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Tutorial Information

Lecturers: Ulle Endriss (ulle@illc.uva.nl)

Nicolas Maudet (maudet@lamsade.dauphine.fr)

Notes: This tutorial is based on the “MARA Survey”:

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre,

N. Maudet, J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar & P. Sousa.

Issues in Multiagent Resource Allocation. Informatica, 30:3–31, 2006.

This paper has been written in the context of the AgentLink Technical

Forum Group on Multiagent Resource Allocation (TFG-MARA).

Website: Survey and slides are also available at the tutorial website:

http://www.illc.uva.nl/~ulle/teaching/easss-2006/
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What is MARA?

A tentative definition would be the following:

Multiagent Resource Allocation (MARA) is the process of

distributing a number of items amongst a number of agents.

Now: What kind of items (resources) are being distributed? How are

they being distributed? And finally, why are they being distributed?

Ulle Endriss and Nicolas Maudet 5

Multiagent Resource Allocation EASSS-2006 Tutorial

Examples of Application Areas

The following applications are described in detail in the MARA Survey:

• Industrial Procurement

• Earth Observation Satellites

• Manufacturing Systems

• Grid Computing
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Outline

• Concerning the specification of MARA problems:

– Overview of different types of resources

– Representation of the preferences of individual agents

– Notions of social welfare to specify the quality of an allocation

• Concerning methods for solving MARA problems:

– Discussion of allocation procedures (centralised/distributed)

– Some complexity results concerning allocation procedures

• Issues we will not have time to cover in this tutorial:

– Strategic considerations: mechanism design

– Algorithmic considerations: algorithm design

– Experimentation using simulation platforms

Ulle Endriss and Nicolas Maudet 7

Multiagent Resource Allocation EASSS-2006 Tutorial

Types of Resources
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Types of Resources

• A central parameter in any resource allocation problem is the

nature of the resources themselves.

• There is a whole range of different types of resources, and each of

them may require different techniques . . .

• Distinguish properties of the resources themselves and

characteristics of the chosen allocation mechanism. Examples:

– Resource-inherent property: Is the resource perishable?

– Characteristic of the allocation mechanism: Can the resource

be shared amongst several agents?
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Continuous vs. Discrete Resources

• Resource may be continuous (e.g. energy) or discrete (e.g. fruit).

• Discrete resources are indivisible; continuous resources may be

treated either as being (infinitely) divisible or as being indivisible

(e.g. only sell orange juice in units of 50 litres ; discretisation).

• Representation of a single bundle:

– Several continuous resources: vector over non-negative reals

– Several discrete resources: vector over non-negative integers

– Several distinguishable discrete resources: vector over {0, 1}

• Classical literature in economics mostly concentrates on a single

continuous resource; recent work in AI and Computer Science

focusses on discrete resources.
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Divisible or not

• Resources may be treated as being either divisible or indivisible.

• Continuous/discrete: physical property of resources

Divisible/indivisible: chosen feature of the allocation mechanism
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Sharable or not

• A sharable resource can be allocated to a number of different

agents at the same time. Examples:

– a photo taken by an earth observation satellite

– path in a network (network routing)

• More often though, resources are assumed to be non-sharable and

can only have a single owner at a time. Examples:

– energy to power a specific device

– fruit to be eaten by the agent obtaining it
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Static or not

Resources that do not change their properties during a negotiation

process are called static resources. There are at least two types of

resources that are not static:

• consumable goods such as fuel

• perishable goods such as food

In general, resources cannot be assumed to be static. However, in

many cases it is reasonable to assume that they are as far as the

negotiation process at hand is concerned.
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Single-unit vs. Multi-unit

• In single-unit settings there is exactly one copy of each type of

good; all items are distinguishable (e.g. several houses).

• In multi-unit settings there may be several copies of the same type

of good (e.g. 10 bottles of wine).

• Note that this distinction is only a matter or representation:

– Every multi-unit problem can be translated into a single-unit

problem by introducing new names (inefficient, but possible).

– Every single-unit problem is in fact also a (degenerate)

multi-unit problem.

• Multi-unit problems allow for a more compact representation of

allocations and preferences, but also require a richer language

(variables ranging over integers, not just binary values).
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Resources vs. Tasks

• Tasks may be considered resources with negative utility .

• Hence, task allocation may be regarded a MARA problem.

• However, tasks are often coupled with constraints regarding their

coherent combination (timing).
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Preference Representation
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Preference Representation

The second important parameter in the specification of a MARA

problem are the preferences of individual agents.

Agents may have preferences over

• the bundle of resources they receive

• the bundles of resources received by others (externalities)

What are suitable languages for representing agent preferences?

For single-unit settings with indivisible resources, for instance, the

number of alternatives is exponential in the number of goods, so an

explicit representation may not be feasible . . .
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Preference Representation Languages

Some central questions that arise when we have to choose a preference

representation language:

• Cognitive relevance: How close is a given language to the way in

which humans would express their preferences?

• Elicitation: How difficult is it to elicit the preferences of an agent

so as to represent them in the chosen language?

• Expressive power : Can the chosen language encode all the

preference structures we are interested in?

• Succinctness: Is the representation of (typical) preference

structures succinct? Is one language more succinct than the other?

• Complexity : What is the computational complexity of related

decision problems, such as comparing two alternatives?

We are going to concentrate on expressive power and succinctness.
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Cardinal and Ordinal Preferences

A preference structure represents an agent’s preferences over a set of

alternatives X . There are different types of preference structures:

• A cardinal preference structure is a function u : X → Val , where

Val is usually a set of numerical values such as N or R.

The function u is often called a utility (or valuation) function.

• An ordinal preference structure is a binary relation � over the set

of alternatives, that is reflexive and transitive (and connected).

If the alternatives over which agents have to express preferences are

bundles of indivisible resources from the set R, then we have X = 2R.
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Some Observations

• Intrapersonal comparison: ordinal and cardinal preferences allow

for comparing the satisfaction of an agent for different alternatives

• Interpersonal comparison: ordinal preferences don’t allow for

interpersonal comparison (“Ann likes x more than Bob likes y”)

• Preference intensity : ordinal preferences cannot express preference

intensity; cardinal preferences can (subject to Val being numerical)

• Representability : a connected ordinal preference relation � is

representable by a utility function u: x � y iff u(x) ≤ u(y)

• Cognitive relevance: hard to make general statements, but at least

ordinal preferences don’t require reasoning with numerical utilities

• Explicit representation: the explicit representations of cardinal and

ordinal preferences have space complexity O(|X |) and O(|X |2),

respectively (why?)
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

B ui(B)

{ } 0

{f} 10

{h} 5

{n} 0

{f, n} 10

{f, h} 15

{h, n} 8

{f, h, n} 20
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

� {} {f} {h} {n} {f, n} {f, h} {h, n} {f, h, n}

{ } 1 0 0 1 0 0 0 0

{f} 1 1 1 1 1 0 1 0

{h} 1 0 1 1 0 0 0 0

{n} 1 0 0 1 0 0 0 0

{f, n} 1 1 1 1 1 0 1 0

{f, h} 1 1 1 1 1 1 1 0

{h, n} 1 0 1 1 0 0 1 0

{f, h, n} 1 1 1 1 1 1 1 1
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Cardinal Preferences: Explicit Representation

The explicit form of representing a utility function u consists of a table

listing for every bundle X ⊆ R the utility u(X). By convention, table

entries with u(X) = 0 may be omitted.

• the explicit form is fully expressive:

any utility function u : 2R → R may be so described

• the explicit form is not concise: it may require up to 2n entries

Even very simple utility functions may require exponential space: e.g.

the additive function mapping bundles to their cardinality (why?)
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The k-additive Form

• A utility function is called k-additive iff the utility assigned to a

bundle X can be represented as the sum of basic utilities assigned

to subsets of X with cardinality ≤ k (limited synergies).

• The k-additive form of representing utility functions:

u(X) =
∑

T⊆X

αT with αT = 0 whenever |T | > k

Example: u = 3.x1 + 7.x2 − 2.x2.x3 is a 2-additive function

• That is, specifying a utility function in this language means

specifying the coefficients αT for bundles T ⊆ R.

• The value αT can be seen as the additional benefit incurred from

owning the items in T together , i.e. beyond the benefit of owning

all proper subsets.
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Expressive Power

The k-additive form is fully expressive, if we choose k large enough:

Proposition 1 Any utility function is representable in k-additive form

for some k ≤ |R|.

Proof: For any utility function u, we can define coefficients αX :

α{ } = u({ })

αX = u(X) −
∑

T⊂X αT for all X ⊆ R with X 6= { }

Hence, u(X) =
∑

T⊆X αT , which is k-additive for k = |R|. 2

The k-additive form allows for a parametrisation of synergetic effects:

• 1-additive = modular (no synergies)

• |R|-additive = general (any kind of synergies)

• . . . and everything in between
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

B ui(B)

{f} 10

{h} 5

{f, n} 10

{f, h} 15

{h, n} 8

{f, h, n} 20

I u = 10.f + 5.h + 3.h.n + 2.f.h.n (3-additive)
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

B ui(B)

{f} 10

{h} 5

{f, n} 10

{f, h} 15

{h, n} 8

{f, h, n} 18

I u = 10.f + 5.h + 3.h.n (2-additive)
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Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two languages for defining utilities. We say that L′ is

at least as succinct as L, denoted by L � L′, iff there exist a mapping

f : L → L′ and a polynomial function p such that:

• u ≡ f(u) for all u ∈ L (they represent the same functions); and

• size(f(u)) ≤ p(size(u)) for all u ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to succinctness.
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Explicit vs. k-additive Form

Proposition 2 The explicit and the k-additive form of representing

utility functions are incomparable with respect to succinctness.

Proof sketch: The following two functions can be used to prove the

mutual lack of a polysize reduction:

• u1(X) = |X|: representing u1 requires |R| non-zero coefficients in

the k-additive form (linear); but 2|R| − 1 non-zero values in the

explicit form (exponential).

• u2(X) = 1 for |X| = 1 and u2(X) = 0 otherwise: requires |R|

non-zero values in the explicit form (linear); but 2|R| − 1 non-zero

coefficients in the k-additive form (exponential), namely αT = 1

for |T | = 1, αT = −2 for |T | = 2, αT = 3 for |T | = 3, . . .

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent Resource Allo-

cation with k-additive Utility Functions. DIMACS-LAMSADE Workshop 2004.
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Weighted Propositional Formulas

Notation: finite set of propositional letters PS (representing goods);

propositional language LPS over PS can describe requirements.

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: G = {(f, 10), (h, 5), (h ∧ n, 3), (f ∧ h ∧ n, 2)}

(; But isn’t that exactly the k-additive representation?)

I u = 10.f + 5.h + 3.h.n + 2.f.h.n

J. Lang. Logical Preference Representation and Combinatorial Vote. Annals of

Mathematics and Artificial Intelligence, 42(1–3):37–71, 2004.
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Weighted Propositional Formulas

Notation: finite set of propositional letters PS (representing goods);

propositional language LPS over PS can describe requirements.

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all models M ∈ 2PS . G is called the generator of uG.

Example: G = {(f, 10), (h, 5), (h ∧ n, 3), (f ∧ (h ∧ n ∨ g), 2)}

(; No! Recall we can use any well-formed logical formula . . . )

I u = 10.f + 5.h + 3.h.n + 2.f.h.n + 2.f.g − 2.f.h.n.g

J. Lang. Logical Preference Representation and Combinatorial Vote. Annals of

Mathematics and Artificial Intelligence, 42(1–3):37–71, 2004.
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Bidding Languages

Bidding languages are preference representation languages developed

specifically for combinatorial auctions, to allow bidders to transmit

their valuations to the auctioneer.

• Bids are combinations of atomic bids 〈R, p〉: bundle/price.

• In the OR-language, the valuation is taken to be the maximal

value that can be obtained by accepting disjoint bids. Example:

〈{a}, 2〉 or 〈{b}, 2〉 or 〈{c}, 1〉 or 〈{a, b}, 5〉

That is, an OR-combination of two bids defining valuations v1 and

v2 defines the following valuation:

(v1 or v2)(X) = max
X1⊆X

(v1(X1) + v2(X\X1))

N. Nisan. Bidding Languages for Combinatorial Auctions. In P. Cramton et al.

(eds.), Combinatorial Auctions, MIT Press, 2006.
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

B ui(B)

{f} 10

{h} 5

{f, n} 10

{f, h} 15

{h, n} 8

{f, h, n} 20

I 〈{f}, 10〉 or 〈{h}, 5〉 or 〈{h, n}, 8〉 or 〈{h, f, n}, 20〉
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Bidding Languages (cont.)

• In the XOR-language, atomic bids by the same bidder are

assumed to be mutually exclusive. Example:

〈{a}, 3〉 xor 〈{b}, 3〉 xor 〈{a, b}, 5〉

So an XOR-combination of v1 and v2 has the following semantics:

(v1 xor v2)(X) = max{v1(X), v2(X)}

• XOR can represent all (normalised and monotonic) valuations,

while OR can only represent supermodular valuations.

• OR/XOR-language: arbitrary combinations of OR and XOR

• The OR*-language is like the OR-language, but dummy items can

be used to express exclusiveness constraints. Example:

〈{a, dummy}, 3〉 or 〈{b, dummy}, 3〉 or 〈{a, b, dummy}, 5〉
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Ordinal Preferences: Explicit Representation

Next we are going to look into different languages for representing

ordinal preference structures.

The explicit representation of an ordinal preference relation � over 2n

alternatives has a space complexity of O(2n · 2n): for each pair of

bundles, say which one is preferred.
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Prioritised Goals

Again, associate goods with propositional letters in PS and bundles

with models M ∈ 2PS . Goals can be expressed as formulas in the

propositional language LPS .

Instead of weights, we now have a priority relation over goals.

Assuming this priority relation is a total order, it can be represented by

a function rank : N → N mapping each (index of a) goal to its rank.

By convention, a lower rank means higher priority .

A goal base is now a finite set of goals with an associated rank

function: G = 〈{ϕ1, . . . , ϕm}, rank〉.

I Ideally, all goals will get satisfied. But if not, how can we extend the

priority relation over goals to a preference relation over alternatives?
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Aggregating Priorities

There are several options for aggregating priorities over goals to a

preference relation over alternatives:

• Best-out ordering: preference depends on the rank of the most

important goal violated by each alternative.

• Discrimin ordering : preference depends on the most important

goal satisfied by one alternative but not by the other.

• Leximin-ordering: preference is defined as the lexicographic

ordering over vectors that specify for each rank how many goals of

that rank are satisfied by the associated alternative.

Refer to the MARA Survey for formal definitions.
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Example

Old story: hanging a frame (f) with a hammer (h) and a nail (n) . . .

rank B

0 f ∧ h ∧ n

1 f

2 h ∧ n

3 h

Comparing e.g. a1 ≡ {f} and a2 ≡ {h, n} . . .

• best-out : both violate f ∧ h ∧ n (rank 0) ; a1 ∼ a2

• discrimin: a1 satisfies f (rank 1) while a2 does not ; a1 � a2

• leximin: 〈0, 1, 0, 0〉 lex. dominates 〈0, 0, 1, 1〉 ; a1 � a2
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Ceteris Paribus Preferences

In the language of ceteris paribus preferences, preferences are

expressed as statements of the form C : ϕ > ϕ′, meaning:

“If C is true, all other things being equal, I prefer alternatives

satisfying ϕ ∧ ¬ϕ′ over those satisfying ¬ϕ ∧ ϕ′.”

The “other things” are the truth values of the propositional variables

not occurring in ϕ and ϕ′. A preference relation can be constructed as

the transitive closure of the union of individual preference statements.

Discussion: interesting from a cognitive point of view (close to human

intuition), but of rather high complexity .

An important sublanguage of ceteris paribus preferences, imposing

various restrictions on goals, are CP-nets.

C. Boutilier et al. CP-nets: A Tool for Representing and Reasoning with Condi-

tional Ceteris Paribus Preference Statements. JAIR, 21:135–191, 2004.
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Summary: Preference Representation

• Preferences of individual agents are a central parameter in the

specification of a MARA problem.

• We have emphasised expressive power and succinctness:

– expressive power should be appropriate; note that many

game-theoretical results presuppose that agents can express

any preference structure (e.g. whatever your true valuation,

you should be able to communicate it to the auctioneer)

– succinctness is crucial in combinatorial domains

• Languages considered (there are more):

– cardinal: explicit form, k-additive form, weighted goals, and

bidding languages

– ordinal: explicit form, prioritised goals, and ceteris paribus

statements
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Social Welfare
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Social Welfare

A third parameter in the specification of a MARA problem concerns

our goals: what kind of allocation do we want to achieve?

• Success may depend on a single factor (e.g. revenue of an

auctioneer), but more often on an aggregation of preferences

of the individual agents in the system.

• Concepts from Social Choice Theory and Welfare Economics can

be useful here (“multiagent systems as societies of agents”).

We use the term social welfare in a very broad sense to describe

metrics for assessing the quality of an allocation of resources.

H. Moulin. Axioms of Cooperative Decision Making. CUP, 1988.
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Efficiency and Fairness

When assessing the quality of an allocation (or any other agreement)

we can distinguish (at least) two types of indicators of social welfare.

Aspects of efficiency (not in the computational sense) include:

• The chosen agreement should be such that there is no alternative

agreement that would be better for some and not worse for any of

the other agents (Pareto optimality).

• If preferences are quantitative, the sum of all payoffs should be as

high as possible (utilitarianism).

Aspects of fairness include:

• The agent that is going to be worst off should be as well off as

possible (egalitarianism).

• No agent should prefer to take the bundle allocated to one of its

peers rather than keeping their own (envy-freeness).
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Notation

• Set of agents A = {1, . . . , n}

• Agents have preferences over allocations:

– ordinal: A �i A′ means agent i likes A no less than A′

– cardinal: ui(A) = x ∈ R means agent i assigns utility x to A

• Remark: Preferences over allocation could be induced by

preferences over bundles (no externalities), but this does in fact

not affect our definitions (with one exception: envy-freeness).
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Pareto Optimality

An allocation A is Pareto-dominated by another allocation A′ iff the

following hold:

• A �i A′ for all agents i ∈ A; and

• A ≺i A′ for at least one agent i ∈ A.

An allocation is Pareto optimal (or Pareto efficient) iff it is not

Pareto-dominated by any other allocation.
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Utilitarian Social Welfare

• Many a social welfare ordering (SWO) can be represented by

means of a collective utility function (CUF).

• A CUF is a mapping from utility vectors to the reals. Here we

define them directly over allocations (which induce utility vectors).

• The utilitarian collective utility function swu is defined as the sum

of individual utilities:

swu(A) =
∑

i∈Agents

ui(A)

This would be a useful metric for overall (or average) profit in an

e-commerce application, for instance (; efficiency).

• The utilitarian CUF is zero-independent: adding a constant value

to your utility function won’t affect social welfare judgements.
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Egalitarian Social Welfare

• The egalitarian collective utility function swe is defined in terms of

the agent currently worst off:

swe(A) = min{ui(A) | i ∈ Agents}

Maximising this function amounts to improving the situation of

the weakest members of society (; fairness).

• Allocation A′ is strictly preferred over allocation A (by society) iff

swe(A) < swe(A
′) holds (so-called maximin-ordering).
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Utilitarianism vs. Egalitarianism

• In the MAS literature the utilitarian viewpoint (that is, social

welfare = sum of individual utilities) is often taken for granted.

• In philosophy/sociology/economics not.

• John Rawls’ “veil of ignorance” (A Theory of Justice, 1971):

Without knowing what your position in society (class, race, sex, . . . )

will be, what kind of society would you choose to live in?

• Reformulating the veil of ignorance for multiagent systems:

If you were to send a software agent into an artificial society to negotiate

on your behalf, what would you consider acceptable principles for that

society to operate by?

• Conclusion: worthwhile to investigate egalitarian (and other) social

principles also in the context of multiagent systems.
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Nash Product

• The Nash collective utility function swN is defined as the product

of individual utilities:

swN (A) =
∏

i∈Agents

ui(A)

This is a useful measure of social welfare as long as all utility

functions can be assumed to be positive.

• Like the utilitarian CUF, the Nash CUF favours increases in overall

utility, but also inequality-reducing redistributions (2 · 6 < 4 · 4).

• The Nash CUF is scale independent: whether a particular agent

measures their own utility in euros or yen does not affect social

welfare judgements.
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Ordered Utility Vectors

Every allocation A gives rise to an ordered utility vector ~u(A):

compute ui(A) for all i ∈ A and present results in increasing order.

Example: ~u(A) = 〈0, 5, 20〉 means that the weakest agent enjoys

utility 0, the strongest utility 20, and the middle one utility 5.

(Notation in the MARA Survey: v
↑
A)
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Rank Dictators

The k-rank dictator CUF for k ∈ A is mapping allocations to the

utility enjoyed by the k-poorest agent:

swk(A) = ~u(A)k

For k = 1 this is the egalitarian CUF. For k = n we obtain an elitist

CUF measuring social welfare in terms of the agent that is best off.
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The Leximin-Ordering

We now introduce an SWO that may be regarded as a refinement of

the maximin-ordering induced by the egalitarian CUF . . .

The leximin-ordering �` is defined as follows:

A �` A′ ⇔ ~u(A) lexically precedes ~u(A′) (not necessarily strictly)

That means:

• ~u(A) = ~u(A′) or

• there exists a k ≤ n such that

– ~u(A)i = ~u(A′)i for all i < k and

– ~u(A)k < ~u(A′)k

Example: A ≺` A′ for ~u(A) = 〈0, 6, 20, 29〉 and ~u(A′) = 〈0, 6, 24, 25〉
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Ordered Weighted Averaging

We can build families of parametrised CUFs that induce several SWOs.

An example are the ordered weighted averaging operators.

Let w = (w1, w2, . . . , wn) be a vector of real numbers. Define:

sww(A) =
∑

i∈Agents

wi · ~u(A)i

This generalises several other SWOs:

• If w such that wi = 0 for all i 6= k and wk = 1, then we have

exactly the k-rank dictator CUF.

• If wi = 1 for all i, then we obtain the utilitarian CUF.

• If wi = αi−1, with α > 0, then the leximin-ordering is the limit of

the SWO induced by sww as α goes to 0.
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Normalised Utility

It can be useful to normalise utility functions before aggregation:

• If A0 is the initial allocation, then we may restrict attention to

allocations A that Pareto-dominate A0 and use the utility gains

ui(A) − ui(A0) rather than ui(A) as problem input.

• We could evaluate an agent’s utility gains relative to the gains it

could expect in the best possible case. Define an agent’s maximum

utility with respect to a set Adm of admissible allocations:

ûi = max{ui(A) |A ∈ Adm}

Then define the normalised individual utility of agent i as follows:

u′
i(A) =

ui(A)

ûi

The optimum of the leximin-ordering with respect to normalised

utilities is known as the Kalai-Smorodinsky solution.
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Envy-Freeness

• An allocation is called envy-free iff no agent would rather have

one of the bundles allocated to any of the other agents:

A(i) �i A(j)

Here, A(i) is the bundle allocated to agent i in allocation A.

• Note that envy-free allocations do not always exist (at least not if

we require either complete or Pareto optimal allocations).

• As we cannot always ensure envy-free allocations, one option

would be to reduce envy as much as possible.

• What would be a reasonable definition of minimal envy?

– minimise the number of envious agents

– minimise the average degree of envy (distance to the most

envied competitor) of all envious agents
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Example

Consider the following example with two agents and three resources:

A = {1, 2} and R = {a, b, c}. Suppose utility functions are additive:

u1({a}) = 18 u1({b}) = 12 u1({c}) = 8

u2({a}) = 15 u2({b}) = 8 u2({c}) = 12

Let A be the allocation giving a to agent 1 and b and c to agent 2.

• A has maximal egalitarian social welfare (18); utilitarian social

welfare is not maximal (38 rather than 42); and neither is elitist

social welfare (20 rather than 38).

• A is Pareto optimal as well as leximin-optimal , but not envy-free.

• There is no allocation that would be both Pareto optimal and

envy-free. But if we change u1({a}) = 20 (from 18), then A

becomes Pareto optimal and envy free.
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Welfare Engineering

• Choice (and possibly design) of social welfare orderings that are

appropriate for specific agent-based applications.

– Example: The elitist collective utility function seems unethical

for human society, but may be appropriate for a distributed

application where each agent gets the same task.

– Slogan: “welfare economics for artificial agent societies”

• Design of suitable rationality criteria and interaction mechanisms

for negotiating agents in view of different notions of social welfare.

– Example: To achieve allocations with maximal utilitarian social

welfare in modular domains with money , ask agents to

negotiate mutually beneficial deals over one resource at a time.

– Slogan: “inverse welfare economics” (; mechanism design)
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Summary: Social Welfare

• Social welfare (or more generally, some aggregation of agent

preferences) can be used to define goals in a MARA setting.

• There is a large range of collective utility functions and other

concepts from Social Choice Theory and Welfare Economics that

can be used to assess social welfare.

• To date, most work in MAS has only used the concepts of Pareto

optimality and utilitarian social welfare, . . .

• . . . but other social welfare measures, in particular those related

to fairness issues, are important as well.
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Allocation Procedures
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Allocation Procedures

To solve a MARA problem, we firstly need to decide on an allocation

procedure. This is a very complex issue, involving at least:

• Protocols: What types of deals are possible? What messages do

agents have to exchange to agree on one such deal?

• Strategies: What strategies may an agent use for a given protocol?

How can we give incentives to agents to behave in a certain way?

• Algorithms: How do we solve the computational problems faced

by agents when engaged in negotiation?
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Centralised vs. Distributed Negotiation

An allocation procedure to determine a suitable allocation of resources

may be either centralised or distributed:

• In the centralised case, a single entity decides on the final

allocation, possibly after having elicited the preferences of the

other agents. Example: combinatorial auctions

• In the distributed case, allocations emerge as the result of a

sequence of local negotiation steps. Such local steps may or may

not be subject to structural restrictions (say, bilateral deals).

Which approach is appropriate under what circumstances?
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Advantages of the Centralised Approach

Much recent work in the MAS community on negotiation and resource

allocation has concentrated on centralised approaches, in particular on

combinatorial auctions.

There are several reasons for this:

• The communication protocols required are relatively simple.

• Many results from economics and game theory , in particular on

mechanism design, can be exploited.

• There has been a recent push in the design of powerful algorithms

for winner determination in combinatorial auctions.
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Disadvantages of the Centralised Approach

But there are also some disadvantages of the centralised approach:

• Can we trust the centre (the auctioneer)?

• Does the centre have the computational resources required?

• Less natural to take an initial allocation into account (in an

auction, typically the auctioneer owns everything to begin with).

• Less natural to model step-wise improvements over the status quo.

• Arguably, only the distributed approach is a serious

implementation of the MAS paradigm.
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Auction Protocols

Auctions are centralised mechanisms for the allocation of goods

amongst several agents. Agents report their preferences (bidding) and

the auctioneer decides on the final allocation (and on prices).

• Distinguish direct and reverse auctions (auctioneer buying).

• Bidding may be open-cry (English) or by sealed bids.

• Open-cry: ascending (English) or descending bids (Dutch).

• Pricing rule: first-price or second-price (Vickrey).

• Combinatorial auctions: several goods, sold/bought in bundles.

R.P. McAfee and J. McMillan. Auctions and Bidding. Journal of Economic Liter-

ature, 25:699–738, 1987.

P. Cramton, Y. Shoham, and R.Steinberg (eds.). Combinatorial Auctions. MIT

Press, 2006.
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The Contract Net Protocol

Originally developed for task decomposition and allocation, but also

applicable to distributed negotiation over resources.

Each agent may assume to roles of manager and bidder . The

Contract Net protocol is a one-to-many protocol matching an offer by

a manager to one of potentially many bidders. There are four phases:

• Announcement phase: The manager advertises a deal to a number

of partner agents (the bidders).

• Bidding phase: The bidders send their proposals to the manager.

• Assignment phase: The manager elects the best bid and assigns

the resource(s) accordingly.

• Confirmation phase: The elected bidder sends a confirmation.

R.G. Smith. The Contract Net Protocol: High-level Communication and Control

in a Distributed Problem Solver. IEEE Trans. on Computers, 29:1104–1113, 1980.
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Extensions

The immediate adaptation of the original Contract Net protocol only

allows managers to advertise a single resource at a time, and a bidder

can only offer money in return for that resource (not other items).

Possible extensions:

• Allow for negotiation over the exchanges of bundles of resources.

• Allow for deals without explict utility transfers (monetary

payments). The announcement phase remains the same, but bids

are now about offering resources in exchange, rather than money.

• Allow agents to negotiate several deals concurrently and to

decommit from deals within a certain period.

• In levelled-commitment contracts, agents are also allowed to

decommit, but have to pay a pre-defined penalty .

Refer to the MARA Survey for references to these works.
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Properties of Allocation Procedures

We may study different properties of allocation procedures:

• Termination: Is the procedure guaranteed to terminate eventually?

• Convergence: Will the final allocation be optimal according to our

chosen social welfare measure?

• Incentive-compatibility : Do agents have an incentive to report

their valuations truthfully? (; mechanism design)

• Complexity results: What is the computational complexity of

finding a socially optimal allocation of resources?

Next, we are going to see an example for a convergence property . . .
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Negotiating Socially Optimal Allocations

We are now going to analyse a specific model of distributed

negotiation (defined on the next slide).

We are not going to talk about designing a concrete negotiation

protocol, but rather study the framework from an abstract point of

view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their

individual preferences?; and

• the global view: how will the overall allocation of resources evolve

in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. JAIR, 25:315–348, 2006.
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An Abstract Negotiation Framework

• Finite set of agents A and finite set of indivisible resources R.

• An allocation A is a partitioning of R amongst the agents in A.

Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Every agent i ∈ A has got a utility function ui : 2R → R.

Example: ui(A) = ui(A(i)) = 577.8 — agent i is pretty happy

• Agents may engage in negotiation to exchange resources in order

to benefit either themselves or society as a whole.

• A deal δ = (A, A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to compensate

some of the agents for a loss in utility. A payment function is a

function p : A → R with
∑

i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays e5,

while agent j receives e5.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals that

improve its individual welfare:

I A deal δ = (A, A′) is called individually rational iff there exists a

payment function p such that ui(A
′) − ui(A) > p(i) for all i ∈ A,

except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in utility

(or money) that strictly outweighs a possible loss in money (or utility).

The Global/Social Perspective

Suppose that as system designers we are interested in maximising

utilitarian social welfare:

swu(A) =
∑

i∈Agents

ui(A)
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Example

Let A = {ann, bob} and R = {chair , table} and suppose our agents

use the following utility functions:

uann({ }) = 0 ubob({ }) = 0

uann({chair}) = 2 ubob({chair}) = 3

uann({table}) = 3 ubob({table}) = 3

uann({chair , table}) = 7 ubob({chair , table}) = 8

Furthermore, suppose the initial allocation of resources is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

I Social welfare for allocation A0 is 7, but it could be 8. By moving

only a single resource from agent ann to agent bob, the former would

lose more than the latter would gain (not individually rational).

The only possible deal would be to move the whole set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals that

increase social welfare:

Lemma 3 (Rationality and social welfare) A deal δ = (A, A′) with

side payments is individually rational iff swu(A) < swu(A′).

Proof. “⇒”: Rationality means that overall utility gains outweigh

overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all deal participants

by using the following payment function:

p(i) = ui(A
′) − ui(A) −

swu(A′) − swu(A)

|A|︸ ︷︷ ︸
> 0

2
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Convergence

It is now easy to prove the following convergence result (originally

stated by Sandholm in the context of distributed task allocation):

Theorem 4 (Sandholm, 1998) Any sequence of individually rational

deals will eventually result in an allocation with maximal social welfare.

Proof. Termination follows from our lemma and the fact that the

number of allocations is finite So let A be the terminal allocation.

Assume A is not optimal, i.e. there exists an allocation A′ with

swu(A) < swu(A′). Then, by our lemma, δ = (A, A′) is individually

rational ⇒ contradiction. 2

I Agents can act locally and need not be aware of the global picture

(convergence towards a global optimum is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical Results.

AAAI Spring Symposium 1998.
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Summary: Allocation Procedures

• Distinguish centralised and distributed approaches to MARA.

• We have briefly introduced auction protocols. There is a rich

literature on this topic and nowadays a lot of research on auctions

is taking place in the MAS community.

• The Contract Net protocol can be used to take care of the

communication requirements in distributed negotiation and

provides means to help agents to identify possible deals, at least

for structurally simple deals (e.g. bilateral deals).

• We have analysed distributed negotiation from an abstract point

of view: there are some nice correspondences between the local

level (rational deals) and the global level (social improvements).

Convergence to a social optimum can be guaranteed in theory, but

requires very expressive negotiation protocols in practice.
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Complexity Results
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Complexity Results

• When designing a new resource allocation system, awareness of

known complexity results is important to understand general

limitations as well as opportunities.

• We are going to explain one complexity result in detail: welfare

optimisation is NP-complete.

• Brief review of other results: focus on seeing what type of

questions people have been asking, not on technical details.

Ulle Endriss and Nicolas Maudet 76

Multiagent Resource Allocation EASSS-2006 Tutorial

Recap: Complexity Theory

• Given a class of problems parametrised by their “size”, how hard it

is to solve a problem of size n?

• Distinguish: time/space worst-case/average-case complexity

• Problems that can be solved in polynomial time (P) are considered

tractable, problems requiring exponential time (EXPTIME) not.

• Think of a problem that requires searching through a tree. If you

are lucky and go down the right branch at every branching point,

you may need only polynomial time, otherwise exponential time.

A nondeterministic algorithm is a (hypothetical) algorithm with an

“oracle” that tells us which branch to explore next.

• NP is the class of decision problems that can be solved by such

nondeterministic algorithms in polynomial time.
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Recap: Complexity Theory (cont.)

• Equivalent definition: NP is the class of problems for which a

candidate solution can be verified in (determ.) polynomial time.

• A decision problem is NP-hard iff it is at least as hard as any of

the problems in NP.

• A decision problem is NP-complete iff it is NP-hard and in NP.

• We do not know whether P = NP, but strongly suspect P 6= NP.

• NP-complete problems are generally considered intractable. Unless

P = NP, there can be no general algorithm solving NP-complete

problems efficiently.

• As a rule of thumb, NP-completeness means that a näıve

approach won’t work, but a sophisticated algorithm may well give

good results in practice.
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Resource Allocation Settings

We are going to analyse the case of MARA for indivisible non-sharable

resources. A resource allocation setting 〈A,R,U〉 is given by:

• A = {1, 2 . . . , n} is a set of n agents;

• R = {r1, r2, . . . , rm} is a collection of m resources; and

• U = {u1, u2, . . . , un} describes the utility function ui : 2R → Q

for the agent i ∈ A.

The set of allocations A is the set of partitionings of R amongst A

(or equivalently, the set of total functions from R to A).
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Welfare Optimisation

How hard is it to find an allocation with maximal social welfare?

Rephrase this optimisation problem as a decision problem:

Welfare Optimisation (WO)

Instance: 〈A,R,U〉; K ∈ Q

Question: Is there an allocation A such that swu(A) > K?

Unfortunately, the problem is intractable:

Theorem 5 Welfare Optimisation is NP-complete.

The proof (next slide) uses a reduction from a standard reference

problem (Set Packing) known to be NP-complete.

In the context of MARA, this kind of result seems to have first been

stated by Rothkopf et al. (1998).

M.H. Rothkopf, A. Pekec̆, and R.M. Harstad. Computationally Manageable Com-

binational Auctions. Management Science, 44(8):1131–1147, 1998.
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Proof of NP-hardness

We are going to reduce our problem to Set Packing, one of the standard

problems known to be NP-complete:

Set Packing

Instance: Collection C of finite sets and K ∈ Q

Question: Is there a collection of disjoint sets C′ ⊆ C s.t. |C′| > K?

Given an instance C of Set Packing, consider this MARA setting:

• Resources: each item in one of the sets in C is a resource

• Agents: one for each set in C + one other agent (called 0)

• Utilities: uC(R) = 1 if R = C and uC(R) = 0 otherwise;

u0(R) = 0 for all bundles R

That is, every agent values “its” bundle at 1 and every other bundle at 0.

Agent 0 values all bundles at 0 (to model “free disposal” in Set Packing).

I Any algorithm for WO can also solve Set Packing problems; so WO

must be at least NP-hard. X
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Proof of Membership in NP

This part is in fact very easy . . .

Recall that a problem belongs to NP if it is possible to verify the

correctness of a candidate solution in polynomial time.

This is clearly the case here: Given an allocation A, we can compute

swu(A) in polynomial time. A is a good solution iff swu(A) > K. X
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Representation Issues

• As for all complexity results, the representation of the input

problem is crucial: if the input problem is represented inefficiently

(e.g. using exponential space when this is not required), then

complexity results (expressed with respect to the size of the input)

may seem much more favourable than they really are.

• NP-completeness of Welfare Optimisation has been shown

with respect to several representations of utilities (such as the

k-additive form).

• In the sequel, the focus is on demonstrating what questions

people have been asking rather than on exact complexity results.

Therefore, we do not give details regarding the representation

(but most results apply to a variety of representation forms).
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Welfare Improvement

The following problem is also NP-complete:

Welfare Improvement (WI)

Instance: 〈A,R,U〉; allocation A

Question: Is there an allocation A′ such that swu(A) < swu(A′)?

Given the close connection to Welfare Optimisation, this is not

very surprising.
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Pareto Optimality

A decision problem is said to be in coNP iff its complementary

problem (“is it not the case that . . . ”) is in NP.

Checking whether a given allocation is Pareto optimal is an example

for a coNP-complete decision problem:

Pareto Optimality (PO)

Instance: 〈A,R,U〉; allocation A

Question: Is A Pareto optimal?
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Envy-Freeness

Checking whether a given setting admits an envy-free allocation (if all

goods need to be allocated) is again NP-complete:

Envy-Freeness (EF)

Instance: 〈A,R,U〉

Question: Is there a (complete) allocation A that is envy-free?

Checking whether there is an allocation that is both Pareto optimal

and envy-free is even harder: Σp
2
-complete (NP with NP oracle).

S. Bouveret and J. Lang. Efficiency and Envy-freeness in Fair Division of Indivisible

Goods: Logical Representation and Complexity. IJCAI-2005.
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Path and Convergence Properties

Related to the distributed negotiation framework introduced earlier, we

can ask whether an allocation with certain charateristics is reachable

using only deals meeting certain conditions (Φ-deals).

Φ-Path

Instance: 〈A,R,U〉; allocations A and A′ with swu(A) < swu(A′)

Question: Is there a sequence of Φ-deals leading from A to A′?

One of several known results is that Φ-Path is PSPACE-complete in

case Φ is the predicate selecting all individually rational 1-deals

(involving just a single resource each).

A related problem, Φ-Convergence, asks whether any given sequence

of Φ-deals would result in a socially optimal allocation.

P.E. Dunne and Y. Chevaleyre. Negotiation Can be as Hard as Planning. Technical

Report ULCS-05-009, Dept. of Computer Science, University of Liverpool, 2005.
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Aspects of Complexity

For concrete allocation procedures (rather than abstract optimisation

problems), communication complexity becomes an issue . . .

(1) How many deals are required to reach an optimal allocation?

– communication complexity as number of individual deals

(2) How many dialogue moves are required to agree on one such deal?

– affects communication complexity as number of dialogue moves

(3) How expressive a communication language do we require?

– Minimum requirements: performatives propose, accept, reject

+ content language to specify multilateral deals

– affects communication complexity as number of bits exchanged

(4) How complex is the reasoning task faced by an agent when

deciding on its next dialogue move?

– computational complexity (local rather than global view)
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Summary: Complexity Results

• There are many problems in MARA with interesting complexity

questions: computational and communication complexity.

• Decision questions naturally arising in MARA are often

intractable: NP-had or worse.

• Successful algorithm design is still possible, but simple brute force

approaches won’t work.

• Sometimes negative complexity results can be avoided by

imposing restrictions (on utilities for instance).
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Conclusions
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Simulation Platforms

The MARA Survey also discusses simulation platforms, which can be

useful tools to test hypotheses experimentally, when it is difficult or

impossible to obtain the desired theoretical results.

• Issues: simulation vs. implementation, simulating time, agent

modelling, extensibility and integration

• Examples of systems: Swarm, RePast, and others
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Mechanism Design

An important topic that we have not covered is the game-theoretical

analysis of MARA problems, in particular mechanism design.

• While game theory analyses the strategic behaviour of rational

agents in a given game, mechanism design uses these insights to

design games inducing certain strategies (and hence outcomes).

• A central result is the incentive-compatibility of reporting your

true valuation in the Vickrey-Clarke-Groves mechanism (which is a

generalisation of second-price auctions).

Varian (1995) gives an easy-reading introduction to mechanism design

accessible to computer scientists.

H. Varian. Mechanism Design for Computerized Agents. Usenix Workshop on

Electronic Commerce, 1995.
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Algorithm Design

Another important topic that we have not covered concerns the

algorithmic aspects of designing allocation procedures. Most work to

date has concentrated on centralised approaches (auctions):

• The Winner Determination Problem (WDP) in

combinatorial auctions is close to Welfare Optimisation.

• The WDP can be tackled using both off-the-shelf mathematical

programming software and specialised AI search techniques.

• While the WDP is also an NP-hard problem, these approaches

often work well in practice, even for larger problem instances.

In principle, similar ideas could be used also for distributed negotiation

(to support the individual agents with their decision making) . . .

T. Sandholm. Optimal Winner Determination Algorithms. In P. Cramton et al.

(eds.), Combinatorial Auctions, MIT Press, 2006.
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Summary

We have given an overview of the MARA research area:

• Specifying a MARA problem requires fixing at least the following

parameters: type of resource, agent preferences, social welfare or

similar concept used to define global aims

• To design a solution method for a given class of MARA problems:

choose either a centralised or a distributed allocation procedure;

take care of the algorithmic aspects of the problem, considering

known complexity results; use mechanism design techniques to

achieve incentive-compatibility; and use social simulation to better

understand and refine your procedure.

• Applications include industrial procurement, earth observation

satellites, manufacturing systems, and grid computing.

MARA is an exciting and timely area of research, with many open

problems still to be addressed, in all of the subareas discussed . . .
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