Multi-Issue Elections: A New Hope?

Framework and Initial experiments

Stéphane Airiau

Universiteit van Amsterdam

ILLC Workshop on Collective Decision Making

Voting in Combinatorial domains

- toy example: choose a unique menu
- first course: soup, salad, paté
- main course: vegetarian, beef, chicken, fish
- dessert: cheese, cake, ice cream
- wine: light red, strong red, white, sparkling
\Rightarrow number of possible menus quickly becomes large!
- during an election in the US, many times voters also vote for many referenda (questions, elect judges, etc)
\Rightarrow the number of candidates is exponential and it may be difficult to elect a winner

Voting in Combinatorial domains

starter	main dish	wine
salad s	veal v	red r
oyster \circ	truit t	white w

voter 1: svr $\succ \mathrm{svw} \succ \mathrm{ovw} \sim \mathrm{stw} \succ \mathrm{str} \sim \mathrm{ovr} \succ$ otw \succ otr voter 2: ovw $\succ \mathrm{svr} \sim \mathrm{otw} \succ \mathrm{stw} \succ$ otr~ovr~str~svw voter 3: stw \succ svr~otw \succ ovw \succ otr~ovr~str~svw

- plurality: due to the large number of candidates, each candidate may receive few votes, the tie-breaking rule will play an important role.
- Borda: need to rank all candidates, which is costly for large number of issues.
- voting issue-by-issue: may have paradoxical outcomes, e.g., may elect a winner that is bad for every voters. Also, may not be clear how to vote.

Preferential Dependencies

We say that issue X depends on issue Y if there exists a situation where you need to know the value of Y for telling which value for X should be weakly preferred.
Definition (Preferential dependencies)
Issue $i \in \mathcal{J}$ is preferentially dependent on issue $j \in \mathcal{J}$ given preference relation \succeq, if there exist values $x, x^{\prime} \in D_{i}, y, y^{\prime} \in D_{j}$, and a vector of values $\vec{z} \in \mathcal{D}[\mathcal{J} \backslash\{i, j\}]$ for the remaining domains such that $x . y \cdot \vec{z} \succeq x^{\prime} \cdot y \cdot \vec{z}$ but $x \cdot y^{\prime} \cdot \vec{z} \nsucceq x^{\prime} \cdot y^{\prime} \cdot \vec{z}$.

The Dependency Graphs of voter 1:

$$
\text { sVr } \succ \mathrm{sVW} \succ \mathrm{ovw} \sim \text { stw } \succ \text { str } \sim \text { ovr } \succ \text { otw } \succ \text { otr }
$$

Approach: Sequential Voting with Complex Agendas

2 Choose an agenda (which issues to vote on together in local elections + order of local elections), based on dependencies.

3 Choose a local voting procedure for each local election.

All procedures given below map a profile of dependency graphs into a single collective dependency graph: $F: \mathrm{DG}(\mathcal{J})^{\mathcal{N}} \rightarrow \mathrm{DG}(\mathcal{J})$. We can then condense the collective graph to get a meta-agenda.

- Majority aggregation: include edge if a majority of voters do
- Quota-based aggregation: include edge if $\geqslant q \%$ of voters do
- Canonical aggregation: take the union of the input graphs
- Distance-based aggregation: choose a graph that is closest to the input profile, for a given metric (e.g., sum of Hamming distances)
- Constraint-based aggregation: choose a graph with clusters $\leqslant \ell$ that generates $\leqslant k$ dependency violations (there a several ways of counting violations: sum of all violations; no. of voter/election pairs where the voter experiences at least one uncertainty; ...)

Axiomatic Analysis

We can apply the axiomatic method to the study of MACFs.
For example, quota-based procedures satisfy all of these axioms:

- Anonymity: symmetry wrt. input graphs
- Dependency-neutrality: for dependencies (a, b) and $\left(a^{\prime}, b^{\prime}\right)$, if each voter accepts both or neither, then so does the meta-agenda
- Reinforcement: if the intersection S of sets of meta-agendas for two subelectorates is $\neq \emptyset$, then S is the outcome for their union

For distance-based procedures, some axiomatic properties are inherited from properties of the distances chosen:

- Any MACF defined in terms of a neutral distance (= invariant under renaming of vertices) on graphs is dependency-neutral.
- Any MACF defined in terms of a symmetric operator for extending distances between pairs of graphs to a distance between a graph and a set of graphs is anonymous.
... but one weird voter seems enough to force a single election with all issues!
if an oracle could tell us that the voter is not pivotal, we could use the voting protocol.

Lesson from linear orders with 3 issues
0 edges

- a small proportion of strict linear orders have an acyclic dependency graph (6,864 preferences, i.e. 17.02% of all strict linear orders)
- 3080 different strict linear orders that are compatible with issue-by-issue voting, 7.64% of all possible strict linear orders.

With more issues

Likelihood that the dependency graph of a given strict preference order is the full graph

\# of issues	2	3	4	5
proportion of s.o. with full graph	$\frac{1}{3}$	$\frac{7}{20}$	0.578	0.9345

The impartial culture assumption is quite restrictive

If this assumption is realistic, sequential voting will not be a good solution and the voters need to pay a high cost to elicit the preferences.

Working with pre-orders

CP-net representation

Naive representation

- for Borda: the score of a candidate as the number of candidates she dominates.
- two agendas compatible with the dependencies of all the voters can elect different winners!
$\{A\} \triangleright\{B\} \triangleright\{C\}$: winner is decided by tie-breaking rule, e.g., $\bar{a} \bar{b} \bar{c}$ if the tie-breaking rule chooses \bar{a} over a, \bar{b} over b and \bar{c} over c.
$\{A, B, C\}$ tie between $a b c$ and $\bar{a} b \bar{c}$
\Rightarrow are there tie-breaking rules that avoid this problem?

Bounding the size of the largest election

If the preferential dependency is violated, a voter is uncertain about his preference. We consider these three basic behaviours:

- abstain a voter can decide not to vote for that election
- optimistic a voter vote as if the best outcome is selected (wishful thinking).
- pessimistic a voter vote as if the worse outcome is selected.
optimistic and pessimistic are easy to compute if the CP-net is acyclic. If it is cyclic, it becomes hard.

Initial experiments

data generation:
Assumption 1: there exists a "true" dependency graph G_{o} and some voters make mistake.

- add an edge to G_{0} with probability r_{1}
- remove an edge from G_{o} with probability r_{2}

Then, generate random CP-tables that respect the dependencies.
Assumption 2: voters can rank up to 8 candidates (i.e. voters can vote on combinaison of 3 issues at most).
experiments with $|\mathcal{J}|=5$ binary issues, $|\mathcal{N}|=10$ voters, average over 500 preference profiles.
In 28% of the preference profiles generated, the largest election of the canonical agenda is less than 3 , hence it produces a legitimate winner.
For the remaining profiles, we generate all possible agendas with election size no larger than 3 issues.

- about half the candidates can be elected
- a "legitimate winner" is elected is about 29% of the agendas (22% with pessimistic, 29% with optimistic and abstain)
$\Rightarrow 49 \%$ a "legitimate winner" is elected
- if we select an agenda minimizing the number of violations, a "legitimate winner" is elected 65% of the time.

Results with acyclic dependency graphs

(a) number of agendas

(b) proportion of agendas electing a legitimate winner

Results with acyclic dependency graphs

Quality of the winners

(a) Winners' avg Borda score over $\mathcal{G}_{3}(\mathcal{J})$

(b) Agendas minimizing the number of violations.

- none of the canonical agendas is in $\mathcal{G}_{3}(\mathcal{J})$
- a legitimate winner was elected in 28.3% over all agendas in $\mathcal{G}_{3}(\mathcal{J})$
- if we concentrate on agenda that minimize the number of violations, a "legitimate winner" is elected in about 49% of the time
- we need some real data, at least check with other types of data
- test with larger number of issues
- compute a likelihood of being pivotal given the dependency graph of the voters
current work:
- check if we can solve more profiles if we check the results a posteriori (a voter could cast a ballot indicating his preferential dependencies for the issues at stake).
- estimate/compute likelihood of electing a legitimate winner

