
Hints for Exercises

Chapter 7

125. Recall (Exercise 16 p. 12 and Theorem 4.18 p. 34) that (G is the least class such that)
℘(G) = G. Show, in ZF minus Foundation:

1. If K is a class such that ℘(K) = K, then every ZF axiom —with the possible exception of
Foundation— holds in K.

2. Foundation is true in G.

Thus, G is an inner model for ZF including Foundation in ZF minus Foundation. Therefore, if
the latter theory is consistent, then so is the former.

Hints.

1. Note that K is a transitive inner model, so for most axioms it suffices to show that the set
whose existence is postulated by the axiom is in K. For Separation and Substitution you
have to be careful to use ΦK and ΨK rather than Φ and Ψ.

2. Assume a ∈ G, and apply the defining condition of G to a ∪ {a}.

127 Show that the following ZF axioms cannot be deduced from the others (modulo a consistency
assumption):

1. Infinity,

2. Powerset,

3. Substitution (e.g., existence of ω + ω is unprovable),

4. Sumsets.

Hints. We construct a transitive inner model in which all the axioms of ZF hold except one we
single out.

1. Consider the class K1 = {x∈G | ∀y∈∗ {x}[y is finite]} of hereditary finite sets.

2. Consider, for any cardinal ℵα, the class K2 = {x ∈G | ∀y ∈∗ {x}[|y| 6 ℵα]} of hereditary
ℵα-cardinality sets.

3. Consider, for any accessible limit ordinal α > ω (and in particular, for α = ω+ω), the class
K3 = Vα.

4. For any strong limit cardinal ℵα (for instance, ℵω under GCH) consider the class K4 = {x∈
G | ∀y∈∗ {x} : [|y| < ℵα]} of hereditary cardinality-less-than-ℵα sets.

134 Prove a few items of Lemma 7.12: give bounded formulas expressing the properties mentioned.
Hints.

You can use formulas you defined before. But be careful: if you gave a bounded formula for (for
instance) b = ℘(a), that does not mean you can simply use ∀x ∈ ℘(a) . . ., as that evaluates to the
unbounded formula ∃y(y = ℘(a) ∧ ∀x ∈ y . . .). Instead, try to find some other set z relating to
what you want to express such that you can write ∀x ∈ z(x ⊂ a→ . . .).



5. x = 0, x = 1, x = 2, x = 3,. . . : use an inductive definition, i.e. for x = n+1, give a formula
which uses the (already defined) formula for x = n.

6. x = V0, x = V1, x = V2, x = V3,. . . : use an inductive definition, i.e. for x = Vn+1, give a
formula which uses the (already defined) formula for x = Vn.

8. x∈OR: see Exercise 130.

9. “α is a limit ordinal”: rewrite it as “α is a non-zero, non-successor ordinal”.

10. x ∈ ω, x = ω: use that ω is the lowest limit ordinal.

12. z = (x, y): use that if z = {u, v}, then we can find these u, v by quantifying over z.

13. p is an ordered pair: use that if p = (x, y), then we can find these x, y by quantifying over
the elements of the elements of p.

15. f is an sur-/bijection: add “from X onto Y ”, otherwise the question is meaningless. Use
the Domain and Range formula from the next item

16. X = Dom(f), Y = Ran(f): express ⊂ and ⊃ separately.

g = f |A: this is actually simpler if you do not use the Domain formula. Note that g ⊂ f .

136

1. Decide which ZF Axioms/Axiom schemas hold in Vω, and which are false.

2. Same question for Vω+ω.

3. Same question for Vω1
.

4. Obtain some relative consistency results from 1–3.

5. What about the truth of Theorem 4.10 (p. 29) (every well-ordering has a type) in the above
models?

6. Suppose that Theorem 4.10 holds in Vα and α > ω. Can you give lower bounds for α? And
if AC holds in Vα?

Hints.

See also exercise 127.

3. Note that Vω+4 contains the well-ordering of all well-orderings (modulo order-isomorphism)
of ω.

4. If ZF is consistent, then so are . . . .

5. In Vω, every set is finite. In Vω+ω and Vω1
, we have the aforementioned set of all well-

orderings of ω.

6. Show by induction on β that for all β, Vω+4·β+1 contains a well-ordering of type ωβ , and
that this implies that ωα = α. Construct the lowest α satisfying this condition.

With AC, show that α = |Vα|, and show that for any α satisfying this condition, Vα satisfies
Theorem 4.10. Construct the lowest α satisfying this condition.


