Hints for Exercises

Chapter 7

163. Show that L is absolute w.r.t. every transitive collection that contains all ordinals and satisfies sufficiently many ZF axioms.

Hint.

Let Σ be the ZF-axioms needed to prove that $\forall \alpha \in \mathrm{OR} \exists y \mathcal{L}(\alpha, y)$ where $\mathcal{L}(\alpha, y)$ is a Σ_1 -formula that, relative to ZF, amounts to $y = \mathrm{L}_{\alpha}$. Show that if K is transitive, $\mathrm{OR} \subset K$, and K satisfies Σ , then for all α , $\mathrm{L}_{\alpha}^K = \mathrm{L}_{\alpha}$.

166. Define $A^{<\omega} = \{f \mid f \text{ is a finite function s.t. } \operatorname{Dom}(f) \subset \omega \land \operatorname{Ran}(f) \subset A\}$. Show that the formula $X = A^{<\omega}$ is $\Sigma_1^{\operatorname{ZF}}$.

Hint.

Note that $A^{<\omega}$ is the smallest collection of functions such that $\emptyset \in A^{\omega}$ and if $g \in A^{<\omega}$ then g extended with 1 entry is $\in A^{\omega}$. You need the existential quantifier to introduce ω .

174. Show: (if $A \neq \emptyset$, then) Def(A) contains all finite subsets of A.

Hint.

Define formulas^{*} ϕ_n inductively such that $D(A, \neg \phi_n, f) = \{f(\ulcorner1\urcorner), \dots, f(\ulcornern\urcorner)\}.$

178. Suppose that (A, <) is a wellordering and $f : A \to B$ a surjection. Define the relation \prec on B by $x \prec y \equiv$ the <-first element of $f^{-1}(x)$ is <-smaller than the <-first element of $f^{-1}(y)$. Then \prec wellorders B. *Hint.*

Embed (B, \prec) into (A, <).

186. Show that the formula $x =_1 y$ (which is Σ_1^{ZF}) is not Π_1^{ZF} (unless ZF is inconsistent). *Hint.*

As before (Exercise 140), but now you can explicitly construct the countermodel.

197.

- 1. Assume that a set A exists such that (A, \in) is a model of all ZF-axioms (considered as a certain subset of FORM). Show:
 - (a) There is such a set A that is transitive.
 - (b) There is such a set A that has the form L_{α} , where $\alpha < \omega_1$.
- 2. Assume that α is the least ordinal such that (L_{α}, \in) is a ZF-model. Show that if A is a transitive set such that (A, \in) is a ZF-model, then $\alpha \subset A$, and (hence) $L_{\alpha} \subset A$.

Hint.

- 1. Use Downward Löwenstein-Skolem-Tarski Theorem, Mostowski's Collapsing Lemma (see Exercise 67, and note that \in is well-founded on (A, \in)) and the Condensation Lemma (Corollary 7.32) to find L_{α} .
- 2. Show that $\mathbf{L}^A = \mathbf{L}_\beta$ for some $\beta \geq \alpha$.