Hints for Exercises

Chapter 4

75. Show:

- 1. Every V_{α} is transitive,
- 2. $x \subset y \in V_{\alpha} \Rightarrow x \in V_{\alpha}$,
- 3. $\alpha < \beta \implies V_{\alpha} \in V_{\beta}; \alpha \leq \beta \implies V_{\alpha} \subset V_{\beta},$
- 4. $\alpha \subset V_{\alpha}$; $\alpha \notin V_{\alpha}$; $\alpha = OR \cap V_{\alpha}$,
- 5. OR \cap (V_{α +1} V_{α}) = { α }.

Hints

- 1. Use transfinite induction and Exercise 22.
- 3 Use transfinite induction on β and the transitivity of V_{β} to show that $V_{\alpha} \subset V_{\beta}$ for $\alpha \leq \beta$. The other statement follows as a consequence.
- 4 Use transfinite induction to prove the third statement: the other two follow as consequences.

76 Show:

- 1. $\rho(\alpha) = \rho(V_{\alpha}) = \alpha$,
- 2. $V_{\alpha} = \{a \mid \rho(a) < \alpha\}; a \in b \Rightarrow \rho(a) < \rho(b),$
- 3. $\rho(a) = \bigcup \{ \rho(b) + 1 \mid b \in a \} = \{ \rho(b) \mid b \in \mathrm{TC}(a) \}$
- 4. express $\rho(a \cup b)$, $\rho(\bigcup a)$, $\rho(\wp(a))$, $\rho(\{a\})$, $\rho((a, b))$ and $\rho(\operatorname{TC}(a))$ in terms of $\rho(a)$ and $\rho(b)$.

Hints

- 1. Use Lemma 4.17.
- 2. Use Lemma 4.17, and the property that if $a \in V_{\alpha}$, then $a \subset V_{\beta}$ for some $\beta < \alpha$.
- 3. The first statement can be proved by direct rewriting of the condition $a \subset V_{\alpha}$, the second follows from this by \in -induction.

78 Assuming the Foundation Axiom, prove the Collection Principle: $\forall x \in a \exists y \Phi(x, y) \Rightarrow \exists b \forall x \in a \exists y \in b \Phi(x, y) (b \text{ not free in } \Phi).$ *Hint*

Use the Bottom operator on $\{y \mid \Phi(x, y)\}$.

85 Show that the function $h: \mathcal{V}_{\omega} \to \mathbb{N}$ recursively defined by

$$h(x) = \sum_{y \in x} 2^{h(y)}$$

is a bijection.

Hint Define $i : \mathbb{N} \to \mathcal{V}_{\omega}$ recursively by setting, for all n,

 $i(n) = \{i(m) \mid \text{the } m\text{-th least significant bit of } n \text{ is } 1\}$

and show that h and i are each other's inverse.

91 Prove Lemma 4.30:

1. every ω_{α} is an initial,

2. every initial has the form ω_{α} ,

3. $\alpha < \beta \Rightarrow \omega_{\alpha} < \omega_{\beta}$.

Hints.

- 1 Straight from definition and Lemma 4.28.
- 2 Let β be an initial, and let α' be the least ordinal such that $\beta < \omega_{\alpha'}$. Show that $\alpha' = \alpha + 1$ and $\beta = \omega_{\alpha}$.
- 3 Transfinite induction on β .

93 Let $\alpha \in OR$ be arbitrary. Recursively define $\alpha_0 = \alpha$ and $\alpha_{n+1} = \omega_{\alpha_n}$. Put $\beta := \bigcup_n \alpha_n$. Show: β is the least ordinal $\gamma \ge \alpha$ for which $\omega_{\gamma} = \gamma$. *Hint*

If $\alpha < \omega_{\alpha}$, then $(\alpha_n)_n$ is strictly increasing. Using this show that β is a limit and rewrite ω_{β} to show that $\omega_{\beta} = \beta$. Then prove that β is the *least* such ordinal.

95 For $\alpha \ge \omega$, the following are equivalent:

1. α is critical for +; 2. $\beta < \alpha \Rightarrow \beta + \alpha = \alpha$; 3. $\exists \xi \ (\alpha = \omega^{\xi})$. *Hint*

 $\neg(3) \Rightarrow \neg(2)$: First show that for all $\alpha > 0$ there exists a ξ such that $\omega^{\xi} \leq \alpha < \omega^{\xi+1}$. Then show that if $\alpha \neq \omega^{\xi}$, then $\omega^{\xi} + \alpha > \alpha$ (falsifying (2)).

(3) \Rightarrow (1): Show that if $\alpha = \omega^{\xi}$ and $\beta, \gamma < \alpha$, then there exist $\xi' < \xi$ and $n \in \omega$ such that $\beta, \gamma < \omega^{\xi'} \cdot n$.