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Voting Theory

Voting theory (which is part of social choice theory) is the study of

methods for conducting an election:

I A group of voters each have preferences over a set of candidates.

Each voter submits a ballot, based on which a voting rule selects

a (set of) winner(s) from amongst the candidates.

This is not a trivial problem. Remember Florida 2000 (simplified):

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush
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Tutorial Overview

• Voting Rules

– Such as: Plurality, Borda, Approval, Copleand . . .

– Properties and Paradoxes

• Strategic Manipulation

– The Axiomatic Method in Voting Theory

– The Gibbard-Satterthwaite Theorem

• Computational Social Choice

– Introduction to the field

– Examples for work involving voting
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Voting Rules and their Properties
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Three Voting Rules

How should n voters choose from a set of m candidates?

• Plurality : elect the candidate ranked first most often

(i.e., each voter assigns one point to a candidate of her choice,

and the candidate receiving the most votes wins).

• Borda: each voter gives m−1 points to the candidate she ranks

first, m−2 to the candidate she ranks second, etc., and the

candidate with the most points wins.

• Approval: voters can approve of as many candidates as they wish,

and the candidate with the most approvals wins.
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Example

Suppose there are three candidates (A, B, C) and 11 voters with the

following preferences (where boldface indicates acceptability , for AV):

5 voters think: A � B � C

4 voters think: C � B � A

2 voters think: B � C � A

Assuming the voters vote sincerely , who wins the election for

• the plurality rule?

• the Borda rule?

• approval voting?
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Positional Scoring Rules

We can generalise the idea underlying the Borda rule as follows:

A positional scoring rule is given by a scoring vector s = 〈s1, . . . , sm〉
with s1 > s2 > · · · > sm and s1 > sm.

Each voter submits a ranking of the m candidates. Each candidate

receives si points for every voter putting her at the ith position.

The candidates with the highest score (sum of points) win.

For instance:

• The Borda rule is is the positional scoring rule with the scoring

vector 〈m−1,m−2, . . . , 0〉.

• The plurality rule is the positional scoring rule with the scoring

vector 〈1, 0, . . . , 0〉.

• The antiplurality or veto rule is the positional scoring rule with

the scoring vector 〈1, . . . , 1, 0〉.
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The Condorcet Principle

A candidate that beats every other candidate in pairwise majority

contests is called a Condorcet winner .

There may be no Condorcet winner; witness the Condorcet paradox:

Ann: A � B � C

Bob: B � C � A

Cesar: C � A � B

Whenever a Condorcet winner exists, then it must be unique.

A voting rule satisfies the Condorcet principle if it elects (only) the

Condorcet winner whenever one exists.

M. le Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilté des

décisions rendues a la pluralité des voix. Paris, 1785.
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Positional Scoring Rules violate Condorcet

Consider the following example:

3 voters: A � B � C

2 voters: B � C � A

1 voter: B � A � C

1 voter: C � A � B

A is the Condorcet winner ; she beats both B and C 4 : 3. But any

positional scoring rule makes B win (because s1 > s2 > s3):

A: 3 · s1 + 2 · s2 + 2 · s3
B: 3 · s1 + 3 · s2 + 1 · s3
C: 1 · s1 + 2 · s2 + 4 · s3

Thus, no positional scoring rule for three (or more) candidates will

satisfy the Condorcet principle.
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Condorcet-Consistent Rules

Some voting rules have been designed specifically to meet the

Condorcet principle.

• Copeland: elect the candidate that maximises the difference

between won and lost pairwise majority contests.

• Dodgson: elect the candidate that is “closest” to being a

Condorcet winner, where “closeness” between two profiles is

measured in terms of the number of swaps of adjacent candidates

in a voter’s ranking required to move from one to the other.

A problem with the latter is that it is computationally intractable.

E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. Exact Analysis of Dodgson

Elections: Lewis Carroll’s 1876 Voting System is Complete for Parallel Access to

NP. Journal of the ACM, 44(6):806–825, 1997.
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Plurality with Run-Off

One more voting rule:

• Plurality with run-off : each voter initially votes for one candidate;

the winner is elected in a second round by using the plurality rule

with the two top candidates from the first round.

Example: French presidential elections
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The No-Show Paradox

Under plurality with run-off, it may be better to abstain than to vote for

your favourite candidate! Example:

25 voters: A � B � C

46 voters: C � A � B

24 voters: B � C � A

Given these voter preferences, B gets eliminated in the first round,

and C beats A 70:25 in the run-off.

Now suppose two voters from the first group abstain:

23 voters: A � B � C

46 voters: C � A � B

24 voters: B � C � A

A gets eliminated, and B beats C 47:46 in the run-off.

P.C. Fishburn and S.J Brams. Paradoxes of Preferential Voting. Mathematics

Magazine, 56(4):207-214, 1983.

Ulle Endriss 14



Voting Theory SecVote-2012

Insights so far / What next?

We have seen:

• There are many different voting rules (all of them looking more or

less reasonable at first sight).

• Those rules can do surprisingly badly in some cases (“paradoxes”).

This is why:

• We need to be precise in formulating our requirements (“axioms”).

• A major part of social choice theory concerns the formal study of

voting rules and the axioms they do or do not satisfy.

We will now focus on one such axiom and its formal treatment.
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Strategic Manipulation
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Strategic Manipulation

Recall our initial example:

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

Under the plurality rule, Bush will win the election.

Note that the Nader supporters have an incentive to manipulate by

misrepresenting their preferences and vote for Gore instead of Nader

(in which case Gore rather than Bush will win).

I Can we find a voting rule that avoids this problem?
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Notation and Terminology

Set of n voters N = {1, . . . , n} and set of m candidates X .

Both (true) preferences and (reported) ballots are modelled as linear

orders on X . L(X ) is the set of all such linear orders.

A profile R = (R1, . . . , Rn) fixes one preference/ballot for each voter.

We are looking for a resolute voting rule F : L(X )N → X , mapping

any given profile of ballots to a (single) winning candidate.
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Strategy-Proofness

Notation: (R−i, R
′
i) is the profile obtained by replacing Ri in R by R′i.

F is strategy-proof (or immune to manipulation) if for no individual

i ∈ N there exist a profile R (including the “truthful preference” Ri

of i) and a linear order R′i (representing the “untruthful” ballot of i)

such that F (R−i, R
′
i) is ranked above F (R) according to Ri.

In other words: under a strategy-proof voting rule no voter will ever

have an incentive to misrepresent her preferences.
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The Gibbard-Satterthwaite Theorem

Two more properties of resolute voting rules F :

• F is surjective if for any candidate x ∈ X there exists a profile R

such that F (R) = x.

• F is a dictatorship if there exists a voter i ∈ N (the dictator) such

that F (R) = top(Ri) for any profile R.

Gibbard (1973) and Satterthwaite (1975) independently proved:

Theorem 1 (Gibbard-Satterthwaite) Any resolute voting rule for

> 3 candidates that is surjective and strategy-proof is a dictatorship.

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 10:187–217, 1975.
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Remarks

The G-S Theorem says that for > 3 candidates, any resolute voting

rule F that is surjective and strategy-proof is a dictatorship.

• a surprising result + not applicable in case of two candidates

• The opposite direction is clear: dictatorial ⇒ strategy-proof

• Random procedures don’t count (but might be “strategy-proof”).

We will now prove the theorem under two additional assumptions:

• F is neutral , i.e., candidates are treated symmetrically.

[Note: neutrality ⇒ surjectivity; so we won’t make use of surjectivity.]

• There are exactly 3 candidates.

For a full proof, using a similar approach, see, e.g.:

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.
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Proof (1)

Notation: NR
x�y is the set of voters who rank x above y in profile R.

Claim: If F (R) = x and NR
x�y = NR′

x�y, then F (R′) 6= y.

Proof: From strategy-proofness, by contradiction. Assume F (R′) = y.

Moving from R to R′, there must be a first voter to affect the winner.

So w.l.o.g., assume R and R′ differ only wrt. voter i. Two cases:

• i ∈ NR
x�y: Suppose i’s true preferences are as in profile R′

(i.e., i prefers x to y). Then i has an incentive to vote as in R. X

• i 6∈ NR
x�y: Suppose i’s true preferences are as in profile R

(i.e., i prefers y to x). Then i has an incentive to vote as in R′. X

Some more terminology:

Call C ⊆ N a blocking coalition for (x, y) if C=NR
x�y ⇒ F (R) 6=y.

Thus: If F (R) = x, then C := NR
x�y is blocking for (x, y) [for any y].
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Proof (2)

From neutrality : all (x, y) must have the same blocking coalitions.

For any C ⊆ N , C or C := N \C must be blocking.

Proof: Assume C is not blocking; i.e., C is not blocking for (x, y).

Then there exists an R with NR
x�y = C but F (R) = y.

But we also have NR
y�x = C. Hence, C is blocking for (y, x).

If C1 and C2 are blocking, then so is C1 ∩ C2.

Proof: Consider a profile R with C1 = NR
x�y, C2 = NR

y�z, and

C1 ∩ C2 = NR
x�z. As C1 is blocking, y cannot win. As C2 is

blocking, z cannot win. So x wins and C1 ∩ C2 must be blocking.

The empty coalition is not blocking.

Proof: Omitted (but not at all surprising).

Above three properties imply that there must be a singleton {i} that is

blocking. But that just means that i is a dictator ! X
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Single-Peakedness

The G-S Thm shows that no “reasonable” voting rule is strategy-proof.

The classical way to circumvent this problem are domain restrictions.

The most important domain restriction is due to Black (1948):

• Definition: A profile is single-peaked if there exists a

“left-to-right” ordering � on the candidates such that any voter

ranks x above y if x is between y and her top candidate wrt. �.

Think of spectrum of political parties.

• Result: Fix a dimension �. Assuming that all profiles are

single-peaked wrt. �, the median-voter rule is strategy-proof.

D. Black. On the Rationale of Group Decision-Making. The Journal of Political

Economy, 56(1):23–34, 1948.
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Computational Social Choice
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Computational Social Choice

Social choice theory studies mechanisms for collective decision making:

voting, preference aggregation, fair division, two-sided matching, . . .

• Precursors: Condorcet, Borda (18th century) and others

• serious scientific discipline since 1950s

Computational social choice adds a computational perspective to this,

and also explores the use of concepts from social choice in computing.

• “classical” papers: ∼1990 (Bartholdi et al.)

• active research area with regular contributions since ∼2002

• name “COMSOC” and biannual workshop since 2006

Next: three examples for research directions in COMSOC
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Complexity as a Barrier against Manipulation

By the Gibbard-Satterthwaite Theorem, any voting rule for > 3

candidates can be manipulated (unless it is dictatorial).

Idea: So it’s always possible to manipulate, but maybe it’s difficult!

Tools from complexity theory can be used to make this idea precise.

• For some procedures this does not work: if I know all other ballots

and want X to win, it is easy to compute my best strategy.

• But for others it does work: manipulation is NP-complete.

Recent work in COMSOC has expanded on this idea:

• NP is a worst-case notion. What about average complexity?

• Also: complexity of winner determination, control, bribery, . . .

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

P. Faliszewski, E. Hemaspaandra, and L.A. Hemaspaandra. Using Complexity to

Protect Elections. Communications of the ACM, 553(11):74–82, 2010.
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Automated Reasoning for Social Choice Theory

Logic has long been used to formally specify computer systems, facilitating

verification of properties. Can we apply this methodology also here? Yes:

• Verification of a (known) proof of the Gibbard-Satterthwaite Theorem

in the HOL proof assistant Isabelle (Nipkow, 2009).

• Fully automated proof of Arrow’s Theorem for 3 candidates via a SAT

solver or constraint programming (Tang and Lin, 2009).

• Automated search for new impossibility theorems in ranking sets of

objects using a SAT colver (Geist and E., 2011).

T. Nipkow. Social Choice Theory in HOL. Journal of Automated Reasoning,

43(3):289–304, 2009.

P. Tang and F. Lin. Computer-aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 173(11):1041–1053, 2009.

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. J. of Artif. Intell. Res., 40:143-174, 2011.
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Social Choice in Combinatorial Domains

Suppose 13 voters are asked to each vote yes or no on three issues;

and we use the plurality rule for each issue independently:

• 3 voters each vote for YNN, NYN, NNY.

• 1 voter each votes for YYY, YYN, YNY, NYY.

• No voter votes for NNN.

But then NNN wins: 7 out of 13 vote no on each issue (paradox!).

What to do instead? The number of candidates is exponential in the

number of issues (e.g., 23 = 8), so even just representing the voters’

preferences is a challenge (; knowledge representation).

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections.

Social Choice and Welfare, 15(2):211–236, 1998.

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference Handling in Com-

binatorial Domains: From AI to Social Choice. AI Magazine, 29(4):37–46, 2008.
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Computational Social Choice

Research can be broadly classified along two dimensions —

The kind of social choice problem studied, e.g.:

• electing a winner given individual preferences over candidates

• aggregating individual judgements into a collective verdict

• fairly dividing a cake given individual tastes

The kind of computational technique employed, e.g.:

• algorithm design to implement complex mechanisms

• complexity theory to understand limitations

• logical modelling to fully formalise intuitions

• knowledge representation techniques to compactly model problems

• deployment in a multiagent system

Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A Short Introduction to

Computational Social Choice. Proc. SOFSEM-2007.
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Conclusion
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Last Slide

Tried to give an introduction to voting theory (⊆ social choice theory)

and to hint at recent development in computational social choice.

Main points:

• many different voting rules available

• surprising phenomena require careful formal modelling

• there’s scope for new ideas from computer scientists

These slides and more extensive materials from my Amsterdam course

on COMSOC are available online

• http://www.illc.uva.nl/~ulle/teaching/secvote-2012/

• http://www.illc.uva.nl/~ulle/teaching/comsoc/
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