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A discursive dilemma

Consider the following example of discursive dilemma: three individuals i1, i2,
and i3 express their opinions about propositions in the agenda
{a, b, a ∧ b,¬a,¬b,¬(a ∧ b)}

a a ∧ b b ¬a ¬(a ∧ b) ¬b
i1 1 1 1 0 0 0
i2 1 0 0 0 1 1
i3 0 0 1 1 1 0

maj. 1 0 1 0 1 0

Each agent has a consistent set of propositions. However, by majority, the
collective set {a, b,¬(a ∧ b)} is not consistent.



Inferring the contradiction

I The fact that {a, b,¬(a ∧ b)} is not consistent means (syntactically) that
we can infer a contradiction from the assumption that a, b and ¬(a ∧ b)
hold.

I In this paper, we want to take a closer look at the reasoning steps that
are required in order to infer the contradiction.

I We can infer the contradiction by reasoning in classical logic as follows.

majority
{i1, i2} ` a

majority
{i1, i3} ` b

R∧{i1, i2}, {i1, i3} ` a ∧ b

majority
{i2, i3} ` ¬(a ∧ b)

¬L{i2, i3}, a ∧ b ` ∅
cut

{i1, i2}, {i1, i3}, {i2, i3} ` ∅
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Linear Logic: resource-sensitive account of reasoning

(Girard, 1987). In sequent calculus for classical logic, structural rules of
contraction, weakening (and exchange) define how to deal with hypotheses in
a proof:

Γ,A,A,` ∆
C

Γ,A ` ∆

Γ ` ∆,A,A
C

Γ ` ∆,A

Γ ` ∆ W
Γ,A ` ∆

Γ ` ∆ W
Γ ` ∆,A

They determine the behavior of logical connectives, in particular they make
the following two presentations of logical rules are equivalent:

Γ ` A ∆ ` B ∧
Γ,∆ ` A ∧ B

Γ ` A Γ ` B ∧
Γ ` A ∧ B

(multiplicative and additive presentation)

I By rejecting structural rules, we are lead to define two conjunctions with
different behavior: copying contexts (⊗) or identifying them (&).



Sequent calculus for LL

The language of (multiplicative additive) linear logic (MALL) is defined as
follows. Let A be a set of propositional atoms and a ∈ A.

L ::= a | ¬L | L⊗ L | L ` L | L & L | L⊕ L

A sequent is an expression Γ ` ∆ where Γ and ∆ are multisets of
occurrences of formulas in LL.

Identities

ax
A ` A

Γ,A ` ∆ Γ′ ` A,∆′
cut

Γ, Γ′ ` ∆,∆′

Negation

Γ ` A,∆
L¬

Γ,¬A ` ∆

Γ,A ` ∆
R¬

Γ ` ¬A,∆



Sequent calculus for LL: multiplicative and additives

Multiplicatives

Γ,A,B ` ∆
⊗L

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′
⊗R

Γ, Γ′ ` A⊗ B,∆,∆′

Γ,A ` ∆ Γ′,B ` ∆′
`L

Γ, Γ′,A ` B ` ∆,∆′
Γ ` A,B,∆ `R

Γ ` A ` B,∆

Additives

Γ,Ai ` ∆
&L

Γ,A0&A1 ` ∆

Γ ` A,∆ Γ ` B,∆
&R

Γ ` A&B,∆

Γ,A ` ∆ Γ,B ` ∆
⊕L

Γ,A⊕ B ` ∆

Γ ` Ai ,∆
⊕R

Γ ` A0 ⊕ A1,∆



Discursive dilemmas

I Consider again the discursive dilemma. By dropping W and C, the
contradiction may no longer be derivable.

I If the group reasons in LL, the non-logical axioms are again: {i1, i2} ` a,
{i1, i3} ` b and {i2, i3} ` ¬(a & b).

{i1, i2} ` a {i1, i3} ` b
R⊗{i1, i2}, {i1, i3} ` a⊗ b {i2, i3} ` ¬(a ∧ b)
...

I The group can infer a⊗ b by using two different coalitions, however
a & b cannot be inferred by any sequence of winning coalition:

If ¬(a ∧ b) is interpreted as the mutliplicative conjunction, then we have
inferred again a contradiction. However, if ¬(a ∧ b) is interpreted additively,
then in LL a⊗ b and ¬(a & b) are not inconsistent, because
a⊗ b,¬(a & b) 0LL ∅.



The Model

I Let N be a (finite) set of agents. An agenda XL is a (finite) set of
propositions in the language LL of a given logic L that is closed under
complements. i.e. non-double negations.

I We slightly rephrase the usual rationality conditions on judgment sets in
terms of sequents derivability.

I A judgement set J is a subset of XL such that J is (wrt L) consistent
(J 0L ∅), complete (for all φ ∈ XL, φ ∈ J or ¬φ ∈ J) and deductive closed
(if J `L φ and φ ∈ XL, then φ ∈ J).

I Denote J(XL) the set of all judgement sets on XL.
I A profile of judgements sets J is a vector (J1, . . . , Jn), where n = |N|.



Individual and Collective rationality

I We want to model aggregators that take profiles of judgments sets that
are rational wrt L and return a set of judgement which can be evaluated
wrt a (possibly) different logic L′.

I In case L and L′ are the same, we are in the standard situation in JA. In
case the languages of L and L′ are different, we need to define a
translation function from the language of L into the language of L′.

I A translation is a function that maps formulas of one language into the
other t : LL → LL′ .

I An aggregator is then a function F : J(XL)n → J(X ′
L′) such that F is the

composition of an aggregator F ′ : J(XL)n → P(XL) with a function
T : P(XL)→ P(X ′

L′) defined by means of t :
for J ⊂ XL, T (J) = {t(φ) | φ ∈ J} ⊂ X ′

L′ .
Thus, we have that F (J) = T (F ′(J)) ⊆ XL′ .

I For example, the majority rule M : J(XL)n → J(X ′
L′) is defined as

follows. Let Nφ = {i | φ ∈ Ji}, define M ′ : J(XL)n → P(XL) as
M ′(J) = {φ ∈ XL | |Nφ| > n/2}

I Then, given a translation t , M(J) = T (M ′(J)).



Substructural reasoning

I We shall discuss the following logics that are obtained by restricting the
language of LL.

MLL ¬, ⊗, `
ALL ¬, &, ⊕
MALL ¬, ⊗, `, &, ⊕

I Moreover, we shall discuss the logics: L + (W) and L + (C) that are
obtained by adding weakening or contraction to the logic L.

I Note that CL is equivalent to assuming MALL + (W) and (C).



Group reasoning

I In order to investigate collective rationality for a number of logics, we
introduce the following notion of group reasoning. We say that Nφ is a
winning coalition wrt an aggregation procedure F , and we denote it Wφ,
iff φ ∈ F (J).

I We assume a distinguished set of propositional atoms i1, . . . , in one for
each agent in N.

I We model group reasoning in a given logic L as follows. We add to the
language of L the set of atoms i1, . . . , in. We define non-logical (or
proper axioms) Wφ ` φ for any φ ∈ F (J) .

Definition 1. (Group reasoning)

We say that the group infers a formula φ ∈ LL according to L iff, for some
sequence of Wj ` φj , there is a proof W1, ...,Wm `L φ.

Thus, the notion of group reasoning depends on the logic L as well as on the
aggregation rule that defines the non-logical axioms.



Consistency of group reasoning

Definition 2 (Consistency)

We say that group reasoning is consistent wrt L iff the sequent W1, . . . ,Wm `L

∅ is not derivable in L for any sequence of winning coalition.

For sound and complete calculi, our notion of group consistency corresponds
to the standard model-theoretic view of consistency of a set of judgments J
(i.e. there exists a valuation that makes the formulas in J true) as follows.

Fact 1

Group reasoning wrt L is consistent iff the set J = {φ |
there are W1, . . . ,Wm s.t. W1, . . . ,Wm `L φ} has a model.



Safety of agendas

We introduce the following definition of safety of an agenda.

Definition 3 (Safety)

We say that an agenda XL is safe for a class of aggregators F wrt the logic L
iff group reasoning wrt L is consistent for any aggregator in F .

The majority rule leads to inconsistency wrt classical logic iff the agenda XCL

violates the so called median property : every minimally inconsistent set
Y ⊆ XCL has size at most 2.
E.g. {a, b,¬(a ∧ b)} violates the median property.
By Fact 1, our definition of group reasoning allows for rephrasing the
standard JA results

Theorem 1

An agenda XCL is safe for the majority rule M : J(XCL)n → J(XCL) wrt CL iff
XCL satisfies the median property.



Majority and substructural reasoning: MLL

We consider now the majority rule defined on multiplicative agendas
M : J(XMLL)n → J(XMLL).
In this case, no new result: the median property characterises again safe
agendas.

Theorem 2

An agenda XMLL is safe for M : J(XMLL)n → J(XMLL) iff XMLL satisfies the
median property.

Take a profile with three individuals that provides proper axioms {i1, i2} ` A,
{i1, i3} ` B and {i2, i3} ` ¬(A⊗ B).



Majority and substructural reasoning: ALL

Take the majority rule defined on additive agendas M : J(XALL)n → J(XALL).
We can now state an interesting possibility result. The key property is the
following:

Property 1 (F)

In additive linear logic (ALL) every provable sequent contains exactly two for-
mulas (e.g. A ` B).

I Since every proof starts with axioms A ` A, and additive rules do not
add any new proposition, every provable sequent contains two formulas
of ALL.

I This entails that there are no minimal inconsistent sets of size bigger
than two in ALL (if J is inconsistent in ALL, then J `ALL ∅). Thus, every
ALL agenda is safe for M.

Theorem 3 (Safety of ALL)

Any agenda XALL is safe for the majority rule M : J(XALL)n → J(XALL) wrt ALL.



Majority and substructural reasoning: ALL + W

The same language of ALL is not safe, if we add more reasoning power. If we
add weakening (W) to ALL, then there are agendas that are no longer safe
for majority.

Proposition 1

Agendas X in ALL are not safe for majority rule M : J(XALL)n → J(XALL) wrt
ALL + (W).

Take a profile such that W1 ` a, W2 ` b and W3 ` ¬(a & b). In ALL + (W), we
have the following proof.

W1 ` a
WW1,W2 ` a

W2 ` b
WW1,W2 ` b

W1,W2 ` a & b W3 ` ¬(a & b)

W1,W2,W3 ` ∅
Note that adding contraction (ALL + C) does not affect the possibility result.



Individual and collective rationality

I We focus on the case in which individuals reason in CL and we will
evaluate group reasoning wrt fragments of LL.

I We define the additive translation of CL into LL ADD : LCL → LLL.
For a atomic, ADD(a) = a;
for A in LCL, ADD(¬A) = ¬(ADD(A)), ADD(A ∧ B) = ADD(A) & ADD(B),
ADD(A ∨ B) = ADD(A)⊕ ADD(B).

I We know that every agenda in ALL is safe for the majority rule. Thus, by
using ADD, we know that agendas in CL are safe for
M : J(XCL)n → J(XALL) with M(J) = ADD(M ′(J)) wrt group reasoning in
ALL.

Thus, by Theorem 3 we can prove:

Corollary 1

Any agenda XCL is safe for the majority rule M : J(XCL)n → J(XALL) wrt ALL.



Individual and collective rationality

I We can extend the previous result, by showing that the majority is
always consistent wrt reasoning in LL, provided the additive translation
that we have introduced.

I Define the deductive closure of a set X wrt to L, clL(X ), as the set
{A | X `L A}.

Corollary 2

Any agenda XCL is safe for the majority rule wrt clMALL(M(J)).



Remark

I The additive translation suggests the following interpretation of linear
logic connectives. The distinction between additive and multiplicative
connectives allows for separating propositions that are collectively
accepted (or inferred) by means of a single winning coalition and
proposition that are derived by combining coalitions.

{i1, i2} ` a {i1, i3} ` b
R⊗{i1, i2}, {i1, i3} ` a⊗ b {i2, i3} ` ¬(a & b)
...

I Recall that in the famous real case of doctrinal paradox judges were
reasoning by applying the norm the confession has been forced and the
confession is relevant iff the process has to be redone. We can express
the norm in two ways:

c & r ↔ p

c ⊗ r ↔ p

The additive conjunction provide a narrower form of reasoning, namely it
requires that the same coalition accepts both premises.



Conclusion I

I We have proposed a proof-theoretical analysis of inconsistency in
judgment aggregation.

I In particular, we have discussed JA with respect to substructural
reasoning and we have seen that the majority rule is consistent wrt ALL,
whereas it is enough to add weakening to obtain again discursive
dilemmas.

I Moreover, we have defined aggregators that associate possibly
heterogeneous notions of individual and collective rationality. In
particular, we have shown that the aggregation of classically rational
judgments is consistent wrt LL, provided our additive translation. We
have suggested an intuitive interpretation of the meaning of linear logic
connectives in terms of coalitional reasoning.



Conclusions II

I The treatment that we have presented for the majority rule can be
extended to classes of function. In particular, it is known that the
majority rule is characterized by the axioms: (A), (I), (M), and (WR).
The possibility result provided wrt ALL does not extend to classes of
aggregators that are obtained by weakening the axiomatization of the
majority rule.
(E.g. the class of uniform quota rules are characterized by (A), (N), (M)
and (I)).

I Future work shall compare the possibility results that have been
achieved here proof-theoretically with the semantic definitions of
consequence relations. In particular, it is interesting to compare our
results with the general logic approach in (Dietrich, 2007).

I Moreover, it is interesting to study preference aggregation with
constraints (e.g. transitivity) expressed in linear logic (additive vs
multiplicative formulation).


