
Preference Modelling in Combinatorial Domains ILCS 2007

Introduction to
Logic in Computer Science: Autumn 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Preference Modelling in Combinatorial Domains ILCS 2007

Preference Modelling

• An important topic in knowledge representation is the study of

languages for expressing preferences.

• There are many criteria that we may apply to decide what is a

good preference representation language and what isn’t.

• This will be an introduction to preference representation when

the set of alternatives over which an agent has preferences has

a combinatorial structure (i.e. there are many alternatives).

Ulle Endriss 2

Preference Modelling in Combinatorial Domains ILCS 2007

Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a set

of alternatives X . There are different types of preference structures:

• A cardinal preference structure is a (utility or valuation)

function u : X → Val , where Val is usually a set of numerical

values such as N or R.

• An ordinal preference structure is a binary relation � over the

set of alternatives (reflexive, transitive and connected).

Note that we shall assume that X is finite.

Ulle Endriss 3

Preference Modelling in Combinatorial Domains ILCS 2007

Dinner Plans

Consider the following menu options:

• Starter: fish soup, vegetable soup or salad

• Main: meat or fish

• Wine: red or white

• Dessert: ice cream or tiramisu

So there are 24 possible menus. We don’t really want to rank all of

them before making a decision.

But we can also not completely decompose the problem into 4

separate problems either (wine choice may depend on mains, etc.).

Ulle Endriss 4

Preference Modelling in Combinatorial Domains ILCS 2007

Committee Elections

Suppose we have to elect a committee (not just a single candidate).

If there are k seats to be filled from a pool of n candidates, then

there are
(

n
k

)

possible outcomes.

For k = 5 and n = 12, for instance, that makes 792 alternatives.

The domain of alternatives has a combinatorial structure.

It does not seem reasonable to ask voters to submit their full

preferences over all alternatives to the collective decision making

mechanism. What would be a reasonable form of balloting?

Ulle Endriss 5

Preference Modelling in Combinatorial Domains ILCS 2007

Multiagent Resource Allocation

Scenario: several agents and a set R of indivisible resources

Task: decide on an allocation of resources to agents, e.g. by means

of negotiation or an auction; the quality of a solution could be

measured in terms of some aggregation of individual preferences

For m agents and n resources, there are mn allocations to consider.

Individual agents model their preferences in terms of utility

functions u : 2R → R. In particular, the utility assigned to a bundle

is not (necessarily) the sum of the utilities or the individual items.

For each agent, there are 2n alternative bundles to consider.

How should we represent the individual agent preferences?

Ulle Endriss 6

Preference Modelling in Combinatorial Domains ILCS 2007

Explicit Representation

The explicit form of representing a utility function u consists of a

table listing for every bundle X ⊆ R the utility u(X).

By convention, table entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space:

e.g. the additive function mapping bundles to their cardinality.

Remark: Of course, any additive utility function could be encoded

very concisely: just store the utilities for individual goods + the

information that this is an additive function ; linear space

But this is not a general method (not fully expressive).

Ulle Endriss 7

Preference Modelling in Combinatorial Domains ILCS 2007

Explicit Representation (cont.)

For ordinal preferences the situation is even worse. The space

complexity required to explicitly describe an ordinal preference

ordering over X is O(|X |2). For X = 2R this is bad.

; We need to use something a bit more sophisticated!

Ulle Endriss 8

Preference Modelling in Combinatorial Domains ILCS 2007

Two Frameworks

In the remainder of this lecture we are going to look at two specific

frameworks for compact preference representation:

• CP-nets for modelling conditional (ordinal) preferences in a

ceteris paribus fashion

• Weighted propositional formulas for modelling utility functions

Ulle Endriss 9

Preference Modelling in Combinatorial Domains ILCS 2007

CP-Nets

In the language of ceteris paribus preferences, preferences are

expressed as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer

alternatives satisfying ϕ ∧ ¬ϕ′ over those satisf. ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional

variables not occurring in ϕ and ϕ′.

An important sublanguage of ceteris paribus preferences, imposing

various restrictions on goals, are CP-nets. This part of the lecture

is based on the paper by Boutilier et al. (2004). In particular, all

the pictures are taken from that paper.

C. Boutilier, R.I. Brafman, C. Domshlak, H.H. Hoos, and D. Poole. CP-

nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus

Preference Statements. Journal of AI Research, 21:135–191, 2004.

Ulle Endriss 10

Preference Modelling in Combinatorial Domains ILCS 2007

Example: Dinner

Ulle Endriss 11

Preference Modelling in Combinatorial Domains ILCS 2007

Example: Dinner II

Ulle Endriss 12

Preference Modelling in Combinatorial Domains ILCS 2007

Example: Evening Dress

Ulle Endriss 13

Preference Modelling in Combinatorial Domains ILCS 2007

Definition

A CP-net over variables V = {X1, . . . , Xn} is a directed graph G

over V whose nodes are annotated with conditional preference

tables for each Xi. Each such table (for Xi) associates a total order

with each instantiation of the parents of Xi in the graph.

A given preference ordering � may or may not satisfy a given

CP-net (semantics as expected).

To date, most technical results pertain to acyclic CP-nets. E.g.:

Proposition 1 Every acyclic CP-net is satisfiable.

Ulle Endriss 14

Preference Modelling in Combinatorial Domains ILCS 2007

Some Complexity Results

The following results apply to acyclic CP-nets:

• Outcome optimisation: What is the best alternative?

O(n) — easy algorithm: start from most important variables

and set each variable to its most preferred value

• Dominance queries: Does the CP-net N force N |= o � o′?

NP-hard in general (upper bound not known), but tractable for

special cases, e.g. O(n2) for binary-valued tree-structured nets

• Ordering queries: Is o � o′ consistent with N , i.e. N 6|= o′ � o?

O(n) to check whether N 6|= o′ � o or N 6|= o � o′

Ulle Endriss 15

Preference Modelling in Combinatorial Domains ILCS 2007

Weighted Propositional Formulas

Next we are going to look at a language for modelling utility

functions. The basic idea is to use propositional logic to express

goals and to add up the weights of the goals satisfied for a

particular alternative.

The results on the following slides are taken from the two papers

cited below.

Y. Chevaleyre, U. Endriss, and J. Lang. Expressive Power of Weighted Propo-

sitional Formulas for Cardinal Preference Modelling. Proc. KR-2006.

J. Uckelman and U. Endriss. Preference Representation with Weighted Goals:

Expressivity, Succinctness, Complexity. Proc. AiPref-2007.

Ulle Endriss 16

Preference Modelling in Combinatorial Domains ILCS 2007

Classes of Utility Functions

A utility function is a mapping u : 2PS → R.

• u is normalised iff u({ }) = 0.

• u is non-negative iff u(X) ≥ 0.

• u is monotonic iff u(X) ≤ u(Y) whenever X ⊆ Y .

• u is modular iff u(X ∪ Y) = u(X) + u(Y) − u(X ∩ Y).

• u is concave iff u(X ∪ Y)− u(Y) ≤ u(X ∪Z)− u(Z) for Y ⊇ Z.

• Let PS (k) = {S ⊆ PS |#S ≤ k}. u is k-additive iff there exists

another mapping u′ : PS(k) → R such that (for all X):

u(X) =
∑

{u′(Y) | Y ⊆ X and Y ∈ PS(k)}

Also of interest: subadditive, superadditive, convex, . . .

Ulle Endriss 17

Preference Modelling in Combinatorial Domains ILCS 2007

Why k-additive Functions?

Again, u is k-additive iff there exists a u′ : PS(k) → R such that:

u(X) =
∑

{u′(Y) | Y ⊆ X and Y ∈ PS(k)}

In the context of resource allocation, the value u′(Y) can be seen as

the additional benefit incurred from owning the items in Y

together, i.e. beyond the benefit of owning all proper subsets.

Example: u = 4.p+ 7.q − 2.p.q + 2.q.r is a 2-additive function

The k-additive form allows us to parametrise synergetic effects:

• 1-additive = modular (no synergies)

• |PS |-additive = general (any kind of synergies)

• . . . and everything in between

Ulle Endriss 18

Preference Modelling in Combinatorial Domains ILCS 2007

Weighted Propositional Formulas

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all M ∈ 2PS . G is called the generator of uG.

Example: {(p ∨ q ∨ r, 5), (p ∧ q, 2)}

We shall be interested in the following question:

• Are there simple restrictions on goal bases such that the utility

functions they generate enjoy simple structural properties?

Ulle Endriss 19

Preference Modelling in Combinatorial Domains ILCS 2007

Restrictions

Let H ⊆ LPS be a restriction on the set of propositional formulas and let

H ′ ⊆ R be a restriction on the set of weights allowed.

Regarding formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of ¬; a strictly

positive formula is a positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; a k-clause is a

clause of length ≤ k.

• A cube is a (possibly empty) conjunction of literals; a k-cube is a

cube of length ≤ k.

• A k-formula is a formula ϕ with at most k propositional symbols.

Regarding weights, we consider only the restriction to positive reals.

Given two restrictions H and H ′, let U(H,H’) be the class of functions

that can be generated from goal bases conforming to H and H ′.

Ulle Endriss 20

Preference Modelling in Combinatorial Domains ILCS 2007

Basic Results

Proposition 2 U(positive k-cubes, all) is equal to the class of

k-additive utility functions.

Proof: Goals (p1 ∧ · · · ∧ pk, α) directly correspond to the auxiliary

utility function u′ : {p1, . . . , pk} 7→ α . . . 2

Proposition 3 The following are also all equal to the class of

k-additive utility functions: U(k-cubes, all), U(k-clauses, all),

U(positive k-formulas, all) and U(k-formulas, all).

Proof: Use equivalence-preserving transformations of goal bases

such as G ∪ {(ϕ ∧ ¬ψ, α)} ≡ G ∪ {(ϕ, α), (ϕ ∧ ψ,−α)}. 2

Proposition 4 U(positive k-clauses, all) is equal to the class of

normalised k-additive utility functions.

Proof: (>, α) cannot be rewritten as a positive clause . . . 2

Ulle Endriss 21

Preference Modelling in Combinatorial Domains ILCS 2007

Monotonic Utility

Proposition 5 U(strictly positive, positive) is equal to the class of

normalised monotonic utility functions.

Example: Take the normalised monotonic function u with

u({p1}) = 2, u({p2}) = 5 and u({p1, p2}) = 6. We obtain the

following goal base:

G = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}

Ulle Endriss 22

Preference Modelling in Combinatorial Domains ILCS 2007

Some Expressivity Results

Formulas Weights Utility Functions

cubes/clauses/all general = all

positive cubes/formulas general = all

positive clauses general = normalised

strictly positive formulas general = normalised

k-cubes/clauses/formulas general = k-additive

positive k-cubes/formulas general = k-additive

positive k-clauses general = normalised k-additive

literals general = modular

atoms general = normalised modular

cubes/formulas positive = non-negative

clauses positive ⊂ non-negative

strictly positive formulas positive = normalised monotonic

positive formulas positive = non-negative monotonic

positive clauses positive ⊂ normalised concave monotonic

Ulle Endriss 23

Preference Modelling in Combinatorial Domains ILCS 2007

Comparative Succinctness

If two languages can express the same class of utility functions,

which should we use? An important criterion is succinctness.

Let L and L′ be two languages (classes of goal bases).

L is no more succinct than L′ (L � L′) iff there exist a mapping

f : L→ L′ and a polynomial function p such that:

• uG ≡ uf(G) for all G ∈ L (they generate the same functions);

• and size(f(G)) ≤ p(size(G)) for all G ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to

succinctness.

Ulle Endriss 24

Preference Modelling in Combinatorial Domains ILCS 2007

An Incomparability Result

Let complete cubes ⊆ LPS be the restriction to cubes of length

n = |PS |, containing either p or ¬p for every p ∈ PS .

Fact: U(complete cubes, all) is equal to the class of all utility

functions (and corresponds to the “explicit form”).

Proposition 6 U(complete cubes, all) and U(positive cubes, all) are

incomparable (in view of their succinctness).

Proof: The following two functions can be used to prove the mutual

lack of a polysize reduction:

• u1(M) = |M | can be generated by a goal base of just n positive

cubes of length 1, but we need 2n−1 complete cubes for u1.

• The function u2, with u2(M) = 1 for |M | = 1 and u2(M) = 0

otherwise, can be generated by a goal base of n complete

cubes, but we require 2n−1 positive cubes to generate u2. 2

Ulle Endriss 25

Preference Modelling in Combinatorial Domains ILCS 2007

The Efficiency of Negation

Recall that both U(positive cubes, all) and U(cubes, all) are equal to

the class of all utility functions. So which should we use?

Proposition 7 U(positive cubes, all) ≺ U(cubes, all).

Proof: Clearly, U(positive cubes, all) � U(cubes, all), because any

positive cube is also a cube.

Now consider u with u({ }) = 1 and u(M) = 0 for all M 6= { }:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ U(cubes, all) has linear size and

generates u.

• G′ = {(
∧

X, (−1)|X|) | X ⊆ PS} ∈ U(positive cubes, all) has

exponential size and also generates u.

On the other hand, the generator of u must be unique if only

positive cubes are allowed (start with (>, 1) ∈ Gu . . .). 2

Ulle Endriss 26

Preference Modelling in Combinatorial Domains ILCS 2007

Some Succinctness Results

L(pcubes , all) ⊥ L(complete cubes, all)

L(pcubes , all) ≺ L(cubes , all)

L(pcubes , all) ≺ L(positive, all)

L(pclauses , all) ≺ L(clauses , all)

L(pcubes , all) ⊥ L(pclauses , all)

L(cubes , all) ∼ L(clauses , all)

Ulle Endriss 27

Preference Modelling in Combinatorial Domains ILCS 2007

Complexity

Other interesting questions concern the complexity of reasoning

about preferences. Consider the following decision problem:

Max-Utility(H,H’)

Given: Goal base G ∈ U(H,H’) and K ∈ Z

Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results are straightforward:

• Max-Utility(H,H’) is in NP for any choice of H and H ′,

because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(all, all) is NP-complete (reduction from Sat).

More interesting questions would be whether there are either

(1) “large” sublanguages for which Max-Utility is still

polynomial, or (2) “small” sublanguages for which it is already

NP-hard.

Ulle Endriss 28

Preference Modelling in Combinatorial Domains ILCS 2007

Three Complexity Results

Proposition 8 Max-Utility(k-clauses, positive) is NP-complete,

even for k = 2.

Proof: Reduction from Max2Sat (NP-complete): “Given a set of

2-clauses, is there a satisfiable subset with cardinality ≥ K?”. 2

Proposition 9 Max-Utility(literals, all) is in P.

Proof: Assuming that G contains every literal exactly once

(possibly with weight 0), making p true iff the weight of p is greater

than the weight of ¬p results in a model with maximal utility. 2

Proposition 10 Max-Utility(positive, positive) is in P.

Proof: Making all atoms true yields maximal utility. 2

Ulle Endriss 29

Preference Modelling in Combinatorial Domains ILCS 2007

Some Complexity Results

• Max-Utility(literals, all) is in P.

• Max-Utility(positive, positive) is in P.

• Max-Utility(k-clauses, positive) is NP-complete for k ≥ 2.

• Max-Utility(k-cubes, positive) is NP-complete for k ≥ 2.

• Max-Utility(positive k-clauses, all) is NP-complete for k ≥ 2.

• Max-Utility(positive k-cubes, all) is NP-complete for k ≥ 2.

Ulle Endriss 30

Preference Modelling in Combinatorial Domains ILCS 2007

Conclusion

Preference representation in combinatorial domains is relevant to a

number of applications.

CP-nets and weighted propositional formulas are two proposals for

compact preference representation in this area.

Interesting questions to consider:

• How expressive is the language under consideration?

• Which language is more succinct for certain structures?

• What is the complexity of relevant decision problems?

• How do I best elicit preferences from a user?

• What features make a language “natural”?

Ulle Endriss 31

