Hints for Exercises

Chapter 4

75. Show:
76. Every V_{α} is transitive,
77. $x \subset y \in \mathrm{~V}_{\alpha} \Rightarrow x \in \mathrm{~V}_{\alpha}$,
78. $\alpha<\beta \Rightarrow \mathrm{V}_{\alpha} \in \mathrm{V}_{\beta} ; \alpha \leq \beta \Rightarrow \mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta}$,
79. $\alpha \subset \mathrm{V}_{\alpha} ; \alpha \notin \mathrm{V}_{\alpha} ; \alpha=\mathrm{OR} \cap \mathrm{V}_{\alpha}$,
80. $\mathrm{OR} \cap\left(\mathrm{V}_{\alpha+1}-\mathrm{V}_{\alpha}\right)=\{\alpha\}$.

Hints

1. Use transfinite induction and Exercise 22.

3 Use transfinite induction on β and the transitivity of V_{β} to show that $\mathrm{V}_{\alpha} \subset \mathrm{V}_{\beta}$ for $\alpha \leq \beta$. The other statement follows as a consequence.

4 Use transfinite induction to prove the third statement: the other two follow as consequences.
76 Show:

1. $\rho(\alpha)=\rho\left(\mathrm{V}_{\alpha}\right)=\alpha$,
2. $\mathrm{V}_{\alpha}=\{a \mid \rho(a)<\alpha\} ; a \in b \Rightarrow \rho(a)<\rho(b)$,
3. $\rho(a)=\bigcup\{\rho(b)+1 \mid b \in a\}=\{\rho(b) \mid b \in \mathrm{TC}(a)\}$
4. express $\rho(a \cup b), \rho(\bigcup a), \rho(\wp(a)), \rho(\{a\}), \rho((a, b))$ and $\rho(\mathrm{TC}(a))$ in terms of $\rho(a)$ and $\rho(b)$.

Hints

1. Use Lemma 4.17.
2. Use Lemma 4.17, and the property that if $a \in \mathrm{~V}_{\alpha}$, then $a \subset \mathrm{~V}_{\beta}$ for some $\beta<\alpha$.
3. The first statement can be proved by direct rewriting of the condition $a \subset \mathrm{~V}_{\alpha}$, the second follows from this by \in-induction.

78 Assuming the Foundation Axiom, prove the Collection Principle:
$\forall x \in a \exists y \Phi(x, y) \Rightarrow \exists b \forall x \in a \exists y \in b \Phi(x, y)$ (b not free in Φ).
Hint
Use the Bottom operator on $\{y \mid \Phi(x, y)\}$.
85 Show that the function $h: \mathrm{V}_{\omega} \rightarrow \mathbb{N}$ recursively defined by

$$
h(x)=\sum_{y \in x} 2^{h(y)}
$$

is a bijection.

Hint

Define $i: \mathbb{N} \rightarrow \mathrm{V}_{\omega}$ recursively by setting, for all n,

$$
i(n)=\{i(m) \mid \text { the } m \text {-th least significant bit of } n \text { is } 1\}
$$

and show that h and i are each other's inverse.
91 Prove Lemma 4.30:

1. every ω_{α} is an initial,
2. every initial has the form ω_{α},
3. $\alpha<\beta \Rightarrow \omega_{\alpha}<\omega_{\beta}$.

Hints.
1 Straight from definition and Lemma 4.28.
2 Let β be an initial, and let α^{\prime} be the least ordinal such that $\beta<\omega_{\alpha^{\prime}}$. Show that $\alpha^{\prime}=\alpha+1$ and $\beta=\omega_{\alpha}$.

3 Transfinite induction on β.

93 Let $\alpha \in$ OR be arbitrary. Recursively define $\alpha_{0}=\alpha$ and $\alpha_{n+1}=\omega_{\alpha_{n}}$. Put $\beta:=\bigcup_{n} \alpha_{n}$. Show: β is the least ordinal $\gamma \geqslant \alpha$ for which $\omega_{\gamma}=\gamma$.
Hint
If $\alpha<\omega_{\alpha}$, then $\left(\alpha_{n}\right)_{n}$ is strictly increasing. Using this show that β is a limit and rewrite ω_{β} to show that $\omega_{\beta}=\beta$. Then prove that β is the least such ordinal.

95 For $\alpha \geqslant \omega$, the following are equivalent:

1. α is critical for $+; 2 . \beta<\alpha \Rightarrow \beta+\alpha=\alpha ; 3$. $\exists \xi\left(\alpha=\omega^{\xi}\right)$.

Hint
$\neg(3) \Rightarrow \neg(2)$: First show that for all $\alpha>0$ there exists a ξ such that $\omega^{\xi} \leq \alpha<\omega^{\xi+1}$. Then show that if $\alpha \neq \omega^{\xi}$, then $\omega^{\xi}+\alpha>\alpha$ (falsifying (2)).
$(3) \Rightarrow(1)$: Show that if $\alpha=\omega^{\xi}$ and $\beta, \gamma<\alpha$, then there exist $\xi^{\prime}<\xi$ and $n \in \omega$ such that $\beta, \gamma<\omega^{\xi^{\prime}} \cdot n$.

