

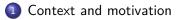
Building a Shared Sorting Function for a Group of Decision Makers

Olivier Cailloux Vincent Mousseau Patrick Meyer

ILLC - Universiteit van Amsterdam

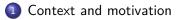
11 April 2013

Outline



- 2 Why not the obvious solution?
- 3 Our framework
- Improving the procedure
- 5 Conclusions & Future work

Context and motivation	Our framework		Conclusions & Future
Outline			



- 2 Why not the obvious solution?
- 3 Our framework
- 4 Improving the procedure
- 5 Conclusions & Future work

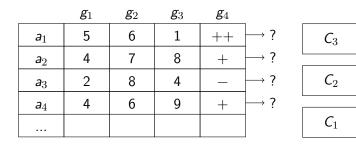
Context and motivation	Our framework	Conclusions & Future
Goal		
Our goal		

- Obtain a way of evaluating objects (alternatives),
- by sorting them into preference-ordered *categories*, e.g. {Good, Medium, Bad},
- on the basis of several (objective) performance measures (*criteria*).
- Resulting sorting function must be consensual among multiple Decision Makers (DMs).

Context and motivation		Our framework		Conclusions & Future
	Framework			

General framework

- Alternatives \mathcal{A}
- Criteria ${\cal J}$
- Performances $g_j: \mathcal{A}
 ightarrow X_j, \ orall j \in \mathcal{J}$
- Preference orders \succeq_j , $\forall j \in J$ (total orders)
- Preference ordered set of categories $\ensuremath{\mathcal{C}}$
 - C_1 worst category
- Set of decision makers ${\cal T}$



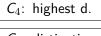
Context and motivation Motivation

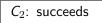
Example: student evaluation

- Determine a way of evaluating students at the end of the year
 - Obtain a sorting function
- \mathcal{A} , space of all possible evaluations (may be infinite or large)
- We may reason on specific cases (possibly fictitious)
- Involves subjective appreciations

• DMs may have different opinions

	math.	lang.	phys.	partic.	
St 1	В	D	A	++	→ ?
St 2	А	А	В	+	→ ?
St 3	А	С	С	_	→ ?
St 4	С	А	Α	+	→ ?





Context and motivation	Our framework		Conclusions & Future
	Motivation		

Example: research projects

- Researchers submit projects to the board
- The board wants some way of evaluating these research projects
- Criteria: Redaction quality, scientific quality, experience of the team, publication score, ...

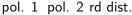
	redac.	sci.	exp.	publ.		
Pr 1	2	5	3	75.1	<u></u>]→?	C . fund musicat
Pr 2	5	5	4	32.2	<u></u> →?	C_2 : fund project
Pr 3	5	3	3	63.4	<u></u>]→?	
Pr 4	3	5	4	61.7	<u></u> } ?	C_1 : reject

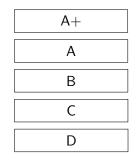
Context and motivation	Our framework		Conclusions & Future
	Motivation		

Example: green labelling

- Evaluate ecological quality of consumer products
- Criteria: amount of pollutants of different sorts, road distance, ...
- Use a representative set of products
- Obtain a transparent decision procedure

	1	1		
Pr 1	2	5	3	→ ?
Pr 2	5	5	4	→ ?
Pr 3	5	3	3	→ ?
Pr 4	3	5	4	→ ?





Context and motivation	Our framework		Conclusions & Futu
	Moti	vation	

Important features of the problem setting

Hypothesis

The situation is *not* about bargaining.

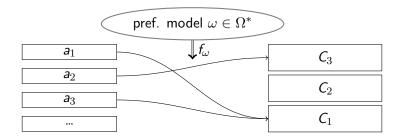
Sorting function depends on objective and subjective data.

- Objective, or consensual, data: most importantly, performances;
- subjective data: how the performances relate.

Context and motivation	Our framework		Conclusions & Future
			Modelling subjectivity

Modelling subjectivity

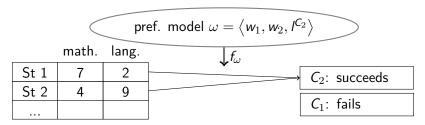
- Sorting function is parameterized
- Vector of parameters $\boldsymbol{\omega}$ captures the subjective aspect of the sorting
- Set of possible parameter values is Ω^{\ast}
- $\bullet\,$ Choosing Ω^* defines the set of possible sorting functions
- Can be done for one individual or for the group



Context and motivation	Our framework		Conclusions & Future
			Modelling subjectivity

Example: weighted sum with thresholds

- Criteria \mathcal{J} , $|\mathcal{J}| = n$, with functions $g_j : A \to \mathbb{R}$
- Preference model $\omega = \langle W, L \rangle$:
 - a vector of weights $W \in \mathbb{R}^n_+$,
 - a set of thresholds L ∈ ℝ^{K-1}₊ (K categories), I^C is the low threshold for category C.
- Class of models is $\Omega^* = \mathbb{R}^n_+ \times \mathbb{R}^{K-1}_+$
- Sorting function $f_{\omega}: A \to C$ compares the score of *a* to the thresholds I^{C_2}, I^{C_3}, \ldots



- 2 Why not the obvious solution?
- 3 Our framework
- 4 Improving the procedure
- 5 Conclusions & Future work

Two difficulties

- Multiple criteria to aggregate
- Ø Multiple DMs whose points of view must be aggregated

A simple way to get around the second difficulty and come back to the mono-DM case:

- Come up with individual preference models $\omega_t, \forall t \in \mathcal{T}$ (typically using utility functions)
- The group preference model is some aggregation of the individual preference models;
- or the group sorting function is some aggregation of the individual sorting functions {f_{ωt}, t ∈ T}.

Why not?

- Avoid unneccessary sacrifices
 - use of preference lability
- Achieve a better understanding of the points of consensus and disaggrements
- Explore non utility-based classes of preference models
- Ask questions in terms of the problem
 - effects on the sorting results
- Ask easy questions
 - assignment examples

(Not all of these points are specific to the approach presented here.)

- Preferences are labile: not determined precisely in one's head
- DMs may not know their own preferences
- Maybe several equally good ways of aggregating the criteria, for a given DM
- Documented (with a different perspective) in numerous experiments [Kahneman and Tversky, 2000, Lichtenstein and Slovic, 2006]
 - "Preferences are constructed in context"

Context and motivation		Our framework	Conclusions & Future
			Obtaining a group model
Outline			

2 Why not the obvious solution?

3 Our framework

- 4 Improving the procedure
- 5 Conclusions & Future work

Sketch of the procedure

- We work with (a variant of) ELECTRE TRI as the class of sorting functions
- Parameters to be elicited: $\omega = \langle L, W, \lambda \rangle$
- We ask for assignment examples (e.g. $a_1
 ightarrow C_2$)
- These constrain the set of candidate preference models
 - We must have $f_{\omega}(a_1) = C_2$
- If no preference model satisfy all examples:
 - Search which constraints should be removed to restore consistency

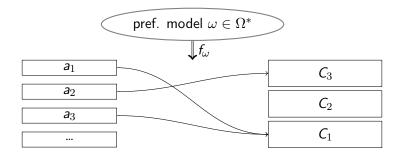
 Context and motivation
 An obvious solution?
 Our framework
 Improving the procedure
 Conclusions & Future

 Introduction
 ELECTRE TRI
 Obtaining a group model

Defining the group sorting function

Explanation proceeds in two steps.

- Show how (the variant of) ELECTRE TRI works: how f_{ω} is defined, assuming the preference model ω is defined
- Then, explain how we find a suitable preference model for the group of DMs.



Sorting method: a variant of $\operatorname{Electre}\,\operatorname{Tri}$

Preference parameters

- Category limits $L = \langle I^C, C \in C \setminus C_1 \rangle$: determine when the alternative is good enough on a criterion
- Weights W = ⟨w_j, j ∈ J⟩, and a majority threshold λ: determine when the alternative is globally good enough

Alternatives \mathcal{A}	Cat. limits L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Weights W, λ $ \begin{array}{ccc} g_1 & g_2 & g_3 \\ \hline W & 0.2 & 0.6 & 0.2 \\ \lambda = 0.8 \end{array} $

Sorting method: a variant of ELECTRE TRI

• a may reach at least C iff $\sum_{j \text{ in favor}} w_j \ge \lambda \ (C \neq C_1)$.

j

- *j* in favor of *a* reaching *C* iff $g_j(a) \ge l_j^C$.
- Thus, a sorted into the best category s.t.

$$\sum_{|g_j(a)\geq l_j^C}w_j\geq \lambda.$$

 Context and motivation
 An obvious solution?
 Our framework
 Improving the procedure
 Conclusions & Future

 Introduction
 ELECTRE TRI
 Obtaining a group model

Strengths of ELECTRE TRI

- A variant has been axiomatized [Bouyssou and Marchant, 2007a, Bouyssou and Marchant, 2007b].
- Justification of assignment easy to grasp (no complex computation needed).
- Might ease discussion among DMs.

Determining a group preference model

We want to determine a suitable $\omega = \langle L, W, \lambda \rangle$ for the group of DMs.

- We ask for assignment examples
- $\mathcal{A}^* \subseteq \mathcal{A}$ the set of alternatives used as examples
- ∀a ∈ A*, we know the category a should go into, according to one DM at least
- Assignment examples should be non contradictory

Mathematical program

Having assignment examples $E \subseteq A^* \times C$,

- We want to find $\omega = \langle L, W, \lambda \rangle$ such that
 - $\forall (a, C) \in E : f_{\omega}(a) = C.$
- Idea (finding ω satisfying examples) existed already [Mousseau and Słowiński, 1998] but no efficient tools to solve it.
- We solve a Mixed Integer Program (MIP) [Cailloux et al., 2012].
- The MIP must represent the assignment examples as constraints on the decision variables L, W, λ.

Our framework Improving the pr

Obtaining a group model

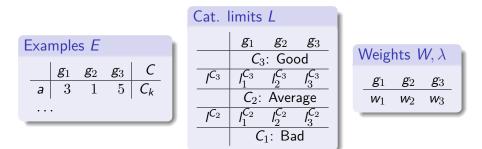
Defining (some of) the constraints: idea

Consider example $a \to C_k$, with $C_k \neq C_1, C_{|\mathcal{C}|}$.

• Criterion j thinks that a deserves to reach C_k iff

•
$$g_j(a) \geq l_j^{C_k}$$
.

• Introduce binary variable $b_j^{a,C_k} = 1$ iff *a* may reach C_k according to *j*.

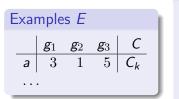


Defining (some of) the constraints: idea

Consider example $a \rightarrow C_k$, with $C_k \neq C_1, C_{|\mathcal{C}|}$.

• a deserves to reach at least C_k iff

$$\sum_{j\mid b_j^{a,C_k}} w_j \geq \lambda.$$



Weights
$$W, \lambda$$
 $\underline{g_1 \quad g_2 \quad g_3}{w_1 \quad w_2 \quad w_3}$

Defining (some of) the constraints

Consider example $a \to C_k$, with $C_k \neq C_1, C_{|\mathcal{C}|}$. We want that

- *a* reaches at least C_k ;
- a does not reach C_{k+1} :

$$\sum_{j|b_j^{a,C_k}} w_j \geq \lambda \wedge \sum_{j|b_j^{a,C_{k+1}}} w_j < \lambda.$$

Our framework

Define continuous variable [Meyer et al., 2008]:

$$v_j^{a,C_k} = egin{cases} w_j & ext{if } b_j^{a,C_k} = 1, \ 0 & ext{otherwise.} \end{cases}$$

Therefore:

$$\sum_{j} v_{j}^{a,C_{k}} \geq \lambda \wedge \sum_{j} v_{j}^{a,C_{k+1}} < \lambda.$$

Recap of the procedure

- Obtain assignment examples
- Run the MIP
- Find a preference model $\omega = \langle {\it L}, {\it W}, \lambda \rangle$ such that ${\it f}_\omega$ satisfies the examples
- Present the results to the DMs by applying the function to a larger set of alternatives, or by explaining how it "reasons"
- They might want to correct or add examples

Also possible:

- No satisfying model exist
- Then some examples must be changed
- Existing procedures can find minimal sets of constraints to remove [Mousseau et al., 2006]

Context and motivation	Our framework	Improving	the procedure	Conclusio	
			Computing restric		

Outline

- 2 Why not the obvious solution?
- 3 Our framework
- Improving the procedure
- 5 Conclusions & Future work

 Context and motivation
 An obvious solution?
 Our framework
 Improving the procedure
 Conclusions & Future

 Insatisfactory aspects
 Finding partial parameters
 Performance test
 Computing restrictions
 Extensions

Assignments stability

- Typically, DMs provide few examples compared to number of examples required to define a sorting function.
- Thus, great variability in possible assignments of other alternatives (from $\mathcal{A} \setminus \mathcal{A}^*$).
- When one example changes (thus ω is changed to ω'), the other assignments may completely change (f_{ω} may be completely different than $f_{\omega'}$).
- This is called instability.
- As the procedure is used interactively, instability can occur at some point.
- Convergence may be slow and hard to see.

 Context and motivation
 An obvious solution?
 Our framework
 Improving the procedure
 Conclusions & Future

 Insatisfactory aspects
 Finding partial parameters
 Performance test
 Computing restrictions
 Extensions

Improving the procedure

- Possible instability
- Possibly no consensus from the start
- What if starting examples are contradictory?
- We want the procedure to be more incremental
- First, agree on the category limits (*L*), then on the weights (W, λ) .

Partially shared parameters

- We ask for examples E^t to each DM $t \in \mathcal{T}$.
- These can be contradictory, e.g. $(a_1 \xrightarrow{t_1} C_3), (a_1 \xrightarrow{t_2} C_2).$
- For each DM t ∈ T, we search for individual preference models ω^t = ⟨L, W^t, λ^t⟩ satisfying examples E^t.
- Thus, category limits are shared but weights are chosen individually.
- This may exist even though there is no shared model satisfying all examples.
- This decomposes the problem into two simpler problems.
- Once shared category limits are found, better stability.
- Connects with existing procedures to find shared weights [Damart et al., 2007].

Context and motivation		Our framework	Improving	the procedure	
	Finding partial parameters			Computing restric	

Implementation

- Search procedure may be implemented with a MIP.
- Has been implemented in a Java free (libre) package: www.decision-deck.org/j-mcda/ [Cailloux, 2012].
- Available as a web service in the Decision Deck framework.
- Can be used through a client program (diviz): http://www.decision-deck.org/diviz/.

Context and motivation		Our framework	Improving	the procedure	Conclusio	
Insatisfactory aspects	Finding partial parameters	Performance	test	Computing restrict	ions	Extensions

Performance test

Objective

Examine whether the MIP is able to find shared profiles within a reasonable time frame.

- Random generation : [3–10] criteria, [1–4] DMs, [2–5] categories, [1–700] examples per DM.
- Random performances $g_j(a)$.
- Shared profiles used to sort examples, then forgotten.

Context and motivation	Our framework	Improving	the procedure	Conclusio	
	Performance	test	Computing restri		

Performances

- Nb binaries $= |\mathcal{J}| \times |\mathcal{A}^*| \times (|\mathcal{C}| 1).$
- 6 criteria, 3 categories, 3 DMs giving each 30 different examples: ≈ 1000 binaries

Results

۲	Solved within 90 minutes using less than 3 GB disk						
	Binary variables	Sample size	Problems solved				
	[0, 399]	477	100%				
	[400, 799]	441	87%				
	[800, 1199]	362	80%				
	[1200, 1599]	290	78%				
	[1600, 1999]	268	75%				
	[2000, 2199]	121	69%				

• Mainly depend on the number of criteria.

Context and motivation An obvious solution? Our framework **Improving the procedure** Conclusions & Future Insatisfactory aspects Finding partial parameters Performance test **Computing restrictions** Extensions

Computing restrictions on weights

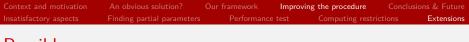
- We can now propose shared *L* to the DMs.
- For each t ∈ T, accepting L imposes a restriction on possibility of choosing weights W^t satisfying the examples E^t.
- We define an LP to compute these restrictions, $\forall t \in \mathcal{T}, j_1, j_2 \in \mathcal{J}$:

 $j_1 \triangleright^t j_2 \Leftrightarrow w_{j_1}^t > w_{j_2}^t, \forall \left\langle w_j^t, j \in \mathcal{J}, \lambda^t \right\rangle$ satisfying E^t .

• This may help the DMs in choosing shared category limits.

Variants and extensions

- Possible to set direct constraints on the model parameters.
- \bullet Possible to search for models including $\operatorname{Electre}\,Tri$ vetoes.
- Possible to specify constraints on the (weighted) category size [Zheng et al., 2011].
 - Select research projects that fit the budget.
 - Mainly for consensual constraints.
- DMs may give imprecise assignments $(a \stackrel{t}{\rightarrow} [C_1, C_2])$.
- Also implemented in software.



Possible use

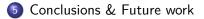
This approach can be considered as a supplementary tool in the analyst's toolbox. Here is only one possible use.

- Ask for examples *E*^t.
- Resolve possible individual inconsistencies.
- Search for consensual model ω .
- If no such model, search for shared category limits.
- If still no model, allow for vetoes.
- Present resulting category limits and individual weights with restrictions on the weights.
- If not acceptable, DMs may provide supplementary examples or other constraints.

Outline

Context and motivation

- 2 Why not the obvious solution?
- 3 Our framework
- 4 Improving the procedure



Conclusion

- A path out of the "average of individual opinions" strategy.
- We search for consensus instead of compromise.
- We use a "divide and conquer" approach.
- Using a model possibly more intuitive than utility functions.
- Asks easy questions.
- Results are easily interpretable.
- Computation time: could be improved.

Future work

- \bullet Generalise the idea and separate the specifics to $\rm ELECTRE\ TRI.$
- May also apply to other classes of models (such as utility functions)
- May apply to other problem types, e.g. ranking instead of sorting.
- Separate parameters in different manners?
- Formal description of the relation between "what we want" and "what we do".
- Validation of the model class.

Thank you for your attention!

Bibliography I

Bouyssou, D. and Marchant, T. (2007a).

An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories.

European Journal of Operational Research, 178(1):217–245.

 Bouyssou, D. and Marchant, T. (2007b).
 An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories.
 European Journal of Operational Research, 178(1):246–276.

Bibliography II

Cailloux, O. (2012).

Dealing with numerical imprecision in mathematical programs for electre tri models disaggregation.

Technical Report 2012-02, Laboratoire Génie Industriel, École Centrale Paris.

Cahiers de recherche 2012-02.

Cailloux, O., Meyer, P., and Mousseau, V. (2012). Eliciting ELECTRE TRI category limits for a group of decision makers.

European Journal of Operational Research, 223(1):133–140.

Bibliography III

- Damart, S., Dias, L., and Mousseau, V. (2007). Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS. *Decision Support Systems*, 43(4):1464–1475.
- Kahneman, D. and Tversky, A., editors (2000).
 Choices, Values, and Frames.
 Cambridge University Press.
- Lichtenstein, S. and Slovic, P., editors (2006).
 The Construction of Preference.
 Cambridge University Press, 1 edition.

Bibliography IV

- Meyer, P., Marichal, J.-L., and Bisdorff, R. (2008).
 Disaggregation of bipolar-valued outranking relations.
 In Le Thi, H. A., Bouvry, P., and Pham Dinh, T., editors, *Proc. of MCO'08 conference*, pages 204–213, Metz, France. Springer.
 - Mousseau, V., Dias, L., and Figueira, J. (2006). Dealing with inconsistent judgments in multiple criteria sorting models.

4OR, 4(3):145-158.

 Mousseau, V. and Słowiński, R. (1998).
 Inferring an ELECTRE TRI model from assignment examples. Journal of Global Optimization, 12(2):157–174.

Bibliography V

Zheng, J., Cailloux, O., and Mousseau, V. (2011). Constrained multicriteria sorting method applied to portfolio selection.

In Brafman, R. I., Roberts, F. S., and Tsoukiàs, A., editors, *Algorithmic Decision Theory*, volume 6992 of *Lecture Notes in Computer Science*, pages 331–343, Rutgers, United States. Springer Berlin / Heidelberg.

<u>max s s.t.</u>

$$\begin{cases} \sum_{j \in J} w_j = 1\\ l_j^{C_h} \le l_j^{C_{h+1}} \end{cases}$$

Variables

$$\begin{cases} I_j^{C_h}, \forall j \in J, C_h \in C \\ w_j, \forall j \in J \\ \lambda \\ b_j^{a, C_h} \text{ (binaries)} \\ v_j^{a, C_h} \\ n(a, C_h) \text{ (binaries)} \end{cases}$$

$$\frac{(g_{j}(a) - l_{j}^{C_{h}}) + \varepsilon}{M} \leq b_{j}^{a,h} \leq \frac{g_{j}(a) - l_{j}^{C_{h}}}{M} + 1$$

$$v_{j}^{a,C_{h}} \leq w_{j}; b_{j}^{a,C_{h}} + w_{j} - 1 \leq v_{j}^{a,C_{h}} \leq b_{j}^{a,C_{h}}$$

$$\sum_{j \in J} v_{j}^{a,C_{h}} \geq \lambda + s \quad \forall a \to h, h \geq 2$$

$$\sum_{j \in J} v_{j}^{a,C_{h+1}} + s \leq \lambda - \varepsilon \quad \forall a \to h, h < k$$

$$n(a, C_{h}) \leq 1 + \sum_{j \in J} v_{j}^{a,C_{h}} - \lambda$$

$$n(a, C_{h}) \leq 1 + \lambda - \sum_{j \in J} v_{j}^{a,C_{h+1}} - \varepsilon$$

$$\sum_{1 \leq h \leq k} n(a, C_{h}) = 1$$

$$\frac{h}{a} \leq \sum_{a \in A} n(a, C_{h}) P(a) \leq \overline{n_{h}} \quad \forall \langle C_{h}, P, \underline{n_{h}}, \overline{n_{h}} \rangle$$

All constraints (with qualifiers)

max s s.t

$$\begin{cases} \frac{(g_j(a) - l_j^{C_h}) + \varepsilon}{M} \le b_j^{a,h} \le \frac{g_j(a) - l_j^{C_h}}{M} + 1 \quad \forall j \in J, a \in A, h \ge 2\\ v_j^{a,C_h} \le w_j; b_j^{a,C_h} + w_j - 1 \le v_j^{a,C_h} \le b_j^{a,C_h} \quad \forall j \in J, a \in A, h \ge 2 \end{cases} \\ \begin{cases} \sum_{j \in J} w_j = 1 \\ l_j^{C_h} \le l_j^{C_{h+1}} \quad \forall j \in J, C_h \in C \end{cases} \begin{cases} \sum_{j \in J} v_j^{a,C_h} \ge \lambda + s \quad \forall a \to h, h \ge 2\\ \sum_{j \in J} v_j^{a,C_{h+1}} + s \le \lambda - \varepsilon \quad \forall a \to h, h < k \end{cases} \end{cases}$$

Variables

 $\begin{cases} I_j^{C_h}, \forall j \in J, C_h \in \mathcal{C} \\ w_j, \forall j \in J; \lambda \\ b_j^{a, C_h} \text{ (binaries)}; v_j^{a, C_h}; \\ n(a, C_h) \text{ (binaries)}, \end{cases}$ $\forall j \in J, a \in A, C_h \in C$

$$\begin{cases} n(a, C_h) \leq 1 + \sum_{j \in J} v_j^{a, C_h} - \lambda & \forall a \in A, h \geq 2\\ n(a, C_h) \leq 1 + \lambda - \sum_{j \in J} v_j^{a, C_{h+1}} - \varepsilon & \forall a \in A, h \leq k - 1\\ \sum_{1 \leq h \leq k} n(a, C_h) = 1 & \forall a \in A\\ \underline{n_h} \leq \sum_{a \in A} n(a, C_h) P(a) \leq \overline{n_h} & \forall \langle C_h, P, \underline{n_h}, \overline{n_h} \rangle \end{cases}$$