Hints for Exercises

Chapter 3

36 Prove Lemma 3.19.1–3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1–3. *Hint.* 3. Use induction on n for the stages TC(a, n).

- 4. \supset : note that for all $b \subseteq TC(a)$, $TC(b) \subseteq TC(a)$.
- \subset : show that $a \cup \bigcup_{b \in a} \mathrm{TC}(b)$ is transitive.

39 Show that $x \in TC(a)$ iff $x \in^* a$.

Hint. Show that $xRy \equiv_{\text{def}} x \in y$ and $R^* \equiv_{\text{def}} x \in TC(y)$ satisfy parts 1-3 of Lemma 3.21. Alternatively, define R_n and use induction on n to show that $x \in TC(a, n)$ iff $x \in_n a$.

43 \mathbb{Z} is the set of integers. Define $H : \wp(\mathbb{Z}) \to \wp(\mathbb{Z})$ by $H(X) =_{\text{def}} \{0\} \cup \{S(x) \mid x \in X\}$. Identify the fixed points of H.

Hint. Show that for any fixed point K of H, $-1 \in K$ iff for all $n \in \omega$, $-(1+n) \in K$. Use this to show that H has exactly two fixed points.

44 Prove Theorem 3.27.

Hint. Do not use Theorem 3.24. Show that $n < m \Rightarrow H \upharpoonright n \subset H \upharpoonright m$. Show: if $H(X) \subset X$, then, for all $n, H \upharpoonright n \subset X$. Finally, show that $H(H \upharpoonright \omega) \subset H \upharpoonright \omega$. (For this, you will need the fact that if Y is finite and $Y \subset \bigcup_{n \in \omega} H \upharpoonright n$, then for some $m \in \omega, Y \subset H \upharpoonright m$. This is shown by induction w.r.t. the number of elements of Y, cf. Definition 3.15, p.17.

45 Let $A = \omega \cup \{\omega\}$ and define $H : \wp(A) \to \wp(A)$ by $H(X) = \{0\} \cup \{S(x) \mid x \in X\}$ if $\omega \not\subset X$, and H(X) = A otherwise. Show: H is monotone, H is not finite, $H \uparrow = A$, $\forall n \in \omega H \uparrow n = n$. Thus, $H \uparrow \neq \bigcup_n H \uparrow n$.

Hint. To show that
$$H \uparrow = A$$
, first show that for all $n \in \omega$, $n \in A$.

51 (Simultaneous inductive definitions.) Suppose that $\Pi, \Delta : \wp(A) \times \wp(A) \to \wp(A)$ are monotone operators in the sense that if $X_1, Y_1, X_2, Y_2 \subset A$ are such that $X_1 \subset X_2$ and $Y_1 \subset Y_2$, then $\Pi(X_1, Y_1) \subset \Pi(X_2, Y_2)$ (and similarly for Δ). Show that K, L exist such that

- 1. $\Pi(K,L) \subset K$, $\Delta(K,L) \subset L$; in fact, $\Pi(K,L) = K$, $\Delta(K,L) = L$,
- 2. if $\Pi(X,Y) \subset X$ and $\Delta(X,Y) \subset Y$, then $K \subset X$ and $L \subset Y$.

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.

Hint. Consider the operator $H : \wp(A \times A) \to \wp(A \times A)$ defined by $H(Z) = \Pi(\pi_1[Z], \pi_2[Z]) \times \Delta(\pi_1[Z], \pi_2[Z])$ (where, as usual, π_1 and π_2 denote the projection onto the first and second coordinates). Show that H has a least fixed point of the form $K \times L$, and that K and L satisfy the given conditions.