UvA Matching 2017: Problem Solving with Prolog (BSc KI)

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam
[https://staff.science.uva.nl/u.endriss/teaching/uva-matching/]

Plan for this Module

- Big picture:
- What is Artificial Intelligence (AI)?
- What is problem solving and why is it so central to AI?
- How can logic programming help?
- And then for the actual topic of this lecture:
- Strategies for solving Towers of Hanoi
- Implementing those strategies in (simplified!) Prolog

Artificial Intelligence

What is AI? People do not agree on how to answer this.
My favourite answer:
AI is whatever AI researchers do.
This is true, but not helpful to you right now. So maybe this:

> AI is about getting machines to perform tasks that we tend to associate with "intelligence" when performed by humans.

More specifically:

- no need for the machine to be intelligent (philosophy)
- no need to agree what "intelligence" is exactly (psychology)
- no need to focus only on things humans are good at

Problem Solving

AI is about getting machines to perform tasks ...
At the core of such (possibly physical) tasks there often are rather abstract problems we need to solve. A solution often requires us to find a sequence of actions to achieve a given goal:

- finding a path from A to B on a street map
- computing a sequence of electronic signals for a robot to do X
- solving Rubik's Cube

Logic Programming

Prolog is a programming language that is particularly useful for problem solving. It is based on an idea called logic programming.

Towers of Hanoi

Move all disks from the leftmost to the rightmost peg, whilst:

- moving only one disk at a time, and
- never placing a disk on top of a smaller disk

Problem Representation

We don't want to build a robot that can physically move the disks (not today, anyway). We just want to find a general method that tells us in which order to move the disks.

First, we need to find an appropriate level of representation ...

Graphical Representation

11	11	11	
11	11	11	
11	1 \|	11	
xxxxxxxxxxx	1	1	
xxxxxxxxxxxxx	11	1	
xxxxxxxxxxxxxxx	11	11	
xxxxxxxxxxxxxxxxx	11	1	
mxxxxxxxxxxxxxxxxxx	11	xxxxxxx	
Xxxxxxxxxxxxxxxxxxxxx	\|		Xxxxxxxxx

1
2
3

Prolog-internal Representation

Game $=[[3,4,5,6,7,8,9],[9],[1,2,9]]$

Representation in Terms of Bits

```
01001010 11010010 11101010 0010111 10100101 00101010
11101010 00101100 00001000 1101010 11010101 11010101
0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 ~ 0 0 1 0 1 0 1 ~ 1 0 1 0 0 1 1 0 ~ 1 0 1 0 0 1 0 0
0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 ~ 0 1 0 1 1 1 1 1 ~ 1 0 1 0 0 1 0 ~ 1 0 1 0 1 1 1 0 ~ 1 0 1 0 1 1 1 0
10000010 10101000 00101010 0001101 11010010 00001011
0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 ~ 0 1 1 1 1 0 1 ~ 0 1 0 1 0 1 1 0 ~ 1 1 1 1 0 0 1 0
0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 ~ 1 0 1 0 1 0 0 ~ 0 1 1 1 1 0 1 1 ~ 1 1 0 0 1 0 0 0
1 1 1 1 0 1 0 1 1 0 1 0 0 0 1 0 ~ 0 0 1 1 0 1 0 1 ~ 1 1 0 1 0 0 0 ~ 1 1 1 0 0 0 0 0 ~ 1 1 0 0 0 0 1 1
0 1 1 1 0 1 0 0 0 1 0 0 1 1 0 0 ~ 1 0 1 0 0 0 1 0 ~ 1 1 1 0 0 1 0 ~ 0 0 1 0 1 0 1 0 ~ 1 1 1 1 0 1 0 1 ~
0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 0 ~ 0 0 0 0 1 1 0 0 ~ 0 1 0 1 0 1 0 ~ 1 0 1 0 1 0 1 1 ~ 1 1 1 0 0 1 0 1 ~
01010001 01010100 11100001 0101011 11110101 11000010
11101000 11100010 00101110 1010100 11000000 10001011
```


Physical Representation on the Computer

Game Console

You cannot learn how to program in just one day. And anyway, we want to focus on high-level ideas, not on low-level nitty gritty.

All the low-level stuff is taken care of by the ToH Game Console, a Prolog program providing a few simple predicates ("commands") for you to manipulate the towers.

```
init(+N) create a game with N disks (with N }\in{1,2,3,4,\ldots}
move(+A,+B) move the top disk on peg A to B (A, B \in {1,2,3})
top(+A,-D) given peg A, return top disk D on A (if any)
empty(+A) check whether peg A is empty
```

Here '+' means that you provide a value and '-' means that you receive a value (by using a variable). Example:

$$
\begin{aligned}
& ?-\operatorname{top}(1, X) . \\
& X=3 .
\end{aligned}
$$

First Solution

Focus on the case of 3 disks for now.
To solve the game, you have to move the top disk on peg 1 to peg 3, and then move the top disk on peg 1 to peg 2, and then move the top disk on peg 3 to peg 2, and then

In Prolog this is implemented as follows:

```
sillySolve :-
move(1,3), move(1,2), move(3,2), move(1,3),
move(2,1), move(2,3), move(1,3).
```

This will work. Type into Prolog (with the Game Console loaded):
?- init(3), sillySolve.

Good solution?

Second Solution

What are the possible moves available at a given time?

- move disk 1 (the smallest disk) "to the right" [1R]
- move disk 1 (the smallest disk) "to the left" [1L]
- make the only possible move not involving disk 1 [N1] (note that N1 is not possible in the initial or final configuration)

Observations:

- never iterate $1 \mathrm{R} / 1 \mathrm{~L}$ (can achieve same effect with one move)
- never iterate N1 (amounts to undoing previous move)

Thus:

- should alternate $1 \mathrm{R} / 1 \mathrm{~L}$ with N 1

But which one, 1R or 1L? Leap of faith: let's just try with $1 R$.

The Iterative Solution

To summarise, our algorithm is this:
(1) Perform 1R (move disk 1 to the right, from peg 1 to peg 2).
(2) Repeat until the final configuration is reached:
(a) Perform N1 (only possible move not involving disk 1).
(b) Perform 1R (move disk 1 one peg "to the right").

This works! (at least when the number n of disks is even) If n is odd, use 1 L instead of $1 R$.

This is pretty cool. But hard to understand why it actually works.

The Iterative Solution in Prolog

This is not so easy to implement and we'll brush over some details.

```
move1R :- % to perform 1R:
    where(1,Peg), % find peg of disk 1
    right(Peg). % move disk 1 one peg to the right
moveN1 :- % to perform N1:
    where(1,Peg1), % find peg of disk 1
    whereOtherDisk(Peg2), % find peg of next smallest top disk
    getThirdPeg(Peg1,Peg2,Peg3), % find name of third peg
    move(Peg2, Peg3). % move second smallest disk to third peg
itSolve :- % to solve the game:
    move1R, finish. % perfom 1R, then finish off
finish :- empty(1), empty(2). % finished if: pegs 1 & 2 empty
finish :- % to finish:
    moveN1, move1R, finish. % perform N1, then 1R, then finish off
```


Third Solution

Wanted: method to move a tower of n disks from peg A to peg B.
Solution:
To move a tower of n (with $n>1$) disks from A to B , simply
(1) move $n-1$ disks from A to C ,
(2) move the largest disk from A to B, and
(3) move $n-1$ disks from C to B

For the case of a tower with just 1 disk, we know what to do.
This works. Magic?

Two Auxiliary Predicates

We will need two auxiliary predicates that take care of some very basic stuff for us that is related to the manipulation of numbers. getPredecessor $(+N,-P)$: Given a natural number N, return that number's predecessor $\mathrm{P}:=\mathrm{N}-1$. Example:

$$
\begin{aligned}
& ?-\text { getPredecessor }(10, X) . \\
& X=9 .
\end{aligned}
$$

getThirdPeg $(+\mathrm{A},+\mathrm{B},-\mathrm{C})$: Given the names of pegs A and B , return that of the third peg C (names are 1, 2, and 3). Example:

```
?- getThirdPeg(3,1,X).
X = 2.
```

Btw, all that getThirdPeg/3 does is to compute $C:=6-(A+B)$.

The Recursive Solution in Prolog

recSolve ($\mathrm{N}, \mathrm{A}, \mathrm{B}$) implements our recursive algorithm to move a tower with N disks from location A to location B :

```
recSolve(N, A, B) :- % to move a tower from A to B
        N =:= 1,
        move(A, B).
recSolve(N, A, B) :- % to move a tower from A to B
    N > 1,
    getPredecessor(N, N1), % get predecessor N1 of N
    getThirdPeg(A, B, C), % get name of third peg C
    recSolve(N1, A, C),
    move(A, B),
    recSolve(N1, C, B).
% if size N is equal to 1:
% move single disk from A to B
    % if size N is greater than 1:
    % move tower of size N-1 to C
    % move largest disk to B
    % move tower of size N-1 to B
```


Complexity

How complex is the Towers of Hanoi problem? That is, how long does it take to solve a game with n disks?

Answer: depends how fast you can move one disk
So better ask: how many steps to solve a game with n disks?

- $n=1$: ?
- $n=2$: ?
- $n=3:$?

Formal Complexity Analysis

Observations: You must move the largest disk (size n) eventually. You can only move it, if the remaining tower sits somewhere else. So our recursive algorithm is optimal:
(1) move tower of size $n-1$ out of the way
(2) move largest disk in place
(3) move tower of size $n-1$ on top of it

Let $f(k)$ be the number of steps needed for a game with k disks.
We know $f(1)=1$ (solving a game with 1 disk takes 1 step).
From our algorithm, for a game with n disks we immediately get:

$$
f(n)=f(n-1)+1+f(n-1)=2 \cdot f(n-1)+1
$$

Not yet helpful for computing, say, $f(10)$. We want a closed form .

Closed Form

What is $f(n)$, the number of steps to solve a game with n disks?
We have established:

- $f(1)=1$
- $f(n)=2 \cdot f(n-1)+1 \quad(*)$

Examples: $f(2)=3, f(3)=7, f(4)=15, f(5)=31, f(6)=63, \ldots$
What we really want:
Claim: $f(n)=2^{n}-1$ for every $n \in \mathbb{N}$.
Proof: Take any $n>1$. Suppose for a moment that the claim were true for $n-1$, meaning that $f(n-1)=2^{n-1}-1 .(* *)$ But then:

$$
f(n) \stackrel{*}{=} 2 \cdot f(n-1)+1 \stackrel{* *}{=} 2 \cdot\left[2^{n-1}-1\right]+1=2^{n}-1
$$

The claim is true for $n=1$, as we have seen.
Thus, by induction, it must be true for every $n \in \mathbb{N}$. \checkmark

Summary

What you've learned about today:

- several methods for solving Towers of Hanoi
- programming in Prolog (well, a bit)

What this really has been about:

- need to find the right representation of a problem
- need to abstract away from low-level details
- importance of striving for general solutions
- importance of formal/mathematical analysis of solutions

What next?

- grab a copy of the handout on your way out (to have lunch)
- if not done yet, install SWI-Prolog on your laptop
- be at one of the lab rooms at 14:00 for the practicum
- submit your assignment by 17:00 today

