Data Semantics

Frank Veltman

0. INTRODUCTION

The usual semantical explication of (logical) validity runs as follows: an
argument is valid iff it cannot possibly occur that its premises are all true
while its conclusion is not true. Compare this account of validity with the
following one: an argument is valid iff it cannot possibly occur that its
premises are all true on the basis of the set of data available while its
conclusion is not true on the basis of that set. Do the principles of classical
logic retain their validity when one changes over from the first explication
of validity to the second one?

In what follows, my principal concern will be to answer this question
for the case of propositional logic. Of course, the ultimate interest of the
answer hangs on the claim that the second explication of validity conforms
better than the first to what goes on in actual reasoning. I shall not try to
support this claim in its full generality, but will restrict myself to showing
that a number of problems which arise if one tries to analyse the logical
behaviour of ‘if ... then’, ‘must’ and ‘may’ in terms of the first explication
of validity simply vanish if one uses the second explication.

It will be clear that the question at issue cannot be answered until two
other questions have been settled: (i) what is a set of data, and (ii) what
does it mean for a sentence to be true on the basis of a set of data? Section
1 deals with the first of these questions, and Section 2 with the second.
The final section is devoted to a discussion of some of the more salient
features of the resulting logic.

* This paper forms part of my doctoral dissertation, which I am writing under the
supervision of Johan van Benthem and Hans Kamp. I am greatly indebted to them
and to Dick de Jongh for their encouragement and advice. I would also like to ex-
press my gratitude to Gerald Gazdar, Jeroen Groenendijk, Theo Janssen, Ewan Klein,
Fred Landman, Ieke Moerdijk, Piet Rodenburg, Martin Stokhof, Zeno Swijtink and
in particular to Roel de Vrijer for their helpful criticism. Special thanks are due to
Ewan Klein and Dick de Jongh for correcting the English.
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1. DATA SETS

The semantic system developed here differs in various respects from the
kind of systems developed within the framework of possible worlds
semantics. From an ontological point of view, the most important differ-
ence is that the models for a given language are built not on ‘the set of
possible worlds’, but on ‘the set of possible facts’.

I do not intend to say a great deal about the nature of facts. Yet I do
want to maintain a few assumptions about them. To begin with, I trust
that there is no harm in talking about possible facts. I shall take this
notion in such a way that it is a truism to say ‘All possible facts are such
that it is possible for them to hold, though some of them will never
actually do so’. Certain philosophers, following Quine', would claim that
this way of speaking commits one to assuming that possible facts exist. 1
am not, in this respect, an unreserved follower of Quine. I doubt whether
it makes much sense to speak of existence in connection with possible
facts, even in the case of those possible facts which obtain here and now.
However, this is not a crucial issue. I shall certainly quantify over possible
facts, and if this commits me to assuming that they somehow ‘exist’, then
[ am ready to do so.

Second, I shall hold that the totality of all possible facts can be treated
as a set (in the mathematical sense of the word). As far as I can see, the
only conceivable objection to this might be that set theory does not ad-
mit sets with the properties we shall ascribe to the set of all possible facts.
But in fact set theory does admit such sets.

Third, suppose we have two possible facts f and g. I shall assume that if
f and g can obtain simultaneously, this simultaneous occurrence of f and g
qualifies as another possible fact. This fact is called the combination of f
and g. Since we would like to talk of the combination of f and g even if
f and g cannot possibly hold together, we introduce as a technical con-
venience the so-called improper fact, and we stipulate that if f and g can
not obtain simultaneously, the combination of f and g amounts to this
improper fact.

These considerations taken jointly give the set of possible facts the
structure of a semi-lattice:

DEFINITION 1. A data lattice is a triple <J,o,0> with the following
properties:
i) 0eFF~10}#0;
(i) o is a binary operation of J such that
(a) fof = f
(b) fog = gof
(c) (fog)oh = fo(geh)
(d) Oof=0;
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Explanation: The members of J ~ {0} are to be conceived of as the
possible facts. ‘feg’ is to be read as ‘the combination of f and g’. 0 is to be
thought of as the improper fact. Given our informal remarks, it will be
clear that the o-operation should have the properties laid down in (a) -
(d). When fog = 0, we shall often say that f and g are incompatible* , and
when fog = f, we shall say that f incorporates g.

DEFINITION 2. Let <F0,0> be a data lattice. A possible world in
< F0,0> is a subset Wof Fwith the following properties:

(i) for every f e J, either f €W or g €W for some g such that go f=0
(i) fornofed,bothfeW and g €W for some g such that go f=0

A possible world is a rather peculiar set of possible facts: it is complete in
the sense that if a given fact f does not obtain in it, some fact g incom-
patible with f obtains in it; and it is consistent in the sense that no incom-
patible facts obtain in it. Actually, possible worlds are so peculiar that one
might wonder wether they exist at all. In other words: given any data
lattice <F0,0>, are there subsets of F meeting both the requirements (i)
and (ii)? A well known theorem in lattice theory tells us that we may rest
assured that this is the case. Before we can state this result, we need one
more definition.

DEFINITION 3. Let <&0,0> be a data lattice. A filter in <F0,0> is a
subset Dof F such that f,g eD if and only if fo geD
A filter D is proper iff.0 ¢D

A proper filterD is maximal iff there is no proper filter D' such that
DD’ andD+D’

PROPOSITION 1. Let <F,0,0> be a data lattice.

(i 1f & C Fthen& can be extended to a proper filter iff for every
fleofy €6, fjo...0f #0.

(i)  Every proper filter can be extended to a maximal proper filter.

(iii)  Every maximal proper filter is a possible world and vice versa.

PROOF. Omitted?

It remains to explain the notion of a possible set of data. Informally,
every set of facts that might be obtained by investigating some possible
world is a possible set of data - but of course, if both the facts f and g
belong to the data, then so does the combination of f and g; and if the fact
f belongs to the data, then so do the facts g incorporated by f. So it ap-
pears that, formally speaking, the proper filters in a given data lattice
< Fp,0> are the right candidates for the role of the possible data sets in
<&, ,0>. Therefore, I shall from now on often refer to them in that way.
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One last observation before we pass on to questions of semantics: notice
that the theory of facts put forward here does not carry the metaphysical
burden of many other theories. It is not assumed, for example, that there
are facts of minimal complexity: any fact may incorporate other facts.
Neither is it assumed that there are facts of maximal complexity: any fact
may be incorporated by other facts. And finally, it is not assumed that
there are negative facts: if a certain possible fact f does not obtain in a
certain possible world, then some possible fact g incompatible with f
obtains in it; but there does not have to be some particular fact g in-
compatible with f that obtains in every possible world in which f does not
obtain.*

2. DATA SEMANTICS

What does it mean for a sentence to be true on the basis of a certain set

of data? As indicated in the introduction, we shall answer this question

only for a particular class of sentences. To be more specific, the sentences

in question all belong to a formal language £ with

(i) a vocabulary consisting of countably many atomic sentences, two
parentheses, three one place operators "1, must, and may, and three
two place operators A, V and ~; and

(i) the formation rules that one would expect for a language with such
a vocabulary.

The operators 71, must, may, A, and V are meant as formal counterparts
of “not”, “must”, “may”’, “and”’, and ‘“‘or”’, respectively. The operator >
should be read as “if ... then”; if ¢ and ¢ are formal translations of the
English sentefice ¢" and ', then ¢ > { is meant to be a formal translation
of the indicative conditional with antecedent ¢’ and consequent ¥’.

In presenting the semantics for this language L, I shall follow usual
practice and first state how its non-logical symbols are to be understood.

DEFINITION 4. A model (for £ ) is a quadruple < F,2,0,J > such that
<F0,0> is a data lattice and J is a function assigning some element of

JFto each atomic sentence of L. J is called an interpretation (of L) into
<Fo 0>

Informally, Definition 4 can be put as follows: each atomic sentence
describes a possible fact (or the improper fact). Hence, in a way the
definition offers a final clue to the question of what possible facts are;
apparently, possible facts are things that can be described by the most
elementary kind of sentences.’

Let Mo = <F0,0,J> be a model,D a data set in <Fo,0> and ¢ a
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sentence of £ . In the sequel, ” Dlx ¢ abbreviates “¢ is true (in M) on
the basis of D and “Dy—I ¢ abbreviates “¢ is false (in M) on the basis
of P,

DEFINITION 5. Let Mo= <F00,J> be a model and D a data set in
<Fs 0>
- if ¢ is atomic,

Dig ¢ iff I (@) €D
Dl ¢ iff for some [ €D, foI(¢) = 0;
- Dix 9 iff Dl ¢;
Dl 7o iff Dig ¢s
- Dikg @AY iff Dl ¢ and Dl v;
Dl @A) ittDl ¢ orDall v
= Dl @VY) iff Ditg ¢ orDitg ¥;
Dl @VY) iff Dyl ¢ and Dl ¥
- D |k (@>v) iff for every data setdD’ DD, if D' Itk ¢ then D) I ¥;
D il (@) iff for some data set D’ 2D, |g ¢ andD' I ¥
- D |k may ¢ iff for some data setD’ DD, D' i ¢;
D +l may ¢ iff for no data set D’ 2D.D Ik ¢;
- D | must ¢ iff for no data setD’' 0D, D’ xl @;
D 1ll must ¢ iff for some data set D' D DD’ 4| ¢.
The remainder of this section is devoted to a discussion of this definition.

But first [ need to introduce some concepts that will play a prominent part
in that discussion.

DEFINITION 6. Let ¢ be a sentence.

¢ is T-stable iff for every modelAMand data set D, if Dl ¢, thend)’ I ¢
for every data set D)’ oD. :

¢ is F-stable iff for every modelMoand data set D, if ‘D.(,!l ¢, thendD)' ol ¢
for every data setdD’ OD.

¢ is stable iff ¢ is both T-stable and F-stable.

So, informally, a sentence ¢ is T-stable iff it has the following property:
once ¢ has turned out to be true on the basis of some set of data, ¢ will
remain true, whatever additional data may come to light. Likewise an
F-stable sentence has the property that once its falsity has been esta-
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blished. there is no possibility that further investigations will yield a set of
data on the basis of which it is not false.

It is not the case that every English sentence is T-stable and F-stable in
this sense. We shall meet examples of unstable sentences when we come to
discuss the truth and falsity conditions of sentences of the form (¢—y),
may ¢ and must ¢. But we shall discuss sentences of different forms first.

2.1. Atomic sentences

According to Definition 5, an atomic sentence ¢ is true on the basis of a
certain set D of data iff the fact described by ¢ belongs toD. And an
atomic sentence ¢ is false on the basis of a certain set D of data iff the
fact described by ¢ is incompatible with some element of D.

LetAMbe a model and ¢ an atomic sentence. Notice:
- If Dl ¢, thenD)' | ¢ for every data setD’ DD.

If Dl 6, thenfD'IH ¢ for every data set D’ DD,
- There are data sets Dsuch that neither ':Dll]'q& nor fD‘Kﬂ 0.
- There are no data sets Dsuch that both D¢ and Dl ¢.
- If Dis a maximal data set, then either Di ¢ or Dl ¢.

In other words, each atomic sentence ¢ is stable - once its truth or
falsity has been established, it has been established for good. However, it
is not always possible to decide on the basis of the data available whether
¢ is true or false. Of course, ¢ can never turn out to be both true and
false. And ultimately ¢ must turn out to be either true or false.

The third and the fourth of the above observations apply to all sen-
tences:

PROPOSITION 2. Let Mobe a model, D a data set (pertaining toA), and
¢ a sentence.

() It is not the case that both Dl ¢ and Dl ¢;
i)  if Dis maximal, then either D7 ¢ or Do

PROOF:. Induction on the complexity of ¢. I

It may very well be that a certain fact f does not occur in a certain set
D of data, but does hold in any possible world in which all facts in D hold.
According to Definition 5, a sentence ¢ describing f is not true on the basis
of Din such a case. Yet wouldn’t it be plausible to call ¢ true on the basis
of Dhere?

I do not think so. Of course, if one keeps on adding more information
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toD, then D will inevitably grow into a data setdD’ on the basis of which
¢ is true. Consequently, I would not object if one were to call the sentence
must ¢ true on the basis of the set I of data. Nor would I object if one
were to call the sentence ¢ just frue - without an explicit reference to the
evidence involved. I think, however, that it would blur an important
distinction - that between direct and indirect evidence - if one were to
maintain that it is simply and solely on the basis of the set 1) of data that
the sentence ¢ is true.$

2.2. Negation

I trust that the truth and falsity conditions for sentences of the form
“I do not need any further explanation. It may, however, be illuminating
to compare these conditions with a few altematives.

Presumably, it will not be difficult to convince the reader that the
following stipulation would have been completely mistaken:

™ D¢ iff DIt o

If the few data presently at my disposal do not allow me to conclude that
it is raining in Ipanema, this does not mean that they allow me to conclude
that it is not raining there. Hence, (*) does not capture the meaning of
English negation. Within the present framework, the equivalence expressed
by (*) only holds in case D is a maximal data set, but that is a rather ex-
ceptional case.

Readers familiar with Kripke’s semantic analysis of intuitionistic logic
or with model theoretic forcing” will be attracted to the following alter-
native to the account of negation given in Definition 5:

(**) Dt ¢ iff for every data setD' 2D, D’ g 6.

I can hardly imagine that anyone would adhere to this (**)-definition and
yet agree with the falsity conditions proposed in Definition 5; there seem
to be no grounds for denying that the following two statements are
equivalent:
(i) ¢ is false on the basis of the data;
(i)  the negation of ¢ is true on the basis of the data.
So I would expect the supporters of (**), if any, to completely reject our
falsity conditions, rather than to reject the equivalence between (i) and
(ii). The incorporation of (**) in Definition 5, therefore, would almost
certainly bring a drastic revision of the entire system along with it.

At this moment, we are not yet in a position to explain in detail why
Definition 5 offers a better analysis of the meaning of negation in English
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than (**) does. I shall here briefly sketch the relevant argument trusting
that the remainder of this paper will enable the reader to fill in the details
for himself.

To begin with, it is worth noting that the negation described by (**)
is expressible within the framework presented here, albeit not by means
of the operator 1. Still,

D' It ¢ forevery data set D' DD iff Dy must ¢,

Hence, the easiest way to compare the (**)-negation and the negation of
Definition 5, is to study the different properties attributed by Definition 5
to sentences of the form must “1¢ on the one hand, and sentences of the
form Tl¢ on the other. By doing so for different kinds of sentences, one
will undoubtedly sooner or later arrive at the conclusion that ‘not’ has
more in common with the operator 7] than with the operator must ~1. The
reader is invited to test this for himself - the following cases are decisive:
(i) ¢ is a sentence of the form (Y—>x); (ii) ¢ is a sentence of the form
must .

2.3. Disjunction and conjunction

English sentences of the form "¢ or ¢ 1 are often uttered in a context
where the available data do not enable the speaker to decide which of the
sentences ¢ and ¢ are true, but only tell him that az least one of the sen-
tences has to be true. Moreover, it would seem that sentences of the form
["¢ or Y71 are sometimes true, and indeed true on the basis of the data,
when uttered in such a context. So it is quite possible, I think, that the
police superintendent who says that either Mr. B. or Mr. C. killed Mrs. D.
says something that is true on the basis of the available evidence, even
though it may be weeks before the case of Mrs. D. is definitively solved.

If this observation is correct, it would seem that in most contexts the
operator V cannot serve as the formal counterpart of ‘or’. According to
Definition 5, a sentence of the form (¢Vy) is not true on the basis of the
data unless it is possible to decide which of the sentences ¢ and Y is true
on that basis - and, on most occasions, this is a bit too much to ask.

Fortunately, the present system provides yet another possible analysis
of disjunctive sentences: in place of a sentence of the form (¢Vi), one
can take a sentence must(¢Vy) as their formal translation. must (¢Vy) is
true on the basis of the data set Diff for no extension D’ of D, both ¢ and
¥ are false on the basis of D’; in view of Proposition 3, this means that at
least one of the sentences ¢ and Y will eventually turn out to be true on
the basis of the data if one continues to accumulate information.

At this point the reader may wonder why I did not assign to sentences
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of the form (¢Vy) the truth and falsity conditions which are now asso-
ciated with sentences of the form must (V). Wouldn’t that have been a
more elegant procedure?

The reason that I did not proceed that way is this: sometimes disjunc-
tion is used in the manner formally captured by the truth and falsity con-
ditions associated with the operator V. Here are a few examples:

- Itis not the case that Mr. B. or Mr. C. killed Mrs. D.

~ If Mr. E. or Mr. F. killed Mrs. D., then Mr. B. and Mr. C. are innocent.
- Maybe Mr. E. or Mr. F. killed Mrs. D.

Actually, from a syntactical point of view, there are only a few cases (the
case where ‘or’ occurs as the main connective of the relevant sentence
being the most obvious) in which the meaning of English disjunction does
not seem to conform to the meaning of V. Yet I venture the hypothesis
that even in these special cases the literal meaning of ‘or’ can be equated
with the meaning of V, and that it is for pragmatic reasons that one is in-
clined to understand a statement of the form ¢ or Yy 1asl it must be the
case that ¢ or Y 71: to put it briefly, if one were to take such a statement
literally, one would be forced to assume that its utterer is violating the
conversational maxim of quantity.® If, on the other hand, the relevant
disjunction is embedded in a more complex sentence, then this predica-
ment is less likely to arise and therefore one can in general take the dis-
junction at its face value in such cases.

The truth and falsity conditions pertaining to conjunction need no
further comment - if indeed the reader is not inclined to barter the fal-
sity conditions of ["¢ and Y1 for the truth conditions of [" it cannot be
that both ¢ and ¥ .

PROPOSITION 3. Suppose 1, A and V are the only operators occurring
in ¢. Then ¢ is stable.

In the sequel, I shall sometimes discriminate between the sentences in
which 1, A and V are the only occurring operators and the other ones by
calling the former descriptive and the latter nondescriptive. The difference
between these two kinds of sentences amounts to this: by uttering a
descriptive sentence a speaker only informs his audience of the data he
has gathered so far. By uttering a non-descriptive sentence he also gives
words to his expectations about the outcome of further investigations.

2.4. Implication
According to Definition 5, a sentence of the form [TIf ¢ then /71 is true on

the basis of a set 9 of data iff there is no possibility of extending Dinto a
data set D' on the basis of which ¢ is true and ¥ is not true: if, by any
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chance, further investigations should reveal that ¢ is true, they will reveal
that ¢ is true too. Furthermore, it is stated that [If ¢ then Y1 is false on
the basis of a set D of data iff, given D), it is still possible that further in-
vestigations will yield an extension D’ of Don the basis of which ¢ is true
and ¥ is false.

It will be clear that on this account a sentence of the form ["1f ¢ then
Y71 is not necessarily F-stable. This, I hope, conforms to the reader’s in-
tuitions. Consider for instance the sentence ‘If Mary went to the party,
then John went there, too’, and suppose that John’s best friend is Peter.
Peter happens not to know that John has fallen in love with Mary, and,
accordingly, his data allow for the possibility that Mary attended the
party and John did not do so. So, on the basis of the limited set of data
available to Peter, the sentence ‘If Mary went to the party, then John
went there, too’ is false. On the other hand, it is very likely that Peter will
be able to exclude this possibility - knowing John for what he is - as soon
as he learns that John has fallen in love again. So, on the basis of this ex-
tension of Peter’s data, the sentence ‘If Mary went to the party, then John
went there, too” will probably not be false anymore. Hence, it is not F-
stable.

Let ¢ be F-stable and suppose that ¢ is false on the basis of the data set
D. Then according to Definition 5, 1If ¢ then Y] is true on the basis of
D for any sentence y. Likewise: let ¥ be T-stable and suppose that ¥ is
true on the basis of D. Then IMIf ¢ then Y71 is true on the basis of D for
any sentence ¢.

In other words, the present treatment of conditionals does not meet the
requirement that a sentence of the form [(If ¢ then Y1 should never be
true unless the antecedent ¢ is somehow ‘relevant’ to the consequent ¥.”

Should we regret this?

There is, I think, no need to do so: pragmatic constraints ensure that a
conditional will normally be uttered only in circumstances where the
antecedent is somehow ‘relevant’ to the consequent. Hence, there is no
need to incorporate relevance into the semantics.

Let me indicate why I think that relevance can be delegated to the
pragmatics.

(i) The most natural context of utterance for an indicative conditional
[CIf ¢ then 7] - and here 1 restrict myself to the case where both ¢ and ¥
are descriptive - is one in which the following conditions are satisfied : (a) it
is not the case that y is true on the basis of the data available, though (b)
it is possible that Y will on further investigation turn out to be true;(c) it
is not the case that ¢ is true on the basis of the data available, though (d) it
is possible that ¢ will on further investigation turn out to be true.'® (If
condition (a) is not satisfied, then by the maxims of quantity and manner
Y should be uttered rather than [ If ¢ then Y1, for y is both stronger and
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less wordy than ["If ¢ then y1. Likewise, if condition (d) is not fulfilled,
It must be the case that not ¢71 should be uttered rather than "'If ¢
then Y71. Furthermore, if both (a) and (d) are satisfied and either (b) or
(c) are not satisfied, then ["If ¢ then {71 is false on the basis of the data
available. Thus, in view of the maxim of quality, it is forbidden to utter
["If ¢ then Y 1in either of these cases.)

(ii) Now, if a sentence of the form ["If ¢ then 1 is uttered in the circum-
stances appropriate to its use, then the present truth condition by itself
guarantees that this sentence cannot be true unless the antecedent ¢ is
highly relevant to the consequent y: whenever the available data are ex-
tended in a way that results in ¢ being true on the basis of the new data
set, Y must be true on the basis of that extended data set too. It will be
clear that there must be some positive connection between ¢ and ¢ if this
is to be so in circumstances where in particular the conditions (a) and (d)
are satisfied.

2.5. may and must

The clearest examples of T-unstable sentences are found among sentences
of the form (it may be the case that ¢ 1. A sentence of this form - take ‘it
may be snowing’ - will often at first (as you awake one winter morning) be
true on the basis of the data available, and then (open the curtains and
what do you see?) turn out false as soon as new data become available. In
view of Definition 5, this should be a very common occurrence, for the
definition states (i) that a sentence of the form [Tit may be the case that
¢ 1 is true on the basis of the data I as long as it is possible for Don
further investigation to grow into a set of data on the basis of which ¢
is true; and (ii) that such a sentence is false on the basis of the data as soon
as this possibility can be excluded.

In the previous pages [ have hinted several times at the truth and falsity
conditions associated with the operator must. According to Definition §, a
sentence of the form [TIt must be the case that ¢ 1 is true on the basis of
the available data iff there is no possibility that this data set will on further
investigation grow into a set of data on the basis of which ¢ is false.
(Hence, as the investigation proceeds, the data will inevitably grow into a
set on the basis of which ¢ is true.) However, as long as this possibility is
not excluded, ["it must be the case that ¢ 1 is false on the basis of the
data.!!

It is worth noting that this analysis predicts that in many cases, notably
if ¢ is descriptive, a sentence of the form "It must be the case that ¢ 1is
weaker than the corresponding sentence ¢. If a descriptive sentence ¢ is
true on the basis of the data, then "It must be the case that ¢ 1is true on
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that basis as well, but { It must be the case that ¢71 can be true on the
basis of the data without ¢ being true on that basis.

That ‘it must be the case that ¢’ is on most occasions weaker than ¢
itself, has been noticed by a number of authors. Lauri Karttunen'® illus-
trates this phenomenon with the following examples:

(a) John must have left
(b)  John has left

His informal explanation fits in neatly with our formal analysis:
‘Intuitively, (a) makes a weaker claim than (b). In general, one would use
(a) the epistemic must only in circumstances where it is not yet an estab-
lished fact that John has left. In (a), the speaker indicates that he has no
first-hand evidence about John’s departure, and neither hasit been reported
to him by trustworthy sources. Instead (a) seems to say that the truth of
John has left in some way logically follows from other facts the speaker
* knows and some reasonable assumptions that he is willing to entertain. A
man who has actually seen John leave or has read about it in the news-
paper would not ordinarily assert (a), since he is in the position to make
the stronger claim in (b)’.

Similar remarks can be found in Groenendijk & Stokhof (1975) and
Lyons (1977). Yet despite this unanimity, so far no formal theory has
been proposed which actually predicts that for descriptive sentences ¢,
"It must be the case that ¢71is a logical consequence of ¢. Most theories
treat may and must as epistemic modalities and depending on whether the
underlying epistemic notion is either knowledge or belief, must ¢ turns
out to be either stronger than ¢ or independent of it.

(Notice in passing that the present theory does not predict that ¢ is
stronger than must ¢ for all sentences ¢. Example: let ¢ = ~1(y—>X) and
y.x be descriptive. Dk must 1(W->x) iff Dl must (YATIX), whereas
‘DH.AC “1(W—=y) iff ‘:DH;« may (YAT1X). Hence, musr ¢ turns out stronger
than ¢ here.)

The next proposition is an immediate consequence of Proposition 2.

PROPOSITION 4. LetMbe a model and let D be a maximal data set

(pertaining to M.
Dirg o iff Ditf o

Dl oA iff Dirg ¢ and Ditx ¥
Dig oV iff Do or Dl ¥
Dl o~ iff Dl ¢ or Dl ¥
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Dil may ¢ iff Dig o
Dt must ¢ iff Dig o

In other words, it does not make much sense to use the phrases ‘if ...
then’, ‘must’, and ‘may” in a context where the data set is maximal: in
such a context, ‘if ... then gets the meaning of the material conditional
while both IMit must be the case that ¢71 and ["it may be the case that
¢71 tum out equivalent to ¢. However, in such an ideal case there is no
need to use nondescriptive sentences - the data set is complete; so, what
could possibly be the good of speculations on the outcome of further
investigations?

3. DATA LOGIC

DEFINITION 7. Let ¢ be a sentence and let A be a set of sentences. Al—¢
" iff there is no model M= <Fe 0, J > such that for some data set D in
<F.0,J3>, DI ¥ for every ¥ € A while DI ¢.

‘A |~ ¢" abbreviates ‘the argument A/¢ (i.e. the argument with the set A
of premises and conclusion @) is valid’. We shall feel free to write ‘|l— ¢’
instead of @ || ¢ and ‘A,xﬁ/l,.i.;&n (- ¢ instead of ‘A Ut L‘"Jl,.‘.,lffn |
I~ ¢°. Read ‘|— ¢’ as ‘¢ is valid’.

The following remarks should give the reader an idea of how the logic
generated by the above definition works. A more systematic account will
be given in a subsequent paper."

3.1. Data logic and classical logic

Our first observations concern the initial question of this paper: In what
respects does data logic differ from classical logic? The following list
shows that many classical principles are valid in the sense of Definition 7
as well.

() DOAY I-; AGAY I U
i) AoV lFeAY

(i) Agl—oVE; AY -6V

(iv) IfA¢|—yxand AY (X, then AgVY [I—x
W e lel—y

(i) MGy I- V.
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The reader will notice that this list is made up entirely of principles which
underly the classical system of natural deduction. Actually, only two of
the principles underlying that system are missing. These principles fail
within the present context: It is not generally so that
If A |- ¥, then A | ¢—.
Nor does it hold that
If A, 19 IF- ¢, then A |- ¢.

The next two principles partially make up for this:
(vi)) If A ll— ¢ and each x € A is T-stable, then A || ¢—>;
(viii) If A, 7i¢ | and each x € A is T-stable, then A ||— nmust ¢.

Illustrations:

- Itiseasy to check that 1(¢V 1¢) I ¢V 1¢.

Yet if ¢ is a descriptive sentence, then |H ¢V 1¢. (Actually, there are no
valid descriptive sentences at all.)

must($V 1¢), on the other hand, is valid whether ¢ is descriptive or not.
In this connection, it is worth noting that also must ¢ V "1(must ¢) and
must ¢ V must 19 V (may ¢ A may "1¢) are valid for any ¢.

- Suppose ¢ is an atomic sentence.
Then we have that may ¢, 71¢ | ¢, whereas neither may ¢ | ¢ nor
may ¢ |- must ¢.

What is notable here, is not so much the invalidity of may ¢ / ¢ and
may ¢ | must ¢ as the validity of may ¢, 71¢ / ¢. Actually, according to
the present theory, any conclusion can be drawn from the premises may ¢
and T1¢. To put it differently, by the standards here applied, the sentence

(a) It may be raining in Ipanema now and it isn't
is just a contradictory as
(b) It is raining in Ipanema now and it isn't.

These examples show that the present theory of ‘may’ differs widely from
the theories of ‘may’ developed within the framework of possible worlds
semantics and pragmatics. According to the latter'®, a sentence like (a)
can be perfectly true although no one can assert it without violating the
maxim of quality ; consequently, the argument may ¢, "1¢ / ¥ is consider-
ed not as logically valid, but at best as pragmatically valid.

(Is there any evidence in favour of the claim that arguments of the
form may ¢, T1¢ [ ¥ - with ¢ atomic, or at least F-stable - are pragmatical-
ly valid rather than logically valid? Clearly, this evidence should consist in
an informal example which shows that the putative ‘seeming’ inconsisten-
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cy of the premises of an argument of this form can, in principle, be can-
celled. I am pretty sure, however, that no such example can be found ' .)

- Let ¢ and ¢ be two distinct atomic sentences.

It goes without saying that ¢,y | ¥ and may ¢,y | may ¢.

Furthermore, ¢ | y—=>¢ but may ¢ |+ y-omay ¢.

Hence, the present theory labels the first of the following arguments as
valid and the second as invalid.

(a) John's bicycle is red. Therefore, if John’s bicycle is green, then it is
red

(b)  Maybe John’s bicycle is red. Therefore, if John's bicycle is green,
then it may be red.

Perhaps the reader finds it difficult to accept the validity of (a). If so, he
is invited to read the conclusion once more without losing sight of the
premise - The conclusion does not say that John’s bicycle would be red if
it had been green.

If this does not help, then presumably the problem is that (i) the con-
clusion suggests that there is some positive connection between the sup-
posed greenness of John’s bicycle and its actual redness, wheras (ii) no
such connection can possibly exist. However, that there is no positive con-
nection between the antecedent and the consequent of the conclusion
does not imply that the conclusion does not hold. That would only
follow if the relevant conditional had been uttered in circumstances
appropriate to its use (see Section 2.4). But this particular conditional is
uttered in rather exceptional circumstances: given the premise of the
argument, the antecedent of the conclusion is false on the basis of the
data (and it will remain false if the data are extended), and its consequent
is true on the basis of the data (and it will remain true if the data are ex-
tended). So we see that it is pragmatically incorrect to utter the conclusion
in the circumstances described by the premise. However, we also see that if
one does utter it anyway, then one can count the resulting statement as
trivially true.

Notice in passing that the conclusion of (a) is trivially false if it is
uttered in circumstances where neither the truth nor the falsity of either
the antecedent or the consequent have been established. Assuming, then,
that an addressee expects a speaker to observe all conversational rules, it
is quite understandable that ones first reaction to (a) might be one of
protest.

Let us now turn to argument (b). It is illuminating to compare this
argument with the following.
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(b")  Maybe John’s bicycle is red. Therefore, if John's bicycle turns out
green, then it is still true on the basis of the data presently at my
disposal that John’s bicycle may be red.

Unlike (b), the argument (b") is valid. Roughly, the difference is this: in
the consequent of the conclusion of (b") explicit reference is made to the
data available at the time of utterance. The consequent of the conclusion
of (b), on the other hand, implicitly refers to the potential sets of data
available after John’s bicycle has turned out to be green.

3.2. Substitution and Replacement

Let ¢ and ¥ be two distinct atomic sentences. It is only one step from the
validity of ¢ / ¥ = ¢ to the validity of ¢ = (y—>¢) and from the invalidity
of may ¢ | Y = may ¢ to the invalidity of may ¢ - (Y—>may ¢} Still, it is
worthwhile to take these steps, for the resulting examples show that the
Principle of Substitution cannot be carried over from classical logic to data
logic without modification. In general, only uniform substitution of a
stable sentence for an atomic sentence will transform a valid sentence into
a valid one (Uniform substitution of an instable sentence may yield an
invalid sentence.)

Also the Principle of Replacement needs to be treated with some care.
Let us call the sentence ¢ and ¥ weakly equivalent if both ¢ ||— ¢ and
Y | ¢, and strongly equivalent iff ¢ |y, ¥ |—¢, 7o |1y and 71y |I—
“l¢. This distinction is important. Consider, for example, the sentences
@V 1¢) and T1(YV1Y) where ¢ and ¢ are two distinct atomic sen-
tences. “1(@V 1¢) and “1(YyV 1¥) are weakly equivalent but not strongly
equivalent. If the occurrence of “1(¢V 1¢)in T 1(¢V 1¢) is replaced by an
occurrence of “1(WV~1Y), then the resulting sentence T 1(YV 1Y) is not
weakly equivalent to the original "17(¢V l¢). Hence, the Principle of
Replacement fails for weak equivalents. Yet it does hold for strong equiva-
lents: if two sentences ¢ and Y are strongly equivalent, then replacement
of an occurrence of ¢ in a sentence x by an occurrence of ¥ will always
yield a sentence X’ which is strongly equivalent to the original x.

EXAMPLES.

- T1¢ is strongly equivalent to ¢

- @V is strongly equivalent to 1(C1¢A™ W)
~ @AY is strongly equivalent to 1(C1¢pV 1Y)
- may ¢ is strongly equivalent to "1(¢~>"1¢)
- must ¢ is strongly equivalent to T1¢—>¢*°.
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So we see that ¢V, oAy, may ¢, and must ¢ can be considered as mere
abbreviations of T1(C1¢A™ ), T1C1¢V 1Y), (¢~ 1¢) and T1¢—9, res-
pectively. In other words, in principle it is possible to give a more econo-
mical presentation of the present system by taking A, ~1, = (or alter-
natively V, 71, ) as primitive operators and defining the other operators in
terms of them. (It is not possible to find three other operators among
the ones given with which one can do the same.)

3.3. may and must

From the above observations it is clear that the logical properties of may

and must are completely determined by the properties of “1and . Still, it

seems worthwile to examine to what extent must and may behave like

standard model operators.

- may ¢ is strongly equivalent to “lmust "1¢

- If |- ¢, then |- must ¢

- If ¢ is F-stable, then ||~ must (p—y) > (must ¢ > must )

- must ¢~ ¢

(l— must (must ¢ > ¢)

It must ¢ > may ¢

I~ must ¢ > must must ¢.

Thus, at first sight, it would seem that must and may behave like the

obligation and permission operators of some system of deontic logic. But

we also find:

- If ¢ is F-stable, then ||— must may ¢ — must ¢, which would be a rather
strong result for a system which is marked as deontic.

- = ¢ = may ¢, which gives the logic of may an alethic flavour.

- If ¢ is T-stable then |t~ ¢ - must ¢. Cf. Section 2.5.

3.4. Implication

Let us now take a closer look at the logical properties of the operator —.
In many respects = behaves like intuitionistic implication.

PROPOSITION 5. Suppose that A, V and — are the only operators oc-
curing in the sentence of the argument A / ¢. Then, A |- ¢ iff A/ ¢ is in-
tuitionistically valid.

I shall not prove this proposition here. '’

The above result does not hold if we permit other connectives to occur
in the sentence of an argument. We encountered some counterexamples
earlier: every sentence of the form T 1¢ —> ¢ is valid in the sense of Definition
7, but a sentence of that form is in general not intuitionistically valid. On
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the other hand, every argument of the form (pAY) = x [/ ¢ = (y—=x) is
intuitionistically valid, whereas according to the present theory the validity
of an argument of that form depends on the T-stability of ¢: If ¢ is T-
stable, then (AY) = X I ¢ = (Y=>X), but if ¢ is not T-stable, then it is
very well possible that (pAY) > x IH & > (U=>X).

In one important respect the behaviour of - matches with the be-
haviour of the strict implications occurring in the Lewis Systems'®:
@>¥) I may (@A1Y) and may(@AT1Y) | “1(¢~>y). This is exactly
what one would find if - were the implication and may the possibility
operator of another extension of S 0.5.

However, T1(¢—>V) and may ($A"1¢) are only weakly equivalent and not
strongly equivalent. Although we do find that “T 1(¢—=>{) [ "Tmay (¢A71Y)
or, equivalently, that (¢—>¥) I must(C1¢Vy), it is not the case that
must(1¢VY) | (¢—>¥); at best we have that must(16VY) | ¢ = must
¥, and even this only for T-stable sentences ¢.

Our final observations with respect to — concern the Principle of
Modus Tollens. This principle, which holds both in intuitionistic logic
and in the systems of strict implication and also in such a weak system as
the system R of Relevance logic, fails here'®. Only if ¥ is atomic, the
argument >y, 1Y [/ T1¢ is valid. For more complex { the closest ap-
proximation available is this: if y is F-stable, then ¢—¢, 1 ¢ = must 719

If ¢ is not F-stable, even this weakened version of Modus Tollens
does not hold. Consider, for example the premises ¢ — (1) —>x) and “1(y~x),
where ¢, ¥ and x are three distinct atomic sentences. Neither 71¢ nor
must “1¢ follow from these premises; we only have that ¢ - (Y—>x),
W~X) I may T¢.

An example showing that the Principle of Modus Tollens fails in natural
language is due here.

Three persons are involved, Allen, Brown and Carr. Perhaps the reader
met the three of them before in connection with Lewis Carroll’s barbershop
paradox?. Well, they still run a barbershop, but nowadays they do so ac-
cording to the following rules: (i) At all times at least one of them must be
in the shop. (ii) None of them may ever leave the shop without one of the
others accompanying him.

Which of them, do you think, will be in the shop right now? It is clear,
of course, that if Carr is in, then Allen is in if Brown is in. Furthermore, it
may very well be that Allen is out in the company of Carr, while Brown
minds the shop, So, it is not the case that if Brown is in, Allen is in. Now,
by an application of the Principle of Modus Tollens, it would follow from
the italicized sentences that Carrr is out; and then, by a similar argument,
one might prove that also Brown and Allen are out...
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3.5. Descriptive arguments

Even if one likes the way in which the theory presented here deals with
nondescriptive arguments, one may still regret the divergences from clas-
sical logic in reasonings with descriptive sentences. However, the departure
from classical logic is not as drastic as one might fear at first sight:

PROPOSITION 6. Suppose A, V and 7] are the only operators occurring
in the sentences of A / ¢. If A / ¢ is classically valid, then A = st .

The proof, which is based on Proposition 3 and Proposition 4 is left to
the reader.

In other words, if by the standards of classical logic the descriptive
sentence ¢ must follow from the descriptive premises A, then ar least ‘it
must be the case that ¢’ follows from A be the standards set here.

NOTES

1. See especially his by now classic ‘On What There is’, reprinted as Chapter 1 in
Quine (1961).

2. I want to stress that the improper fact is introduced merely as a technical con-
venience. In principle, one can dispense with it by taking a partiel combination
operation and calling two facts f and g incompatible iff the combination of f and g
is not defined.

3. The proof is identical to the proof of the analogous theorem for Boolean Alge-
bras. For details, see Bell & Slomson 1969, pp. 13-15.

4. The position on ‘negative facts’ taken here is not so different from Mr. Demos’
position, which is discussed by Bertrand Russell in ‘The Philosophy of Logical
Atomism’. See the relevant chapter in Russell 1956.

5. Admittedly, in the absence of a clear cut grammatical criterion to determine
which English sentences count as most elementary, thisremark is notvery illuminating.
6. On the present account, the falsity of an atomic sentence is always established
indirectly. In view of Proposition 1(i) and Definition § we have for atomic ¢: ‘D-—h
o iff for every D' D D, D’ H‘Up iff Db must . See Veltman (forthcoming) for
further discussion.

7. See Kripke 1965 and Keisler 1977. It will be obvious to anyone familiar with
the subject that the present paper found some of its inspiration in the notion of
forcing.

8. Throughout this paper, I shall assume that the reader is familiar with Grice 1975.
9. I am referring here to the requirements set by the authors and co- authots of the
sections on Relevance Logic in Anderson & Belnap 1975.

10. See also Gazdar 1979, pp. 59-61.

11. An obvious alternative to the truth and falsity conditions of sentences of the
form must ¢ and may ¢ is the following:

D lr must ¢ iff for every maximal data set D' 2 D, D’ h—-¢>

Td' rmust ¢ iff for some maximal data set 0 O D, D’ = @
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Dl may ¢ iff for some maximal data set 92D, Dige

Dyl may ¢ iff for every maximal data set D’ 2 D, Dyl @

Notice that for stable sentences ¢, the above conditions are equivalent to the ones
included in Definition 5.

The main reason that I prefer the clauses of Definition 5 to the ones given above is
methodological in nature. In the above clauses reference is made to the maximal
proper extensions of data sets. However, it can only be proved by using powerful set
theoretic methods that data sets have any maximal extensions. To be more specific,
Proposition 1(ii) though somewhat weaker than the Axiom of Choice, is independent
of the axioms of Zermelo Fraenkel Set Theory. Iis status as a mathematical truth is
not as solidly based as it is for these axioms. Now, if we want the above clauses for
must and may to really work, we must rely on this proposition. The clauses for
must and may given in Definition S on the other hand, do not presuppose Proposition
1(ii) or any other equally questionable set theoretic proposition. Therefore, from a
methodological point of view, the clauses of Definition S are to be preferred.

12. See Karttunen 1972, p. 12.

13. See Veltman (forthcoming).

14. See Groenendijk & Stokhof 1975, pp. 83-84.

15. So far, no elaborate pragmatic theory has succeeded in drawing the dividing
line between logical and pragmatical-but-not-logical validity precisely as the criterion
of cancellability prescribes. It appears that in particular the conclusions of arguments
which owe their pragmatical validity exclusively to the maxim of quality defy any
attempt to cancellation. (See Gazdar 1979, p. 46.) It is, therefore, perhaps a little
premature to suppose that because the inconsistency of the premises cannot be
cancelled, it follows that arzuments of the form may ¢, ¢ [ ¥ (with F-stable ¢) are
logically rather than just pragmatically valid. Consider, however, the following
version of the maxim of quality: Do not utter a sentence ¢ unless ¢ is true on the
basis of the data at vour disposal. Every arsument owing its pragmatical validity ex-
clusively to this version of the maxim of quality is logically valid in the sense of
‘logically valid® discussed here, too. So, presumably, data semantics allows for a
pragmatics in which ‘cancellability” cen serve as a condition that an argument st
satisfy in order to be classified as pragmatically but not logically valid.

16. Hence, principle (vii)) of Section 3.1 is in fact a special case of principle (vii).
17. See Veltman (forthcoming).

18. These systems are extensively discussed in Hughes & Cresswell 1972.

19. Modus Tollens does fail in the theory of conditionals put forward in Cooper
1978. However, the evidence and explanation offered by Cooper are quite different
from the evidence and explanation offered here.

20. The present example is a slight variant of this paradox, which first appeared in
Carrol 1894. 1 can hardly imagine that nobody has ever thought of this variant be-
fore. In my view, it is much more powerful than the rather innocent barbershop
paradox itself. Yet even Cooper, who discusses Carroll’s paradox at some length,
does not refer to it. Cf. Cooper 1978, pp. 204-205.
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