

Interference in Judgment Aggregation

Dorothea Baumeister, Gábor Erdélyi, Olivia Erdélyi, and Jörg Rothe

ILLC Workshop on Collective Decision Making, April 2013

Judgment Aggregation

Doctrinal Paradox / Discursive Dilemma

Outline

- Formal Framework
- Manipulation
 - Types of preferences
 - Strategyproofness
- Bribery
- Control by ...
 - Adding Judges
 - Deleting Judges
 - Replacing Judges

Formal Framework

Requirements:

- Agenda is closed under propositional variables
- Premises consists of all literals
- = Complete and consistent outcome

Variants:

- Uniform quota
- Constant quota

We focus on:

- PBP: Uniform premise-based quota rules for quota ½
- Uniform constant premise-based quota rules

Forms of Interference

Manipulation:

Provide untruthful information to obtain a better result.

Bribery: Briber judges to obtain a better result.

Control:

Change the structure to obtain a better result.

Widely studied in voting from a computational point of view!

Manipulation

Incentive:

Provide untruthful information to obtain a better result.

- Information = individual judgment set
- Result = collective outcome
- Better = ?

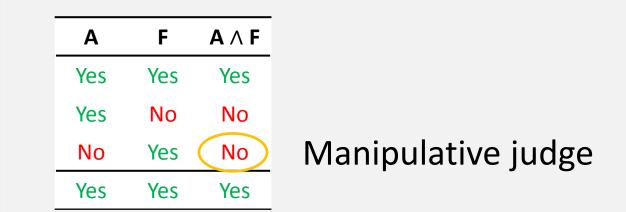
Different assumptions on the preferences:

- Unrestricted
- Top-respecting
- Closeness-respecting
- Hamming-distance induced

Preferences with respect to JS 1 0 0 1 1

- Unrestriced (U): every preference is possible
- Top-respecting (TR): 1 0 0 1 1 > ? ? ? ? ? ?
- Closeness-respecting (CR): 1 ? ? ? 1 > 1 1 1 0 1
- Hamming-distance induced (HD):

0 **0 0 1 > 1** 1 0 **1**


The only complete relation is HD (by allowing equalities)

A judgment aggregation procedure is **strategyproof** if a judge prefers the acutual outcome to all outcomes resulting from untruthful individual judgment sets of him.

Fix some induced preference >:

- A judge **necessarily** prefers X to Y if X > Y in *every* complete extension of >.
- A judge **possibly** prefers X to Y if X > Y in *some* complete extension of >.

A judgment aggregation procedure is **necessarily/ possibly strategyproof** if a judge necessarily/possible prefers the acutual outcome to all outcomes resulting from untruthful individual judgment sets of him.

Question: Is it possible to obtain a *"*better outcome" by reporting an inscincere judgment set?

Results for Manipulation

Preferences	Necessary Manipulation	Possible Manipulation		
Unrestricted	?	in P		
Top-respecting	NP-complete	in P		
Closeness-respecting	strategyproof	?		
Hamming Distance	NP-complete			
Exact	strategyproof			

Complete desired judgment set

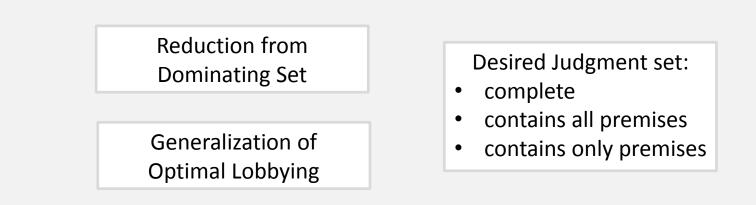
Also holds for general quotas

Bribery (HD + Exact)

Α	F	$\mathbf{A} \wedge \mathbf{F}$		Α	F	A ∧ F
Yes	Yes	Yes		Yes	Yes	Yes
Yes	No	No	Bribe 1 judge	Yes	No	No
No	Yes	No	Drive i Judge	No	No	No
Yes	Yes	Yes		Yes	No	No
100	100	100	No			

- Desired judgment set
- Budget k

Microbribery:


Change up to k premise entries

Question: Is it possible to obtain a *"*better outcome" by bribing at most k judges?

Exact Variant: Is it possible to reach the desired judgment set by bribing at most k judges?

Results for Bribery

	Bribery	Exact Bribery	MicroBribery	Exact MicroBribery
# judges	NP-comp.		NP-comp.	NP-comp.
# of bribes	NP-comp.	W[2]-hard	(×)	(×)
# of microbribes	X	X	NP-comp.	NP-comp.
General problem	NP-comp.	NP-comp.	NP-comp.	in P

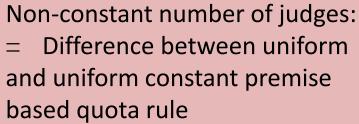
Control by Adding Judges

Α	F	$\mathbf{A} \wedge \mathbf{F}$	
Yes	Yes	Yes	
Yes	No	No	Add 2 judges
No	Yes	No	
Yes	Yes	Yes	
			NO

- Desired judgment set
- Set of potential new judges
- Positive integer k

Question: Is it possible to obtain a adding at most k judges?

Exact Variant: Is it possible to reach the desired judgment set by adding at most k judges?


Α	F	A ∧ F
Yes	Yes	Yes
Yes	No	No
No	Yes	No
No	No	No
No	No	No
No	No	No

Non-constant number of judges: = Difference between uniform and uniform constant premisebased quota rule

Control by Deleting Judges

Α	F	$\mathbf{A} \wedge \mathbf{F}$					
Yes	Yes	Yes			Α	F	A ∧ F
Yes	No	No	Delete 2 judges	1	No	Yes	No
No	Yes	No	_ = = ; = ; = ; = ; = ; = ; = ; = ; = ;	١	No	Yes	No
Yes	Yes	Yes	No				
ocir				Non-c	onst	tant n	umber o

- Desired judgment set
- Positive integer k

Question: Is it possible to obtain a *"*better outcome" by deleting at most k judges?

Exact Variant: Is it possible to reach the desired judgment set by deleting at most k judges?

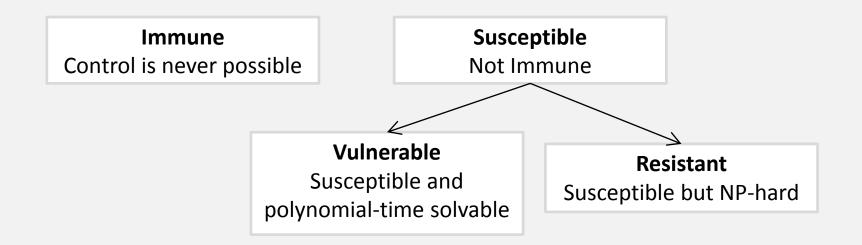
Control by Replacing Judges

		$\mathbf{A} \wedge \mathbf{F}$	F	Α
		Yes	Yes	Yes
eplace 1 judge	Re	No	No	Yes
		No	Yes	No
		Yes	Yes	Yes
	No			

Desired judgment set

Positive integer k

Set of potential new judges


Α	F	A ∧ F
Yes	Yes	Yes
Yes	No	No
No	No	No
Yes	No	No

Constant number of judges: = No difference between uniform and uniform constant premise-based quota rule

Question: Is it possible to obtain a *"*better outcome" by replacing at most k judges?

Exact Variant: Is it possible to reach the desired judgment set by replacing at most k judges?

Control is usually an undesired behavior

 Computational hardness can be seen as a barrier against control

Results for Control

	Uniform Constant Quota	Uniform Quota = ½	Uniform Quota
Adding Judges (HD)	Resistant	Resistant	
Adding Judges (Exact)	Resistant	Resistant	
Deleting Judges (HD)	Resistant	Resistant	
Deleting Judges (Exact)	Resistant	Resistant	
Replacing Judges (HD)	Resistant	Resistant	Resistant
Replacing Judges (Exact)	Resistant	Resistant	Resistant
Reduction fr Dominating		Agenda contains	sonly
Reduction fr Exact Cover by		premises	5 only

Concluding Remarks

- Different Aggregation Procedures
- New Control Problems
- Typical-case analysis
- Different types of induced preferences for Bribery and Control

Thank you for your attention!