Hints to Exercises

Chapter 4

54. Assume that the set a is transitive. Show:

- 1. $a \in \mathbf{G}$ iff \in is well-founded on a,
- 2. $a \subset \mathbf{TR}$ iff \in is transitive on a.

Thus, an ordinal is the same as a transitive set on which \in is a transitive and well-founded relation. (This is the standard definition of the notion.) *Hint.*

1. If $b \ni a$ witnesses $a \notin \mathbf{G}$, show that $a \cap b$ has no \in -minimal element. Find a way to also do this the other way around.

2. Rewrite both as properties of x, y, z with $x \in y \in z \in a$.

58. Show:

- 1. $\alpha \leq \beta \iff \alpha \subset \beta$,
- 2. if K is a non-empty class of ordinals, then $\bigcap K$ is the least element of K,
- 3. if A is a set of ordinals, then $\bigcup A$ is an ordinal that is the sup of A (the least ordinal \geq every $\alpha \in A$).

Hint.

- 1. Use $\alpha \not> \beta \Leftrightarrow \alpha \leq \beta$ for one of the implications.
- 2. Note that transfinite induction implies that K has a least element.
- 3. Show that $\bigcup A$ is an ordinal, and then use (1).

61. Assume that (A, \prec) is a well-ordering and $B \subset A$.

Show that $\operatorname{type}(B, \prec) \leq \operatorname{type}(A, \prec)$.

Hint. Assume otherwise, and construct an order-preserving injection from an ordinal into a lesser ordinal to derive a contradiction.

64. Prove Theorem 4.13: suppose that ε is a well-founded relation on the class **U** such that for all $a \in \mathbf{U}$, $\{b \in \mathbf{U} \mid b \varepsilon a\}$ is a set, then for every operation $H : \mathbf{V} \to \mathbf{V}$ there is a unique operation $F : \mathbf{U} \to \mathbf{V}$ such that for all $a \in \mathbf{U}$:

$$F(a) = H(F | \{ b \in \mathbf{U} \mid b \varepsilon a \}).$$

Hint

Ignore the hint from the syllabus. Use a proof analogous to that of Theorem 4.10, but requiring that a good function f has a domain satisfying $\{b \in \mathbf{U} \mid b \varepsilon a\} \subset \text{Dom}(f)$ for all $a \in \text{Dom}(f)$, and using ε -wellfoundedness instead of transfinite induction to show that good functions agree on their domain. Note that in the given conditions, $\{b \in \mathbf{U}^* \mid b \varepsilon a\}$ is a set for all $a \in \mathbf{U}$.

65. Let $a_0 \in \mathbf{V}$ be a set and $G : \mathbf{V} \to \mathbf{V}$ an operation. Show: there exists a unique operation $F : \mathrm{OR} \to \mathbf{V}$ on OR such that

•
$$F(0) = a_0$$
,

- $F(\alpha + 1) = G(F(\alpha))$,
- for limits γ : $F(\gamma) = \bigcup_{\xi < \gamma} F(\xi)$.

Hint

Applying the Recursion Theorem on OR to a suitable operation H.

70. Show that the single recursion equation $H \uparrow \alpha = \bigcup_{\xi < \alpha} H(H \uparrow \xi)$ defines the same operation as the one defined in Definition 4.14 by three equations. (And, of course, $H \downarrow \alpha = \bigcap_{\xi < \alpha} H(H \downarrow \xi)$ is a single equation defining the greatest fixed point hierarchy — cf. Exercise 72.) *Hint.*

Use that the least fixed point hierarchy is cumulative, i.e. $\alpha < \beta \Rightarrow H \uparrow \alpha \subset H \uparrow \beta$.

72 Let *H* be a monotone operator over a set **U**. The greatest fixed point hierarchy is the sequence $\{H|\alpha\}_{\alpha}$ recursively defined by

- $H\downarrow 0 = \mathbf{U},$
- $H \downarrow (\alpha + 1) = H(H \downarrow \alpha),$
- $H \downarrow \gamma = \bigcap_{\xi < \gamma} H \downarrow \xi$ (for limits γ).

Show that:

- 1. the hierarchy is descending, i.e., that $\alpha < \beta \Rightarrow H \downarrow \beta \subset H \downarrow \alpha$.
- 2. some stage $H \downarrow \alpha_0$ is a fixed point of H.
- 3. $H \downarrow \alpha_0 = \bigcap_{\alpha} H \downarrow \alpha$ is the greatest fixed point of H.

Try to generalize for the case where ${\bf U}$ may be a proper class. *Hint.*

Consider the dual operator H^d from exercise 52.