
Logic and Prolog ILCS 2007

Introduction to

Logic in Computer Science: Autumn 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Logic and Prolog ILCS 2007

Logic and Prolog

Today we are going to discuss the logical foundations of Prolog:

• Translating Prolog programs into Horn clauses

• Resolution as the reasoning engine underlying Prolog

Ulle Endriss 2

Logic and Prolog ILCS 2007

Horn Clauses

In logic, a clause is a disjunction of literals. A propositional Horn

clause is a clause with at most one positive literal. Observe that:

¬A1 ∨ · · · ∨ ¬An ∨ B ≡ A1 ∧ · · · ∧ An → B

A first-order Horn clause is a formula of the form (∀x1) · · · (∀xn)A,

with A being a propositional Horn clause.

“Pure” Prolog programs (without cuts, negation, or any built-ins

with side effects) can be translated into sets of Horn clauses:

• Commas separating subgoals become ∧.

• :- becomes →, with the order of head and body switched.

• All variables are universally quantified (scope: full formula).

• Queries are translated as negated formulas (Q → ⊥).

Ulle Endriss 3

Logic and Prolog ILCS 2007

Example

The following Prolog program (with a query) . . .

bigger(elephant, horse).

bigger(horse, donkey).

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

?- is_bigger(elephant, X), is_bigger(X, donkey).

. . . corresponds to the following set of FOL formulas:

{ bigger(elephant, horse),

bigger(horse, donkey),

∀x.∀y.(bigger(x, y) → is bigger(x, y)),

∀x.∀y.∀z.(bigger(x, z) ∧ is bigger(z, y) → is bigger(x, y))

∀x.(is bigger(elephant, x) ∧ is bigger(x, donkey) → ⊥) }

Alternative notation: set of sets of literals (implicit quantification)

Ulle Endriss 4



Logic and Prolog ILCS 2007

Prolog and Resolution

When Prolog resolves a query, it tries to build a proof for that

query from the premises given by the program (or equivalently:

it tries to refute the union of the program and the negated query).

Therefore, at least for pure Prolog, query resolution can be

explained in terms of deduction in FOL. In principle, any calculus

could be used, but historically Prolog is based on resolution.

What next?

• Resolution for full FOL

• Resolution for Horn clauses (to get a feel for why Prolog

“works”, despite the undecidability of FOL)

Ulle Endriss 5

Logic and Prolog ILCS 2007

Binary Resolution with Factoring

Aim: Show ∆ |= ϕ (for a set of sentences ∆ and a sentence ϕ).

Preparation: Compute Skolem Normal Form of formulas in ∆ and

of ¬ϕ and write them as a set of clauses (variables named apart).

Input: Set of clauses (which we want to show to be unsatisfiable).

Algorithm: Apply the following two rules. The proof succeeds if

the empty clause (usually written as 2) can be derived.

Binary Resolution Rule

{L1} ∪ C1

{Lc

2} ∪ C2

µ(C1 ∪ C2)

Lc

2 is the complement of L2

µ is an mgu of L1 and L2

Factoring

{L1, . . . , Ln} ∪ C

σ({L1} ∪ C)

σ unifies {L1, . . . , Ln}

Ulle Endriss 6

Logic and Prolog ILCS 2007

Why Factoring?

Try to derive the empty clause from the following (obviously

unsatisfiable) set of clauses without using the factoring rule.

{ {P (x), P (y)}, {¬P (u),¬P (v)} }

⇒ It’s not possible!

This means that our binary resolution rule alone (without

factoring) would not be a complete deduction system for FOL.

Remark: The general resolution rule allows us to resolve using

subclauses (rather than just literals). In that case we can do

without factoring.

Ulle Endriss 7

Logic and Prolog ILCS 2007

SLD Resolution for Horn Clauses

SLD Resolution stands for Selective Linear Resolution for Definite

clauses, where:

• linear means we always use the latest resolvent in the next step;

• we have a selection function telling us which literal to use; and

• the input is restricted to Horn clauses, all but one of which

have to be definite clauses (that’s another word for Horn

clauses with exactly one positive literal).

SLD Resolution is complete for the Horn fragment (proof omitted).

Ulle Endriss 8



Logic and Prolog ILCS 2007

SLD Resolution in Logic Programming

Prolog implements SLD Resolution:

• Linearity: we start with the only negative clause (the negated

query) and then always use the previous resolvent (new query).

• The selection function is very simple: it always chooses the

first literal (in the current “query”).

• The input is restricted to one negative Horn clause (negated

query) and a number of positive Horn clauses (rules and facts).

In practice, one problem remains: if there is more than one way to

resolve with the selected literal (i.e. more than one matching rule

or fact) then we don’t know which one will eventually lead to a

successful refutation. In Prolog, always the first one is chosen and

if this turns out not to be successful, backtracking is used to try

another one.

Ulle Endriss 9

Logic and Prolog ILCS 2007

Worked Example

Consider the following Prolog program:

parent(elisabeth, charles).

parent(charles, harry).

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

What will happen if we submit the following query after the above

program has been consulted by Prolog?

?- ancestor(elisabeth, harry).

Ulle Endriss 10

Logic and Prolog ILCS 2007

Step 1: Translate into FOL

For the program we get the following formulas:

(1) P (e, c)

(2) P (c, h)

(3) (∀x)(∀y)(P (x, y) → A(x, y))

(4) (∀x)(∀y)(∀z)(P (x, y) ∧ A(y, z) → A(x, z))

For the negation of the query we get:

(5) ¬A(e, h)

Ulle Endriss 11

Logic and Prolog ILCS 2007

Step 2: Rewrite Formulas as Clauses

Formulas we get from translating a Prolog program already are in

Prenex Normal Form and we don’t need to Skolemise either

(because there are no existential quantifiers).

We have to rewrite the implications as disjunctions. Here, we

directly give the clauses (which correspond to disjunctions).

Don’t forget that variables have to be named apart.

(1) {P (e, c)}

(2) {P (c, h)}

(3) {¬P (x1, y1), A(x1, y1)}

(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}

(5) {¬A(e, h)}

Ulle Endriss 12



Logic and Prolog ILCS 2007

Step 3: Apply SLD Resolution

(1) {P (e, c)}

(2) {P (c, h)}

(3) {¬P (x1, y1), A(x1, y1)}

(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}

(5) {¬A(e, h)}

(6) {¬P (e, y3), ¬A(y3, h)} from (4,5) with [e/x2] and [h/z2]

(7) {¬A(c, h)} from (1,6) with [c/y3]

(8) {¬P (c, h)} from (3,7) with [c/x1] and [h/y1]

(9) 2 from (2,8)

Remark: If there had been variables in our query, then the

substitutions made to them would have been part of the answer.

Ulle Endriss 13

Logic and Prolog ILCS 2007

Summary

• Pure Prolog corresponds to sets of Horn clauses.

• The reasoning engine underlying Prolog can be explained in

terms of SLD Resolution.

Ulle Endriss 14


