Hints for Exercises

Chapter 7

140 Show that the following are Π_1^{ZF} or Π_1^{ZFC} . *Hint.*

- 1. $y = \wp(x)$
- 2. $x <_1 y$: use $x <_1 y \Leftrightarrow _{\text{ZFC}} \neg (y \leqslant_1 x)$.
- 3. α is an initial number: note that this is a condition on all $\beta < \alpha$.
- 4. $\gamma < cf(\alpha)$: compare γ to all cofinal subsets of α .
- 5. α is regular: note that this is a condition on all $\beta < \alpha$.

What about the following?

- 1. $x \leq_1 y$: describe a countermodel K such that $K \models y <_1 x$ but $x =_1 y$. The last is best achieved by taking K countable. For the actual construction of such a model, see Exercise 186.
- 2. $x =_1 y$: see (1)
- 3. $\alpha = \omega_1$: describe a countermodel K such that $\omega_1^K \neq \omega_1$. The actual construction of such a model is beyond the scope of these exercises.
- 4. $\beta = cf(\alpha)$: see (1), possibly with minor modifications.
- 5. " α is weakly inaccessible": rewrite it as a combination of known Π_1^{ZF} properties.

142 Every L_{α} is transitive. **L** is transitive.

Hint.

Induction w.r.t. α . For the successor step, show that if $y \in A$ and $y \subset A$, then $y \in \text{Def}(A)$.

150

- 1. For $a \in \mathbf{L}$, if $\mathbf{L} \cap \wp(a) \subset \mathbf{L}_{\alpha}$, then $\mathbf{L} \cap \wp(a) \in \mathbf{L}_{\alpha+1}$.
- 2. If $a \in \mathbf{L}$, then $\mathbf{L} \cap \wp(a) \in \mathbf{L}$.
- 3. Thus, the Powerset Axiom holds in L.

Hint.

- 2. Define the operation $h : \mathbf{L} \to OR$ by h(x) = "the least ξ such that $x \in L_{\xi}$ " to construct an α satisfying the conditions of (1).
- 3. Show $b \in \mathbf{L} \cap \wp(a) \Leftrightarrow (b \subset a)^{\mathbf{L}}$ for $a, b \in \mathbf{L}$.

152 Show that Collection holds in L.

Hint.

Define an operation $h : a \to OR$ as in the previous exercise, to construct an α such that L_{α} witnesses the Collection Axiom.

157 Prove Lemma 7.28:

- 1. The intersection of two clubs is a club,
- 2. if each C_x (for every element x of a set a) is club, then so is $\bigcap_{x \in a} C_x$,

3. if each
$$C_{\xi}$$
 ($\xi \in OR$) is club, then so is $\left\{ \alpha \in OR \mid \alpha \in \bigcap_{\xi < \alpha} C_{\xi} \right\}$.

Hint.

- 1. This is a special case of (ii).
- 2. To show that $\bigcap_{x \in a} C_x$ is unbounded, let $\alpha \in OR$, construct a monotone nondecreasing sequence $\alpha_{i \in \omega}$ with $\alpha_0 = \alpha$, such that $\alpha' = \bigcup_{n \in \omega} \alpha_n \in C_x$ for all $x \in a$. Note that you will have to differentiate between the cases that α' is a limit ordinal and that for some $n \in \omega$, $\forall m \ge n(\alpha' = \alpha_m)$.
- 3. To show that $C = \left\{ \alpha \in \mathrm{OR} \mid \alpha \in \bigcap_{\xi < \alpha} C_{\xi} \right\}$ is unbounded, let $\alpha \in \mathrm{OR}$, and use (2) to construct a monotone nondecreasing sequence $\alpha_{i \in \omega}$ with $\alpha_0 = \alpha$ such that $\alpha' = \bigcup_{n \in \omega} \alpha_n \in C_{\xi}$ for all $\xi < \alpha'$.

159. Show that, in the reflection principle, $\{\alpha \mid A_{\alpha} \prec_{\Sigma} A\}$ is closed. *Hint.*

Assume that $C_{\Sigma} = \{\xi \in \text{OR} \mid A_{\xi} \prec_{\Sigma} A\}$ is unbounded in the limit ordinal α . Show that, for $\Phi \in \Sigma$, the equivalence $\Phi^{A_{\alpha}} \leftrightarrow \Phi^{A}$ holds on parameters from A_{α} . Use induction w.r.t. the number of logical symbols in Φ , in conjunction with the observation that for any parameters $\vec{a} \in A_{\alpha}$, there exist $\xi < \alpha$ such that $\xi \in C_{\Sigma}$ and $\vec{a} \in A_{\xi}$.

160. Suppose that the initial λ is strongly inaccessible (Definition 6.24 p. 50). Show that $\alpha < \lambda$ exists such that $V_{\alpha} \prec V_{\lambda}$. Show that the smallest such α has $cf(\alpha) = \omega$. *Hint.*

Let α be the supremum of the (countably many) least ordinals α_{Σ} such that $V_{\alpha_{\Sigma}} \prec_{\Sigma} V_{\lambda}$, where Σ ranges over all finite subformula-closed sets of formulas (implicitly using the apparatus from Section 7.6). Show that for all Σ , $C_{\Sigma} = \{\xi \mid V_{\xi} \prec_{\Sigma} V_{\lambda}\}$ contains α , and hence $V_{\alpha} \prec V_{\lambda}$. Then show that for all Σ , $V_{\alpha_{\Sigma}} \not\prec V_{\lambda}$ and hence $\alpha_{\Sigma} < \alpha$.