite: Since w € H(w), and for all finite sets X C w, w ¢ H(X), we see that H is not
finite.

For all n, Hin = n, by induction on n: For n = 0, HI0 = ) = 0. If Hjn = n, then Hin+1 =
H(Hn) = H(n) = {0} U{suc(z) |z €n} =n+1.

H1 = A: Studying the proof of Theorem 3.24 it is apparent that J,, Hln is inductive even if H is
not finite. So w = J,, Hin C HJ. Therefore A = H(w) C H(H]) = HI. We conclude that H = A.
O

51 (Simultaneous inductive definitions.) Suppose that II, A : p(A) x p(A) — p(A) are monotone
operators in the sense that if X7,Y7,X5,Y5 C A are such that X; € X5 and Y7 C Y5, then
II(X1,Y1) C II( X2, Ys) (and similarly for A). Show that K, L exist such that

1. II(K,L) c K, A(K,L) C L; in fact, II(K, L) = K, A(K,L) = L,
2. if II(X,Y) C X and A(X,Y) CY,then K C X and L CY.

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.

Solution.

Consider the operator H : p(AxA) — p(AxA) defined by H(Z) = (71 [Z], ma[Z]) x A(m1[Z], w2 Z])
(where, as usual, m; and 72 denote the projection onto the first and second coordinates).

H is monotone: assume that Z C Z' C (A x A). Then m[Z] C m[Z'] and m2[Z] C 72[Z']. So by
our assumption for II, II(m[Z], m2[Z]) C H(m1[Z’], m2[Z']), and analogous for A. Tt follows that
H(Z) c H(Z").

Since H is monotone, it has a least fixed point HT. Setting K = 71[H]], L = m2[H]], we have that
Hl = H(H) =II(K,L) x A(K,L), so K = m[Hl| = II(K,L) and L = my[H] = A(K,L) (and
Hi=K x L).

For the second part, assume that for X, ¥ C A, II(X,Y) C X and A(X,Y) CY. Then H(XxY) =
II(X,Y) x A(X,Y)C X xY, and hence K x L = HC X x Y. Therefore K C X and L C Y.






