Solutions to Exercises

Chapter 3

20 Show that ω is transitive.
Solution. We prove by induction on n that for all $n \in \omega, n \subset \omega$. For $n=0$ this holds trivially. For $n \in \omega$, if $n \subset \omega$, then $S(n)=n \cup\{n\} \subset \omega$.
22. Are the following (always) true?

1. If every $x \in A$ is transitive, then so is $\bigcup A$.
2. If A is transitive, then so is $\bigcup A$.
3. If $\bigcup A$ is transitive, then so is A.
4. If A is transitive, then so is $\wp(A)$.
5. If $\wp(A)$ is transitive, then so is A.

Solution.

1. True. If $x \in y \in \bigcup A$, then some $z \in A$ exists s.t. $y \in z$. Since z is transitive, $x \in z$; and so $x \in \bigcup A$.
2. True. If $y \in \bigcup A$, then some $z \in A$ exists s.t. $y \in z$. Since A is transitive, $y \in A$, and so $y \subset \bigcup A$.
3. False. Consider $A:=\{\{\emptyset\}\}$ (this is the simplest counter-example).
4. True. If $x \in y \in \wp(A)$, then $y \subset A$ and $x \in A$. Since A is transitive, $x \subset A$, and so $x \in \wp(A)$.
5. True. If $y \in A$, then since $A \in \wp(A)$ and $\wp(A)$ is transitive, $y \in \wp(A)$. and so $y \subset A$.

27 Show: $\exists n \in \omega \Psi(n) \Rightarrow \exists n \in \omega[\Psi(n) \wedge \forall m<n \neg \Psi(m)]$.
Solution. This statement is equivalent to $\forall n[\forall m<n \neg \Psi(m) \Rightarrow \neg \Psi(n)] \Rightarrow \forall n \neg \Psi(n)$, which is Strong Induction applied to $\neg \Psi(n)$.
28 Define the property Z by: $Z(x) \equiv_{\text {def }}$ there is no function f defined on ω such that (i) $f(0)=x$ and (ii) for all $n \in \omega: f(n+1) \in f(n)$. Show that the class $\mathcal{Z}={ }_{\operatorname{def}}\{x \mid Z(x)\}$ is not a set, and that for every set A : $\{x \in A \mid Z(x)\} \notin A$.
Solution. Both statements follow from the proposition that for any class $C,\{x \in C \mid Z(x)\} \notin C$. So let C be a class, and assume that $X=\{x \in C \mid Z(x)\} \in C$. Note that the property Z is such that $\forall x[Z(x) \Leftrightarrow \forall y \in x Z(y)]$. X is a set since $X \in C$, and therefore $Z(X)$. It follows that $X \in X$. But then we can show that $\neg Z(X)$ by defining f on ω with $f(n)=X$ for all n, a contradiction.

33 Give an adequate definition of natural number that is not based on the Infinity Axiom.
Solution. The natural numbers are exactly the sets n such that for all X, if $0 \in X$ and $\forall m \in$ $n(m \in X \Rightarrow \mathrm{~S}(m) \in X)$, then $n \in X$. That the natural numbers satisfy this property follows from Exercise 32: that no other sets satisfy this property can be demonstrated by taking $X=\omega$.

