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Motivation



Situations of strategic decision making

Viewpoint: many real-world problems are complex and
distributed in nature

• involve several independent decision makers (players)
• decision makers attempt to achieve their own goals (selfish)

Examples: network routing, Internet applications, auctions, ...

Phenomenon: strategic behavior leads to outcomes that are
suboptimal for society as a whole

Need: gain fundamental understanding of the effect of strategic
decision making in such applications

Algorithmic game theory:
• use game-theoretical foundations to study such situations
• focus on algorithmic and computational issues
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Criticism

1 Self-interest hypothesis: every player makes his choices
based on purely selfish motives

Assumption is at odds with other-regarding preferences
observed in practice (altruism, spite, fairness).

⇒ model such alternative behavior and study its impact on the
outcomes of games

2 Most studies consider Nash equilibria as solution concept

Assumption that computationally bounded players can reach
such outcomes is questionable!

⇒ study inefficiency of more permissive solution concepts
(correlated, coarse equilibria) and natural response
dynamics
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Overview

Motivation

Part I: Altruistic games
• modeling altruistic behavior in games
• inefficiency of equilibria

Part II: Smoothness technique
• smoothness and robust price of anarchy
• adaptations to altruistic games

Part III: Results in a nutshell
• linear congestion games
• fair cost-sharing games
• valid utility games

Concluding remarks
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Altruistic Games



Cost minimization games

A cost minimization game G = (N, (Si)i∈N , (Ci)i∈N) is a finite
strategic game given by

• set of players N = [n]
• set of strategies Si for every player i ∈ N
• cost function Ci : S1 × · · · × Sn → R

Every player i ∈ N chooses his strategy si ∈ Si so as to
minimize his individual cost Ci(s1, . . . , sn)

Let S = S1 × · · · × Sn be the set of strategy profiles.

Social cost of strategy profile s = (s1, . . . , sn) ∈ S is

C(s) =
∑

i∈N

Ci(s)
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Equilibrium concepts

Nash equilibrium: s = (s1, . . . , sn) ∈ S is a pure Nash
equilibrium (PNE) if no player has an incentive to unilaterally
deviate

∀i ∈ N : Ci(si , s−i ) ≤ Ci(s
′
i , s−i) ∀s′

i ∈ Si

(s−i refers to (s1, . . . , si−1, si+1, . . . , sn))

More general solution concepts:
• mixed Nash equilibrium (MNE)

• correlated equilibrium (CE)

• coarse correlated equilibrium (CCE)
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Equilibrium concepts

PNE
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Equilibrium concepts

MNEPNE
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Equilibrium concepts

CEMNEPNE
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Equilibrium concepts

CCECEMNEPNE
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Example: Congestion game

n = 10

s t

x

10
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n = 10

s t

x

10

10

Nash equilibrium: C(s) = 100
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Example: Congestion game

n = 10

s t

x

5

10

5

social optimum: C(s∗) = 75
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Example: Congestion game

n = 10

s t

x

5

10

5

inefficiency: C(s)
C(s∗) =

100
75 = 4

3
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Example: Congestion game

n = 10

s t

x

9

10

1

Nash equilibrium: C(s) = 91
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Example: Congestion game

n = 10

s t

x

9

10

1

inefficiency: C(s)
C(s∗) =

91
75 ≈ 1.21
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Inefficiency of equilibria

Let s∗ be a strategy profile that minimizes the social cost C(s).

Price of anarchy: worst-case inefficiency of equilibria

POA(G) = max
s∈PNE(G)

C(s)
C(s∗)

[Koutsoupias, Papadimitriou, STACS ’99]

Price of stability: best-case inefficiency of equilibria

POS(G) = min
s∈PNE(G)

C(s)
C(s∗)

[Schulz, Moses, SODA ’03]

Remark: definitions extend to other solution concepts (such as
MNE, CE, CCE) in the obvious way
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Altruistic extensions of strategic games

base game G = (N, (Si)i∈N , (Ci)i∈N)
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base game G = (N, (Si)i∈N , (Ci)i∈N)

altruism level αi ∈ [0,1] for every player i ∈ N

altruistic extension Gα = (N, (Si)i∈N , (Cα
i )i∈N) of G with

Cα
i (s) = (1 − αi)Ci(s) + αiC(s)

egoist

αi = 0

altruist

αi = 1

αi -altruist

αi
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Some remarks

Viewpoint:
• Cα

i is the perceived cost of i (encodes i ’s altruistic behavior)
• outcome is determined by players minimizing their perceived

costs
• Ci is the actual cost that player i contributes to the social cost
⇒ consider unaltered social cost function

C(s) =
∑

i∈N

Ci(s)

Advantages of this approach:
• altruistic extension contains the base game as a special case
• stay in the domain of the base game (here: strategic games)
• can use standard solution concepts, methodologies, etc.
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Other models

1 Cα
i (s) = (1 − α)Ci(s) + αC(s) [Chen et al., WINE ’11]

2 Cβ
i (s) = (1 − β)Ci(s) +

β
n C(s) [Chen, Kempe, EC ’08]

3 Cξ
i (s) = (1 − ξ)Ci(s) + ξ

∑

j 6=i Cj(s) [Caragiannis et al., TGC ’10]

4 Cα
i (s) = Ci(s) + αC(s) [Apt, Schäfer ’12]

5 . . .

Observation: above models are equivalent for suitable
transformations of the altruism parameters
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Example: Altruistic congestion game

α = 0

s t

x

10

10

PNE conditions: s is Nash equilibrium of Gα if for every i ∈ N:

(1 − α)Ci(si , s−i) + αC(si , s−i) ≤ (1 − α)Ci(s
′
i , s−i ) + αC(s′

i , s−i )
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s t
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PNE conditions: s is Nash equilibrium of Gα if for every i ∈ N:

(1 − α)Ci(si , s−i) + αC(si , s−i) ≤ (1 − α)Ci(s
′
i , s−i ) + αC(s′

i , s−i )

⇔ (1 − α)10 + α(10 · 10) ≤ (1 − α)10 + α(9 · 9 + 10)

⇔ α ≤ 0
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Example: Altruistic congestion game
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8 < α ≤ 2
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Example: Altruistic congestion game
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Example: Altruistic congestion game
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Example: Altruistic congestion game

α > 4
5

s t

x

5

10

5

PNE conditions: s is Nash equilibrium of Gα if for every i ∈ N:

(1 − α)Ci(si , s−i) + αC(si , s−i) ≤ (1 − α)Ci(s
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Example: Price of anarchy

1

1

4
3

α1
8

2
7

3
6

4
5

POA
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Related Work

[Chen and Kempe, EC ’08]: altruism and spite in non-atomic
network routing games

• uniform altruism: POA ≤ 1/β

• uniform spite/altruism, affine latencies: POA ≤ 4
3+2β+β2

• non-uniform altruism, parallel links: POA ≤ 1/β̄

[Hoefer and Skopalik, ESA ’09]: uniform altruism in congestion
games

• existence of pure NE (exist for affine cost functions)

• convergence of sequential best-response dynamics
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Related Work

[Caragiannis et al., TGC ’10]: uniform altruism in congestion
and load balancing games

• derive bounds on the POA for affine cost functions

• phenomenon: POA increases as altruism level increases

• POA decreases for symmetric load balancing games

[Buehler et al., WINE ’11]: altruism in load balancing games

• players are (completely) altruistic towards “friends”

• study cost of worst altruistic PNE relative to cost of worst
selfish PNE (price of civil society)

• also here: price of civil society increases as altruism
increases
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Smoothness Technique



Smoothness

A strategic game G is (λ, µ)-smooth if for any two strategy
profiles s, s∗ ∈ S

n
∑

i=1

Ci(s
∗
i , s−i) ≤ λC(s∗) + µC(s).

[Roughgarden, STOC ’09]

The robust price of anarchy of a game G is defined as

RPOA(G) = inf
{

λ

1 − µ
: G is (λ, µ)-smooth with µ < 1

}

.
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Consequences in a nutshell

Theorem

Let G be a game with robust price of anarchy RPOA(G).

1 The price of anarchy of coarse correlated equilibria of G is at
most RPOA(G).

2 The average cost of a sequence of outcomes of G with
vanishing average external regret approaches
RPOA(G) · C(s∗).

3 If G admits an exact potential function, then best-response
dynamics quickly reach an outcome of cost at most
RPOA(G) · C(s∗).

[Roughgarden, STOC ’09]
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Glimpse: Pure price of anarchy

Suppose s = (s1, . . . , sn) ∈ S is a pure Nash equilibrium. Fix an
optimal strategy profile s∗ = (s∗

1, . . . , s
∗
n) ∈ S. Then

C(s) =
∑

i∈N

Ci(si , s−i)

≤
∑

i∈N

Ci(s
∗
i , s−i) (exploiting PNE conditions)

≤ λC(s∗) + µC(s) (exploiting (λ, µ)-smoothness)

By rearranging terms, we obtain

C(s)
C(s∗)

≤
λ

1 − µ
and thus POA ≤

λ

1 − µ
.
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Glimpse: No-regret sequences

Let σ1, . . . , σT be a sequence of probability distributions over
outcomes of G in which every player experiences vanishing
average external regret, i.e., for every i ∈ N and s′

i ∈ Si :

E

[

T
∑

t=1

Ci(s
t)

]

≤ E

[

T
∑

t=1

Ci(s
′
i , s

t
−i )

]

+ o(T ). (∗)

→ no-regret algorithms [Hart and Mas-Colell ’00]

Exploiting the smoothness condition and (∗), it follows that the
average cost of this sequence satisfies

1
T

T
∑

t=1

E
[

C(st)
]

≤ RPOA(G) · C(s∗) as T → ∞.
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Adapted smoothness notion

For a given strategy profile s ∈ S, define

C−i(s) =
∑

j 6=i

Cj(s).

An altruistic game Gα is (λ, µ, α)-smooth if for any two strategy
profiles s, s∗ ∈ S

n
∑

i=1

Ci(s
∗
i , s−i) + αi(C−i(s

∗
i , s−i)− C−i(s)) ≤ λC(s∗) + µC(s).

Define the robust price of anarchy of an altruistic game Gα as

RPOA(Gα) = inf
{

λ

1 − µ
: Gα is (λ, µ, α)-smooth with µ < 1

}

.
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Implications

Can generalize most of the results of [Roughgarden, STOC ’09]
to altruistic extensions of games:

Theorem

Suppose the robust price of anarchy of Gα is RPOA(Gα).

1 The price of anarchy of coarse correlated equilibria of Gα is
at most RPOA(Gα).

2 The average cost of a sequence of outcomes of Gα with
vanishing average external regret approaches
RPOA(Gα) · C(s∗).

3 If Gα admits an exact potential function, then best-response
dynamics quickly reach an outcome of cost at most
RPOA(Gα) · C(s∗).
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Results in a Nutshell

joint work:

Po-An Chen, Bart de Keijzer and David Kempe



Altruistic congestion games

Results in a nutshell:

1 The robust price of anarchy of α-altruistic linear congestion
games is at most

5 + 2α̂+ 2α̌
2 − α̂+ 2α̌

,

where α̂ and α̌ are the maximum and minimum altruism
levels, respectively.

2 This bound specializes to 5+4α
2+α

for uniformly α-altruistic
congestion games and is tight even for pure NE.

[Caragiannis et al., TGC ’10]

3 The pure price of stability of uniformly α-altruistic congestion
games is at most 2

1+α
.
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Bounds for uniform players
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Altruistic singleton congestion games

4 The pure price of anarchy of uniformly α-altruistic extensions
of symmetric singleton linear congestion games is 4

3+α
.

[Caragiannis et al., TGC ’10]

5 The mixed price of anarchy of α-altruistic extensions of
symmetric singleton linear congestion games is at least 2.

6 The pure price of anarchy of α-altruistic extensions of
symmetric singleton linear congestion games with
α ∈ {0,1}n is at most 4−2ᾱ

3−ᾱ
, where ᾱ is the fraction of purely

altruistic players.
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Altruistic cost-sharing games

Fair cost-sharing game: players choose facilities and the cost
of each selected facility is evenly shared among the players
using it

Results in a nutshell:

1 The robust price of anarchy of α-altruistic cost-sharing
games is n

1−α̂
(with n/0 = ∞).

2 This bound is tight for the pure price of anarchy of uniformly
α-altruistic extensions of network cost-sharing games.

3 The pure price of stability of uniformly α-altruistic
cost-sharing games is at most (1 − α)Hn + α.
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Altruistic valid utility games

Valid utility games: model “two-sided market games” such as
the facility location game

Results in a nutshell:

1 The robust price of anarchy of α-altruistic extensions of valid
utility games is 2, independent of the altruism level
distribution.

2 This bound is tight for the pure price of anarchy of α-altruistic
extensions of valid utility games.
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Ongoing Work

Ongoing work: together with Bart de Keijzer

• consider more general altruism models: every player i ∈ N
has a vector of altruism levels αi ∈ R

n
+ and

Cα
i (s) =

∑

j∈N

αijCj(s)

(Our case: special case with αii = 1 and αij = αi otherwise.)

• combine above idea with social networks, e.g., αij = 0 for all
players j that are not neighbors of i in a given social network

• preliminary results:
• RPOA ≤ 7 for linear congestion games
• RPOA = 4.236 for singleton linear congestion games
• RPOA = Θ(n) for generalized second price auctions
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Concluding remarks



Concluding remarks

Summary:
• initiated the study of the impact of altruism in strategic games

• extended smoothness framework to altruistic games

• approach is powerful enough to derive tight bounds on the
robust price of anarchy of altruistic extensions of congestion
games, cost-sharing games and valid utility games

Conclusions:
• altruistic behavior may lead to an increase of inefficiency

• not a universal phenomenon: price of anarchy may decrease
(singleton congestion games) or remain the same (valid
utility games)
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Thank you!
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