Hints for Exercises

Chapter 3

36 Prove Lemma 3.19.1-3. Prove Lemma 3.19.4, and do not use 3.18, but use 3.19.1-3.
Hint. 3. Use induction on n for the stages $T C(a, n)$.
4. \supset : note that for all $b \subseteq T C(a), T C(b) \subseteq T C(a)$.
\subset : show that $a \cup \bigcup_{b \in a} \mathrm{TC}(b)$ is transitive.
39 Show that $x \in \mathrm{TC}(a)$ iff $x \in^{\star} a$.
Hint. Show that $x R y \equiv_{\operatorname{def}} x \in y$ and $R^{\star} \equiv_{\operatorname{def}} x \in T C(y)$ satisfy parts 1-3 of Lemma 3.21.
Alternatively, define R_{n} and use induction on n to show that $x \in T C(a, n)$ iff $x \in_{n} a$.
$43 \mathbb{Z}$ is the set of integers. Define $H: \wp(\mathbb{Z}) \rightarrow \wp(\mathbb{Z})$ by $H(X)={ }_{\operatorname{def}}\{0\} \cup\{\mathrm{S}(x) \mid x \in X\}$. Identify the fixed points of H.
Hint. Show that for any fixed point K of $H,-1 \in K$ iff for all $n \in \omega,-(1+n) \in K$. Use this to show that H has exactly two fixed points.

44 Prove Theorem 3.27.
Hint. Do not use Theorem 3.24. Show that $n<m \Rightarrow H \uparrow n \subset H \uparrow m$. Show: if $H(X) \subset X$, then, for all $n, H \uparrow n \subset X$. Finally, show that $H(H \uparrow \omega) \subset H \uparrow \omega$. (For this, you will need the fact that if Y is finite and $Y \subset \bigcup_{n \in \omega} H \uparrow n$, then for some $m \in \omega, Y \subset H \uparrow m$. This is shown by induction w.r.t. the number of elements of Y, cf. Definition 3.15, p.17.
45 Let $A=\omega \cup\{\omega\}$ and define $H: \wp(A) \rightarrow \wp(A)$ by $H(X)=\{0\} \cup\{\mathrm{S}(x) \mid x \in X\}$ if $\omega \not \subset X$, and $H(X)=A$ otherwise. Show: H is monotone, H is not finite, $H \uparrow=A, \forall n \in \omega H \uparrow n=n$. Thus, $H \uparrow \neq \bigcup_{n} H \uparrow n$.
Hint. To show that $H \uparrow=A$, first show that for all $n \in \omega, n \in A$.
51 (Simultaneous inductive definitions.) Suppose that $\Pi, \Delta: \wp(A) \times \wp(A) \rightarrow \wp(A)$ are monotone operators in the sense that if $X_{1}, Y_{1}, X_{2}, Y_{2} \subset A$ are such that $X_{1} \subset X_{2}$ and $Y_{1} \subset Y_{2}$, then $\Pi\left(X_{1}, Y_{1}\right) \subset \Pi\left(X_{2}, Y_{2}\right)$ (and similarly for Δ). Show that K, L exist such that

1. $\Pi(K, L) \subset K, \Delta(K, L) \subset L$; in fact, $\Pi(K, L)=K, \Delta(K, L)=L$,
2. if $\Pi(X, Y) \subset X$ and $\Delta(X, Y) \subset Y$, then $K \subset X$ and $L \subset Y$.

Show that, similarly, greatest (post-) fixed points exist. Generalize to more operators.
Hint. Consider the operator $H: \wp(A \times A) \rightarrow \wp(A \times A)$ defined by $H(Z)=\Pi\left(\pi_{1}[Z], \pi_{2}[Z]\right) \times$ $\Delta\left(\pi_{1}[Z], \pi_{2}[Z]\right)$ (where, as usual, π_{1} and π_{2} denote the projection onto the first and second coordinates). Show that H has a least fixed point of the form $K \times L$, and that K and L satisfy the given conditions.

