Hints for Exercises

Chapter 4

98 Show: every initial is critical for addition, multiplication and exponentiation.

Hint. For all $\beta, \gamma < \omega_{\alpha}$, if $\alpha > 0$, then for some $\alpha' < \alpha$, $\beta, \gamma \leqslant_1 \omega_{\alpha'}$. Therefore it suffices to show that for all initials $\omega_{\alpha'}$ and all $\beta, \gamma \leqslant_1 \omega_{\alpha'}$, $\beta + \gamma$, $\beta \cdot \gamma$ and $\beta^{\gamma} \leqslant_1 \omega_{\alpha'}$. This follows by induction on γ , using Corollary 4.35.

99 Show:

- 1. < well-orders $OR \times OR$,
- 2. every product $\gamma \times \gamma$ is an initial segment (if $(\alpha, \beta) < (\alpha', \beta') \in \gamma \times \gamma$, then $(\alpha, \beta) \in \gamma \times \gamma$),
- 3. the product $\omega \times \omega$ is well-ordered in type ω ,
- 4. every product $\omega_{\alpha} \times \omega_{\alpha}$ ($\alpha > 0$) is well-ordered in type ω_{α} .

Hint

- 1. Let $K \subset OR \times OR$ be a class. In order, pick $\gamma = \max(\alpha, \beta)$, α and β using the wellfoundedness of OR, such that (α, β) is <-minimal in K.
- 3 Use Theorem 4.13 to show the existence of a unique order-preserving map $\Gamma: OR \times OR \Rightarrow OR$, and use that to show that if $\Gamma(\omega, \omega) > \omega$, then $\Gamma(n, m) = \omega$ for some finite n, m. Derive a contradiction.
- 4 Show that if equality doesn't hold for ω_{α} , then $\Gamma(\beta, \gamma) = \omega_{\alpha}$ for some $\beta, \gamma \leqslant_1 \omega_{\alpha'} < \omega_{\alpha}$, and apply induction on α .

Chapter 5

101

- 1. Assume AC. Prove DC: if the set A is non-empty and the relation $R \subset A^2$ is such that $\forall a \in A \exists b \in A(aRb)$, then a function $f : \omega \to A$ exists such that for all $n \in \omega$, f(n)Rf(n+1).
- 2. Show the version of DC where A can be a proper class and $R \subset A^2$ is also provable from AC. (Use Foundation.)
- 3. Show that a relation \prec is well-founded (every non-empty set has a \prec -minimal element) iff there is no function f on ω such that for all $n \in \omega$, $f(n+1) \prec f(n)$.

Hint.

- 1. Given a choice function j for $\wp(A)$, define f recursively.
- 2. Using the Bottom operator of Definition 4.21, construct a set $A' \subset A$ satisfying $\forall a \in A' \exists b \in A'(aRb)$.

103 (AC) Show: if A is infinite, then $\omega \leq_1 A$.

Show without AC that: if A is infinite, then $\omega \leqslant_1 \wp(\wp(A))$.

Hint

- (i) Define $f:\omega\to A$ recursively in such a way that you can prove inductively that for all $n,\,f|n$ is an injection.
- (ii) Show by induction on n that for all n, $\{B \subset A \mid |B| = n\}$ is nonempty.

105 Show that the following are equivalent for every two sets A and B:

- 1. $A <_1 B$, i.e.: there is no bijection : $A \to B$ and $A \leqslant_1 B$,
- 2. there is no surjection : $A \to B$ and $A \leqslant_1 B$,
- 3. there is no surjection : $A \to B$ and $B \neq \emptyset$.

For which of the six implications do you need AC?

Hint. $2 \Rightarrow 1$ and $2 \Rightarrow 3$ are trivial. For $1 \Rightarrow 2$ you can use Theorem 6.6. To prove $\neg 1 \Rightarrow \neg 3$, use AC to construct a surjection $A \to B$ if $A \not<_1 B$ and $B \neq \emptyset$.

108 The Teichmüller-Tukey Lemma is the following statement.

Suppose that $\emptyset \neq A \subset \wp(X)$, and for all $Y \subset X$, Y is in A iff every finite subset of Y is in A. Then A has a (\subset -) maximal element.

Show that this is equivalent with Zorn's Lemma.

Hint.

 $Zorn \Rightarrow TT$:

Show that if A is as in the TT Lemma, then it is closed under unions of \subset -chains.

 $TT \Rightarrow Zorn$:

Assume that (X, \preceq) is a partial ordering, let A be the set of (by \preceq) linearly ordered subsets of X, and show that A satisfies the conditions of the TT Lemma.