Hints for Exercises

Chapter 6

111. (AC) Suppose that p, q, r, s are cardinals such that p < q and r < s. Show that p + r < q + s. *Hint.*

Use Lemma 6.8.

114. Prove Lemma 6.22:

1.
$$\aleph_{\alpha}^{\mathrm{cf}(\aleph_{\alpha})} > \aleph_{\alpha},$$

2.
$$\operatorname{cf}(2^{\aleph_{\alpha}}) > \aleph_{\alpha}$$
.

Hint. Use Theorem 6.15.

116. (Hausdorff) Prove that $\aleph_{\alpha+1}^{\aleph_{\beta}} = \aleph_{\alpha}^{\aleph_{\beta}} \cdot \aleph_{\alpha+1}$. *Hint.* Distinguish as to whether \aleph_{β} is $< \text{ or } \ge \text{ than } \aleph_{\alpha+1}$.

120. Show: if κ is a strongly inaccesible initial number, then

- 1. $\beta < \kappa \implies V_{\beta} <_1 \kappa$,
- 2. $V_{\kappa} =_1 \kappa$,
- 3. (V_{κ}, \in) satisfies all ZFC Axioms,

4. if κ is the *least* strong inaccessible, then $(V_{\kappa}, \in) \models$ "there is no strong inaccessible".

Hint.

- 1. Straightforward by induction on β .
- 2. Use $|V_{\kappa}| = |\bigcup_{\beta < \kappa} V_{\beta}| \le \sum_{\beta < \kappa} |V_{\beta}|.$
- 3. To show that V_{κ} satisfies Substitution, show that for any $a \in V_{\kappa}$ and any operator F with $F[a] \subset V_{\kappa}$, $\rho(F[a]) < \kappa$. The other axioms are straightforward for any limit ordinal.
- 4. You may assume that for any 'bound' formula ϕ (where all quantifiers are of the form $\exists x \in y$ or $\forall x \in y$) and any $\vec{x} \in V_{\kappa}$, $(V_{\kappa} \models \phi(\vec{x}) \Leftrightarrow \phi(\vec{x})$. Show that if $\alpha < \kappa$ does not satisfy one of the conditions for being strongly inaccessible, then there exists a 'witness' for this in V_{κ} , and hence α fails this same condition in V_{κ} .

122.

- 1. Suppose that $X \subset \alpha$ is cofinal in α . Show that α has a cofinal subset Y of type $cf(\alpha)$ such that $Y \subset X$.
- 2. Show: if α and β have cofinal subsets of the same type, then $cf(\alpha) = cf(\beta)$.
- 3. Show: if α is a limit, then $cf(\omega_{\alpha}) = cf(\alpha)$.

Hint.

1. Suppose that $f : cf(\alpha) \to \alpha$ has Ran(f) cofinal in α . Define $g : cf(\alpha) \to X$ by $g(\xi) = \bigcap \{\delta \in X \mid f(\xi) \le \delta\}$, and apply Lemma 6.26.

- 2. Use that a cofinal subset of a cofinal subset is a cofinal subset.
- 3. Show that ω_{α} and α have cofinal subsets of the same type.