Hints for Exercises

Chapter 4

98 Show: every initial is critical for addition, multiplication and exponentiation.
Hint. For all $\beta, \gamma<\omega_{\alpha}$, if $\alpha>0$, then for some $\alpha^{\prime}<\alpha, \beta, \gamma \leqslant 1 \omega_{\alpha^{\prime}}$. Therefore it suffices to show that for all initials $\omega_{\alpha^{\prime}}$ and all $\beta, \gamma \leqslant 1 \omega_{\alpha^{\prime}}, \beta+\gamma, \beta \cdot \gamma$ and $\beta^{\gamma} \leqslant 1 \omega_{\alpha^{\prime}}$. This follows by induction on γ, using Corollary 4.35.

99 Show:

1. $<$ well-orders $\mathrm{OR} \times \mathrm{OR}$,
2. every product $\gamma \times \gamma$ is an initial segment
(if $(\alpha, \beta)<\left(\alpha^{\prime}, \beta^{\prime}\right) \in \gamma \times \gamma$, then $(\alpha, \beta) \in \gamma \times \gamma$),
3. the product $\omega \times \omega$ is well-ordered in type ω,
4. every product $\omega_{\alpha} \times \omega_{\alpha}(\alpha>0)$ is well-ordered in type ω_{α}.

Hint

1. Let $K \subset \mathrm{OR} \times \mathrm{OR}$ be a class. In order, pick $\gamma=\max (\alpha, \beta), \alpha$ and β using the wellfoundedness of OR, such that (α, β) is $<-$ minimal in K.
3 Use Theorem 4.13 to show the existence of a unique order-preserving map $\Gamma: \mathrm{OR} \times \mathrm{OR} \Rightarrow$ OR, and use that to show that if $\Gamma(\omega, \omega)>\omega$, then $\Gamma(n, m)=\omega$ for some finite n, m. Derive a contradiction.

4 Show that if equality doesn't hold for ω_{α}, then $\Gamma(\beta, \gamma)=\omega_{\alpha}$ for some $\beta, \gamma \leqslant 1 \omega_{\alpha^{\prime}}<\omega_{\alpha}$, and apply induction on α.

Chapter 5

101

1. Assume AC. Prove DC: if the set A is non-empty and the relation $R \subset A^{2}$ is such that $\forall a \in A \exists b \in A(a R b)$, then a function $f: \omega \rightarrow A$ exists such that for all $n \in \omega, f(n) R f(n+1)$.
2. Show the version of DC where A can be a proper class and $R \subset A^{2}$ is also provable from AC. (Use Foundation.)
3. Show that a relation \prec is well-founded (every non-empty set has a \prec-minimal element) iff there is no function f on ω such that for all $n \in \omega, f(n+1) \prec f(n)$.

Hint.

1. Given a choice function j for $\wp(A)$, define f recursively.
2. Using the Bottom operator of Definition 4.21, construct a set $A^{\prime} \subset A$ satisfying $\forall a \in A^{\prime} \exists b \in$ $A^{\prime}(a R b)$.

103 (AC) Show: if A is infinite, then $\omega \leqslant_{1} A$.
Show without AC that: if A is infinite, then $\omega \leqslant 1 \wp(\wp(A))$.
Hint.
(i) Define $f: \omega \rightarrow A$ recursively in such a way that you can prove inductively that for all $n, f \mid n$ is an injection.
(ii) Show by induction on n that for all $n,\{B \subset A| | B \mid=n\}$ is nonempty.

105 Show that the following are equivalent for every two sets A and B :

1. $A<_{1} B$, i.e.: there is no bijection : $A \rightarrow B$ and $A \leqslant_{1} B$,
2. there is no surjection : $A \rightarrow B$ and $A \leqslant_{1} B$,
3. there is no surjection : $A \rightarrow B$ and $B \neq \emptyset$.

For which of the six implications do you need AC?
Hint. $2 \Rightarrow 1$ and $2 \Rightarrow 3$ are trivial. For $1 \Rightarrow 2$ you can use Theorem 6.6. To prove $\neg 1 \Rightarrow \neg 3$, use AC to construct a surjection $A \rightarrow B$ if $A \nless_{1} B$ and $B \neq \emptyset$.

108 The Teichmüller-Tukey Lemma is the following statement.
Suppose that $\emptyset \neq A \subset \wp(X)$, and for all $Y \subset X, Y$ is in A iff every finite subset of Y is in A. Then A has a ($\subset-$) maximal element.
Show that this is equivalent with Zorn's Lemma.
Hint.
Zorn \Rightarrow TT:
Show that if A is as in the TT Lemma, then it is closed under unions of \subset-chains.
TT \Rightarrow Zorn:
Assume that (X, \preceq) is a partial ordering, let A be the set of (by \preceq) linearly ordered subsets of X, and show that A satisfies the conditions of the TT Lemma.

