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Why Fair Division?

Fair division is the problem of dividing one or several goods amongst

two or more agents in a way that satisfies a suitable fairness criterion.

Fair division has been studied in philosophy , political science,

economics, and mathematics for a long time, but is also relevant to

computer science and multiagent systems:

• Resource allocation is a central topic: it is either itself the

application or agents need resources to perform tasks.

• Agents are autonomous. A solution needs to respect and balance

their individual preferences ; requires definition of fairness.

• Once we have a well-defined fair division problem, we require an

algorithm to solve it. And we might want to study its complexity .
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The Problem

Consider a set of agents and a set of goods. Each agent has their own

preferences regarding the allocation of goods to agents to be selected.

I What constitutes a good allocation and how do we find it?

What goods? One or several goods? Available in single or multiple

units? Divisible or indivisible? Can goods be shared? Are they static

or do they change properties (e.g. consumable or perishable goods)?

What preferences? Ordinal or cardinal preference structures? Are

monetary side payments possible, and how do they affect preferences?
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Ordinal Preferences

• The preference relation of agent i over alternative agreements:

x �i y ⇔ agreement y is at least as good as x (for agent i)

• We shall also define the following bits of notation:

– x ≺i y iff x �i y but not y �i x (strict preference)

– x ∼i y iff both x �i y and y �i x (indifference)
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Cardinal Preferences

• A utility function ui (for agent i) is a mapping from the space of

agreements to the reals.

• Example: ui(x) = 10 means that agent i assigns a value of 10 to

agreement x.

• A utility function ui representing the preference relation �i:

x �i y ⇔ ui(x) ≤ ui(y)

• Remark: In these slides, we are going to use the term valuation to

model preferences over goods (allocations/bundles), while utility

is used to model preferences over agreements, which may include

a monetary component. If monetary side payments are not

possible then we use valuation and utility interchangeably.
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Outline

This tutorial consists of three parts:

• Part 1. Fairness and Efficiency Criteria —

What makes a good allocation? We will review and compare

several proposals from the literature for how to define “fairness”

and the related notion of economic “efficiency”.

• Part 2. Cake-Cutting Procedures —

How should we fairly divide a “cake” (a single divisible good)?

We will review several algorithms and analyse their properties.

• Part 3. Combinatorial Optimisation and Negotiation —

The fair division of a set of indivisible goods gives rise to a

combinatorial optimisation problem. We will concentrate on an

approach based on distributed negotiation.
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Fairness and Efficiency Criteria
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What is a Good Allocation?

In this part of the tutorial we are going to give an overview of criteria

that have been proposed for deciding what makes a “good” allocation:

• Of course, there are application-specific criteria, e.g.:

– “the allocation allows the agents to solve the problem”

– “the auctioneer has generated sufficient revenue”

Here we are interested in general criteria that can be defined in

terms of the individual agent preferences (preference aggregation).

• As we shall see, such criteria can be roughly divided into fairness

and (economic) efficiency criteria.
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Notation

• Let A = {1..n} be our agent society throughout.

• We have to decide on an agreement. This may be an allocation of

goods, possibly coupled with monetary side payments (but much

of this part of the tutorial is not specific to resource allocation).

• Each agent i has a utility function ui over alternative agreements,

which also induces a preference ordering �i.

• An agreement x gives rise to a utility vector 〈u1(x), . . . , un(x)〉

• Sometimes, we are going to define social preference structures

directly over utility vectors u = 〈u1, . . . , un〉 (elements of R
n),

rather than speaking about the agreements generating them.
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Pareto Efficiency

An agreement x is Pareto-dominated by another agreement y iff:

• x �i y for all members i of society; and

• x ≺i y for at least one member i of society.

An agreement is called Pareto efficient iff it is not Pareto-dominated

by any other feasible agreement (named so after Vilfredo Pareto,

Italian economist, 1848–1923).

Pareto efficiency is very often considered a minimum requirement for

any agreement/allocation.
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Social Welfare

Given the utilities of the individual agents, we can define a notion of

social welfare and aim for an agreement that maximises social welfare.

The definition of social welfare commonly found in the MAS literature:

sw(u) =
∑

i∈Agents

ui

That is, social welfare is defined as the sum of the individual utilities.

Maximising this function amounts to maximising average utility .

This is a reasonable definition, but it does not capture everything . . .

I We need a systematic approach to defining social preferences.
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Social Welfare Orderings

A social welfare ordering (SWO) � is a binary relation over R
n that is

reflexive, transitive, and connected .

Intuitively, if u, v ∈ R
n, then u � v means that v is socially preferred

over u (not necessarily strictly).

We also use the following notation:

• u ≺ v iff u � v but not v � u (strict social preference)

• u ∼ v iff both u � v and v � u (social indifference)

Terminology: In the (economics) literature, connectedness is usually

referred to as “completeness”. Furthermore, many authors use the

letters R, P and I instead of �, ≺ and ∼.
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Collective Utility Functions

• A collective utility function (CUF) is a function W : R
n → R

mapping utility vectors to the reals.

• Intuitively, if u ∈ R
n, then W (u) is the utility derived from u by

society as a whole.

• Every CUF represents an SWO: u � v ⇔ W (u) ≤ W (v)
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Utilitarian Social Welfare

One approach to social welfare is to try to maximise overall profit.

This is known as classical utilitarianism (advocated, amongst others,

by Jeremy Bentham, British philosopher, 1748–1832).

The utilitarian CUF is defined as follows:

swu(u) =
∑

i∈Agents

ui

That is, this is what we have called “social welfare” a few slides back.

Ulle Endriss 16



Fair Division AAMAS-2008 Tutorial

Egalitarian Social Welfare

The egalitarian CUF measures social welfare as follows:

swe(u) = min{ui | i ∈ Agents}

Maximising this function amounts to improving the situation of the

weakest member of society.

The egalitarian variant of welfare economics is inspired by the work of

John Rawls (American philosopher, 1921–2002) and has been formally

developed, amongst others, by Amartya Sen since the 1970s (Nobel

Prize in Economic Sciences in 1998).

J. Rawls. A Theory of Justice. Oxford University Press, 1971.

A.K. Sen. Collective Choice and Social Welfare. Holden Day, 1970.
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Utilitarianism versus Egalitarianism

• In the MAS literature the utilitarian viewpoint (that is, social

welfare = sum of individual utilities) is usually taken for granted.

• In philosophy/sociology/economics not.

• John Rawls’ “veil of ignorance” (A Theory of Justice, 1971):

Without knowing what your position in society (class, race, sex, . . . )

will be, what kind of society would you choose to live in?

• Reformulating the veil of ignorance for multiagent systems:

If you were to send a software agent into an artificial society to negotiate

on your behalf, what would you consider acceptable principles for that

society to operate by?

• Conclusion: worthwhile to investigate egalitarian (and other)

social principles also in the context of multiagent systems.
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Nash Product

The Nash collective utility function swN is defined as the product of

individual utilities:

swN (u) =
∏

i∈Agents

ui

This is a useful measure of social welfare as long as all utility functions

can be assumed to be positive. Named after John F. Nash (Nobel

Prize in Economic Sciences in 1994; Academy Award in 2001).

Remark: The Nash (like the utilitarian) CUF favours increases in

overall utility, but also inequality-reducing redistributions (2 · 6 < 4 · 4).
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Ordered Utility Vectors

We now need some more notation . . .

For any u ∈ R
n, the ordered utility vector ~u is defined as the vector

we obtain when we rearrange the elements of u in increasing order.

Example: Let u = 〈5, 20, 0〉 be a utility vector.

• ~u = 〈0, 5, 20〉 means that the weakest agent enjoys utility 0, the

strongest utility 20, and the middle one utility 5.

• Recall that u = 〈5, 20, 0〉 means that the first agent enjoys utility

5, the second 20, and the third 0.
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Rank Dictators

The k-rank dictator CUF for k ∈ A is mapping utility vectors to the

utility enjoyed by the k-poorest agent:

swk(u) = ~uk

Interesting special cases:

• For k = 1 we obtain the egalitarian CUF.

• For k = n we obtain an elitist CUF measuring social welfare in

terms of the happiest agent.

• For k = bn/2c we obtain the median-rank-dictator CUF.
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The Leximin-Ordering

We now introduce an SWO that may be regarded as a refinement of

the SWO induced by the egalitarian CUF.

The leximin-ordering �` is defined as follows:

u �` v ⇔ ~u lexically precedes ~v (not necessarily strictly)

That means: ~u = ~v or there exists a k ≤ n such that

• ~ui = ~vi for all i < k and

• ~uk < ~vk

Example: u ≺` v for ~u = 〈0, 6, 20, 29〉 and ~v = 〈0, 6, 24, 25〉

Remark: The top agreement according to the leximin-ordering is also

known as the Kalai-Smorodinsky solution (for “normalised” utilities).
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Axiomatic Approach

So far we have simply defined some SWOs and CUFs and informally

discussed their attractive and less attractive features.

Next we give a couple of examples for axioms — properties that we

may or may not wish to impose on an SWO.

Interesting results are then of the following kind:

• A given SWO may or may not satisfy a given axiom.

• A given (class of) SWO(s) may or may not be the only one

satisfying a given (combination of) axiom(s).
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Zero Independence

If agents enjoy very different utilities before the encounter, it may not

be meaningful to use their absolute utilities afterwards to assess social

welfare, but rather their relative gain or loss in utility. So a desirable

property of an SWO may be to be independent from what individual

agents consider “zero” utility.

Axiom 1 (ZI) An SWO � is zero independent iff u � v entails

(u + w) � (v + w) for all u, v, w ∈ R
n.

Example: The (SWO induced by the) utilitarian CUF is zero

independent, while the egalitarian CUF is not.

In fact, an SWO satisfies ZI iff it is represented by the utilitarian CUF.

See Moulin (1988) for a precise statement of this result.

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Mono-

graphs, Cambridge University Press, 1988.
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Scale Independence

Different agents may measure their personal utility using different

“currencies”. So a desirable property of an SWO may be to be

independent from the utility scales used by individual agents.

Assumption: Here, we use positive utilities only, i.e. u ∈ (R+)n.

Notation: Let u · v = 〈u1 · v1, . . . , un · vn〉.

Axiom 2 (SI) An SWO � over positive utilities is scale independent

iff u � v entails (u · w) � (v · w) for all u, v, w ∈ (R+)n.

Example: Clearly, neither the utilitarian nor the egalitarian CUF are

scale independent, but the Nash CUF is.

By a similar result as the one mentioned before, an SWO satisfies SI iff

it is represented by the Nash CUF.
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Independence of the Common Utility Pace

Another desirable property of an SWO may be that we would like to

be able to make social welfare judgements without knowing what kind

of tax members of society will have to pay.

Axiom 3 (ICP) An SWO � is independent of the common utility

pace iff u � v entails f(u) � f(v) for all u, v ∈ R
n and for every

increasing bijection f : R → R.

For an SWO satisfying ICP only interpersonal comparisons (ui ≤ vi or

ui ≥ vi) matter, but no the (cardinal) intensity of ui − vi.

Example: The utilitarian CUF is not independent of the common

utility pace, but the egalitarian CUF is. Any k-rank dictator CUF is.
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All-or-Nothing Criteria

Next we are going to introduce two criteria for “good” allocations that

either are or are not satisfied, but there is no further differentiation

amongst allocations of varying quality:

• proportionality (a.k.a. proportional fairness)

• envy-freeness

Remark 1: Pareto efficiency may also be considered such an

“all-or-nothing” criterion: an allocation either is or is not Pareto

efficient. However, the notion of Pareto-dominance does permit a

more fine-grained ranking.

Remark 2: We could interpret proportionality and envy-freeness also as

SWOs, although this is not commonly done.
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Proportionality

Let ûi be the utility that agent i would get for the most attractive

agreement (think of this as the utility for obtaining all the goods).

The number of agents is n. So an agent may feel that they are

entitled to 1

n
th of the overall value of the goods under discussion.

An agreement is called proportional iff ui ≥
1

n
· ûi for each agent i.
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Envy-Freeness

The next definition is specific to allocations (so we cannot continue

working with the more abstract notion of “agreement”).

An allocation A is a function mapping each agent i to the bundle of

goods it receives in that allocation. Suppose utility functions are now

declared over such bundles.

An allocation is called envy-free iff no agent would rather have one of

the bundles allocated to any of the other agents:

A(i) �i A(j)

Here A(i) is the bundle allocated to agent i in allocation A.

Note that envy-free allocations do not always exist (at least not if we

require either complete or Pareto optimal allocations).
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Degrees of Envy

As we cannot always ensure envy-free allocations, another approach

would be to try to reduce envy as much as possible.

But what does that actually mean?

A possible approach to systematically defining different ways of

measuring the degree of envy of an allocation:

• Envy between two agents:

max{ui(A(j)) − ui(A(i)), 0} [or even without max]

• Degree of envy of a single agent:

0-1, max, sum

• Degree of envy of a society:

max, sum [or indeed any SWO/CUF]

Ulle Endriss 30

Fair Division AAMAS-2008 Tutorial

Summary: Fairness and Efficiency Criteria

• The quality of an allocation can be measured using a variety of

fairness and efficiency criteria.

• We have seen Pareto efficiency, collective utility functions

(utilitarian, Nash, egalitarian and other k-rank dictators),

leximin-ordering, proportionality, and envy-freeness.

• All of these (and others) are interesting for multiagent systems.

Which is appropriate depends on the application at hand, and

some applications may even require the definition of new criteria.

• Understanding the structure of social welfare orderings is in itself

an interesting research area (see discussion of axioms).

Ulle Endriss 31

Fair Division AAMAS-2008 Tutorial

Literature

Moulin (1988) provides an excellent introduction to welfare economics.

Much of the material from this part of the slides is taken from his

book. Moulin (2003) is an easier read but of less mathematical depth.

The “MARA Survey” (Chevaleyre et al., 2006) lists many SWOs and

discusses the relevance to multiagent resource allocation in detail.

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society Mono-

graphs, Cambridge University Press, 1988.

H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Divisible Goods: Cake-Cutting Procedures
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Cake-Cutting Procedures

• Cake-cutting as a metaphor for the fair division of a single divisible

(and heterogeneous) good between n agents (called players).

• Studied seriously since the 1940s (Banach, Knaster, Steinhaus).

Simple model, yet still many open problems.

• This part of the tutorial will be an introduction to the field:

– Problem definition (proportionality, envy-freeness)

– Classical procedures (Cut-and-Choose, Banach-Knaster, . . . )

– Some open problems
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Cakes

We will discuss the division of a single divisible good, commonly

referred to as a cake (amongst n players). It’s the sort of cake where

you can cut off slices with a single cut (so not a round tart).

More abstractly, you may think of a cake as the unit interval [0, 1]:

|----------------------|

0 1

Each player i has a valuation function vi mapping finite unions of

subintervals (slices) to the reals, satisfying the following conditions:

• Non-negativity: vi(X) ≥ 0 for all X ⊆ [0, 1]

• Additivity: vi(X ∪ Y ) = vi(X) + vi(Y ) for disjoint X, Y ⊆ [0, 1]

• vi is continuous (the Intermediate-Value Theorem applies) and

single points do not have any value.

• vi([0, 1]) = 1 (i.e. it’s like a probability measure)
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Cut-and-Choose

The classical approach for dividing a cake between two players:

One player cuts the cake in two pieces (which she considers to

be of equal value), and the other one chooses one of the

pieces (the piece she prefers).

The cut-and-choose procedure satisfies two important properties:

• Proportionality : Each player is guaranteed at least one half

(general: 1/n) according to her own valuation.

Discussion: In fact, the first player (if she is risk-averse) will

receive exactly 1/2, while the second will usually get more.

• Envy-freeness: No player will envy (any of) the other(s).

Discussion: Actually, for two players, proportionality and

envy-freeness amount to the same thing.
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Further Properties

We may also be interested in the following properties:

• Equitability : Under an equitable division, each player assigns the

same value to the slice they receive.

Discussion: Cut-and-choose clearly violates equitability.

Furthermore, for n > 2, equitability is often in conflict with

envy-freeness, and we shall not discuss it any further today.

• Pareto efficiency: Under an efficient division, no other division will

make somebody better and nobody worse off.

Discussion: Generally speaking, cut-and-choose violates Pareto

efficiency: suppose player 1 really likes the middle of the cake and

player 2 really like the two outer parts (then no one-cut procedure

will be efficient). But amongst all divisions into two contiguous

slices, the cut-and-choose division will be efficient.
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Operational Properties

The properties discussed so far all relate to the fairness (or efficiency) of the

resulting division of the cake. Beyond that we may also be interested in the

“operational” properties of the procedures themselves:

• Does the procedure guarantee that each player receives a single

contiguous slice (rather than the union of several subintervals)?

• Is the number of cuts minimal? If not, is it at least bounded?

• Does the procedure require an active referee, or can all actions be

performed by the players themselves?

• Is the procedure a proper algorithm (a.k.a. a protocol), requiring a

finite number of specific actions from the participants (no need for a

“continuously moving knife”—to be discussed)?

Cut-and-choose is ideal and as simple as can be with respect to all of these

properties. For n > 2, it won’t be quite that easy though . . .
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Proportionality and Envy-Freeness

For n ≥ 3, proportionality and envy-freeness are not the same

properties anymore (unlike for n = 2):

Fact 1 Any envy-free division is also proportional, but there are

proportional divisions that are not envy-free.

Over the next few slides, we are going to focus on cake-cutting

procedures that achieve proportional divisions.
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The Steinhaus Procedure

This procedure for three players has been proposed by Steinhaus around

1943. Our exposition follows Brams and Taylor (1995).

(1) Player 1 cuts the cake into three pieces (which she values equally).

(2) Player 2 “passes” (if she thinks at least two of the pieces are ≥ 1/3) or

labels two of them as “bad”. — If player 2 passed, then players 3, 2, 1

each choose a piece (in that order) and we are done. X

(3) If player 2 did not pass, then player 3 can also choose between passing

and labelling. — If player 3 passed, then players 2, 3, 1 each choose a

piece (in that order) and we are done. X

(4) If neither player 2 or player 3 passed, then player 1 has to take (one of)

the piece(s) labelled as “bad” by both 2 and 3. — The rest is

reassembled and 2 and 3 play cut-and-choose. X

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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Properties

The Steinhaus procedure —

• Guarantees a proportional division of the cake (under the standard

assumption that players are risk-averse: they want to maximise

their payoff in the worst case).

• Is not envy-free. However, observe that players 2 and 3 will not

envy anyone. Only player 1 may envy one of the others in case the

situation where 2 and 3 play cut-and-choose occurs.

• Is a discrete procedure that does not require a referee.

• Requires at most 3 cuts (as opposed to the minimum of 2 cuts).

The resulting pieces do not have to be contiguous (namely if both

2 and 3 label the middle piece as “bad” and 1 takes it; and if the

cut-and-choose cut is different from 1’s original cut).
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The Banach-Knaster Last-Diminisher Procedure

In the first ever paper on fair division, Steinhaus (1948) reports on his own

solution for n = 3 and a generalisation to arbitrary n proposed by Banach

and Knaster.

(1) Player 1 cuts off a piece (that she considers to represent 1/n).

(2) That piece is passed around the players. Each player either lets it pass

(if she considers it too small) or trims it down further (to what she

considers 1/n).

(3) After the piece has made the full round, the last player to cut

something off (the “last diminisher”) is obliged to take it.

(4) The rest (including the trimmings) is then divided amongst the

remaining n−1 players. Play cut-and-choose once n = 2. X

The procedure’s properties are similar to that of the Steinhaus procedure

(proportional; not envy-free; not contiguous; bounded number of cuts).

H. Steinhaus. The Problem of Fair Division. Econometrica, 16:101–104, 1948.
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The Dubins-Spanier Procedure

Dubins and Spanier (1961) proposed an alternative proportional

procedure for arbitrary n. It produces contiguous slices (and hence

uses a minimal number of cuts), but it is not discrete anymore and it

requires the active help of a referee.

(1) A referee moves a knife slowly across the cake, from left to right.

Any player may shout “stop” at any time. Whoever does so

receives the piece to the left of the knife.

(2) When a piece has been cut off, we continue with the remaining

n−1 players, until just one player is left (who takes the rest). X

Observe that this is also not envy-free. The last chooser is best off

(she is the only one who can get more than 1/n).

L.E. Dubins and E.H. Spanier. How to Cut a Cake Fairly. American Mathematical

Monthly, 68(1):1–17, 1961.
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The Even-Paz Divide-and-Conquer Procedure

Even and Paz (1984) investigated upper bounds for the number of

cuts required to produce a proportional division for n players, without

allowing either a moving knife or “virtual cuts” (marks).

They introduced the following divide-and-conquer protocol:

(1) Ask each player to cut the cake at her bn

2
c / dn

2
e mark.

(2) Associate the union of the leftmost bn

2
c pieces with the players

who made the leftmost bn

2
c cuts (group 1), and the rest with the

others (group 2).

(3) Recursively apply the same procedure to each of the two groups,

until only a single player is left. X

Fact 2 The Even-Paz procedure requires O(n log n) cuts.

S. Even and A. Paz. A Note on Cake Cutting. Discrete Applied Mathematics,

7:285–296, 1984.
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Envy-Free Procedures

Next we discuss procedures for achieving envy-free divisions.

• For n = 2 the problem is easy: cut-and-choose does the job.

• For n = 3 we will see two solutions. They are already quite

complicated: either the number of cuts is not minimal (but > 2),

or several simultaneously moving knives are required.

• For n = 4, to date, no procedure producing contiguous pieces is known.

Barbanel and Brams (2004), for example, give a moving-knife procedure

requiring up to 5 cuts.

• For n ≥ 5, to date, only procedures requiring an unbounded number of

cuts are known (see e.g. Brams and Taylor, 1995).

J.B. Barbanel and S.J. Brams. Cake Division with Minimal Cuts. Mathematical

Social Sciences, 48(3):251–269, 2004.

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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The Selfridge-Conway Procedure

The first discrete protocol achieving envy-freeness for n = 3 has been

discovered independently by Selfridge and Conway (around 1960). Our

exposition follows Brams and Taylor (1995).

(1) Player 1 cuts the cake in three pieces (she considers equal).

(2) Player 2 either “passes” (if she thinks at least two pieces are tied for

largest) or trims one piece (to get two tied for largest pieces). — If she

passed, then let players 3, 2, 1 pick (in that order). X

(3) If player 2 did trim, then let 3, 2, 1 pick (in that order), but require 2 to

take the trimmed piece (unless 3 did). Keep the trimmings unallocated

for now (note: the partial allocation is envy-free).

(4) Now divide the trimmings. Whoever of 2 and 3 received the untrimmed

piece does the cutting. Let players choose in this order: non-cutter,

player 1, cutter. X

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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The Stromquist Procedure

Stromquist (1980) has come up with an envy-free procedure for n = 3

producing contiguous pieces, albeit requiring the use of four

simultaneously moving knifes:

• A referee slowly moves a knife across the cake, from left to right

(supposed to cut somewhere around the 1/3 mark).

• At the same time, each player is moving her own knife so that it

would cut the righthand piece in half (wrt. her own valuation).

• The first player to call “stop” receives the piece to the left of the

referee’s knife. The righthand part is cut by the middle one of the

three player knifes, and the other two pieces are allocated in the

obvious manner (ensuring proportionality). X

W. Stromquist. How to Cut a Cake Fairly. American Mathematical Monthly,

87(8):640–644, 1980.
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Summary: Cake-Cutting Procedures

We have discussed various procedures for fairly dividing a cake

(a metaphor for a single divisible good) amongst several players.

• Fairness criteria: proportionality and envy-freeness

(but other notions, such as equitability, Pareto efficiency,

strategy-proofness . . . are also of interest)

• Distinguish discrete procedures (protocols) and continuous

(moving-knife) procedures.

• The problem becomes non-trivial for more than two players, and

there are many open problems relating to finding procedures with

“good” properties for larger numbers.
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Overview of Procedures

Procedure Players Type Division Pieces Cuts

Cut-and-choose n = 2 protocol envy-free (∗) contiguous minimal

Steinhaus n = 3 protocol proportional not contig. min.+1

Banach-Knaster any n protocol proportional not contig. bounded

(last-diminisher) (but could be)

Dubins-Spanier any n 1 knife proportional contiguous minimal

Even-Paz any n protocol proportional contiguous O(n log n)

(divide-and-conquer)

Selfridge-Conway n = 3 protocol envy-free (∗) not contig. ≤ 5

Stromquist n = 3 4 knives envy-free (∗) contiguous minimal

(∗) Recall that envy-freeness entails proportionality.
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Literature

Both the book by Brams and Taylor (1996) and that by Robertson and

Webb (1998) cover the cake-cutting problem in great depth.

The paper by Brams and Taylor (1995) does not only introduce their

procedure for envy-free division for more than three players (not

covered in this tutorial), but is also very nice for presenting several of

the classical procedures in a systematic and accessible manner.

S.J. Brams and A.D. Taylor. Fair Division: From Cake-Cutting to Dispute Reso-

lution. Cambridge University Press, 1996.

J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair if You Can.

A.K. Peters, 1998.

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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Indivisible Goods:
Combinatorial Optimisation and Negotiation
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Allocation of Indivisible Goods

Next we will consider the case of allocating indivisible goods. We can

distinguish two approaches:

• In the centralised approach, we need to devise an optimisation

algorithm to compute an allocation meeting our fairness and

efficiency requirements.

– We will briefly mention complexity results,

– and point out connections to combinatorial auctions.

• In the distributed approach, allocations emerge as a consequence

of the agents implementing a sequence of local deals. What can

we say about the properties of these emerging allocations?
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Setting

For the remainder of today we will work in this framework:

• Set of agents A = {1..n} and finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in A.

Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Each agent i ∈ A has got a valuation function vi : 2G → R.

Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy

Later we will define (quasi-linear) utility functions over these valuations

(to account for payments). For now think of valuation as utility.

I How can we find a socially optimal allocation of goods?
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Complexity Results

Before we look into the “how”, here are some complexity results:

• Checking whether an allocation is Pareto efficient is coNP-complete.

• Finding an allocation with maximal utilitarian social welfare is NP-hard.

If all valuations are modular (additive) then it is polynomial.

• Finding an allocation with maximal egalitarian social welfare is also

NP-hard, even when all valuations are modular.

• Checking whether an envy-free allocation exists is NP-complete;

checking whether a Pareto efficient envy-free allocation exists is even

Σp

2
-complete.

References to these results may be found in the “MARA Survey”.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.
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Algorithms for Finding an Optimal Allocation

If our goal is to find an allocation with maximal utilitarian social

welfare, then the allocation problem is equivalent to the winner

determination problem in combinatorial auctions:

• valuation of agent i for bundle B ∼ price offered for B by bidder i

• utilitarian social welfare ∼ revenue (1st price auction)

Winner determination is a hard problem, but empirically successful

algorithms are available. See Sandholm (2006) for an introduction.

For other optimality criteria, much less work has been done on

algorithms. An exception is the work of Bouveret and Lemâıtre (2007).

T. Sandholm. Optimal Winner Determination Algorithms. In P. Cramton et al.

(eds.), Combinatorial Auctions, MIT Press, 2006.

S. Bouveret and M. Lemâıtre. New Constraint Programming Approaches for the

Computation of Leximin-Optimal Solutions in Constraint Networks. IJCAI-2007.
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Distributed Approach

Instead of devising algorithms for computing a socially optimal

allocation in a centralised manner, we now want agents to be able to

do this in a distributed manner by contracting deals locally.

• A deal δ = (A, A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to compensate

some of the agents for a loss in valuation. A payment function is a

function p : A → R with
∑

i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays e5,

while agent j receives e5.
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Negotiating Socially Optimal Allocations

We are not going to talk about designing a concrete negotiation

protocol, but rather study the framework from an abstract point of

view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their

individual preferences?; and

• the global view: how will the overall allocation of resources evolve

in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. Journal of AI Research, 25:315–348, 2006.

Ulle Endriss 57

Fair Division AAMAS-2008 Tutorial

The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals that

improve its individual welfare:

I A deal δ = (A, A′) is called individually rational (IR) iff there

exists a payment function p such that vi(A
′)− vi(A) > p(i) for all

i ∈ A, except possibly p(i) = 0 for agents i with A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in value

(or money) that strictly outweighs a possible loss in money (or value).
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The Global/Social Perspective

For now, suppose that as system designers we are interested in

maximising utilitarian social welfare:

swu(A) =
∑

i∈Agents

vi(A)

Observe that there is no need to include the agents’ monetary balances

into this definition, because they’d always add up to 0.

While the local perspective is driving the negotiation process, we use

the global perspective to assess how well we are doing.
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Example

Let A = {ann, bob} and G = {chair , table} and suppose our agents

use the following utility functions:

vann({ }) = 0 vbob({ }) = 0

vann({chair}) = 2 vbob({chair}) = 3

vann({table}) = 3 vbob({table}) = 3

vann({chair , table}) = 7 vbob({chair , table}) = 8

Furthermore, suppose the initial allocation of goods is A0 with

A0(ann) = {chair , table} and A0(bob) = { }.

Social welfare for allocation A0 is 7, but it could be 8. By moving only

a single good from agent ann to agent bob, the former would lose

more than the latter would gain (not individually rational).

The only possible deal would be to move the whole set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals that

increase social welfare:

Lemma 3 (Rationality and social welfare) A deal δ = (A, A′) with

side payments is individually rational iff swu(A) < swu(A′).

Proof: “⇒”: Rationality means that overall utility gains outweigh

overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all deal participants

by using, say, the following payment function:

p(i) = vi(A
′) − vi(A) −

swu(A′) − swu(A)

|A|
︸ ︷︷ ︸

> 0 X

Discussion: The lemma confirms that individually rational behaviour

is “appropriate” in utilitarian societies.
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Termination

We can now prove a first result on negotiation processes:

Lemma 4 (Termination) There can be no infinite sequence of IR

deals; that is, negotiation must always terminate.

Proof: Follows from the first lemma and the observation that the

space of distinct allocations is finite. X
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Convergence

It is now easy to prove the following convergence result (originally

stated by Sandholm in the context of distributed task allocation):

Theorem 5 (Sandholm, 1998) Any sequence of IR deals will

eventually result in an allocation with maximal social welfare.

Proof: Termination has been shown in the previous lemma. So let A

be the terminal allocation. Assume A is not optimal, i.e. there exists

an allocation A′ with swu(A) < swu(A′). Then, by our first lemma,

δ = (A, A′) is individually rational ⇒ contradiction. X

Discussion: Agents can act locally and need not be aware of the

global picture (convergence is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical Results.

Proc. AAAI Spring Symposium 1998.
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Multilateral Negotiation

On the downside, outcomes that maximise utilitarian social welfare can

only be guaranteed if the negotiation protocol allows for deals

involving any number of agents and resources:

Theorem 6 (Necessity of complex deals) Any deal δ = (A, A′)

may be necessary, i.e. there are valuation functions and an initial

allocation such that any sequence of individually rational deals leading

to an allocation with maximal utilitarian social welfare would have to

include δ (unless δ is “independently decomposable”).

The proof involves the systematic definition of valuation functions

such that A′ is optimal and A is the second best allocation.

Independently decomposable deals (to which the result does not apply)

are deals that can be split into two subdeals involving distinct agents.

The theorem holds even when valuation functions are restricted to be

monotonic or dichotomous.
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Modular Domains

A valuation function vi is called modular iff it satisfies the following

condition for all bundles B1, B2 ⊆ G:

vi(B1 ∪ B2) = vi(B1) + vi(B2) − vi(B1 ∩ B2)

That is, in a modular domain there are no synergies between items; you can

get the value of a bundle by adding up the values of its elements.

I Negotiation in modular domains is feasible:

Theorem 7 (Modular domains) If all valuation functions are modular,

then individually rational 1-deals (each involving just one item) suffice to

guarantee outcomes with maximal utilitarian social welfare.

We also know that the class of modular valuation functions is maximal: no

strictly larger class could still guarantee the same convergence property.

Y. Chevaleyre, U. Endriss, and N. Maudet. On Maximal Classes of Utility Functions

for Efficient one-to-one Negotiation. IJCAI-2005.
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Comparing Negotiation Policies
While we know from Theorem 7 that 1-deals (blue) guarantee an optimal

result, an experiment (20 agents, 200 resources, modular utilities) suggests

that general bilateral deals (red) achieve the same goal in fewer steps:

The graph shows how utilitarian social welfare (y-axis) develops as agents

attempt to contract more an more deals (x-axis) amongst themselves.

Graph generated using the MADRAS platform of Buisman et al. (2007).

H. Buisman, G. Kruitbosch, N. Peek, and U. Endriss. Simulation of Negotiation

Policies in Distributed Multiagent Resource Allocation. ESAW-2007.
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More Convergence Results

For any given fairness or efficiency criterion, we would like to know

how to set up a negotiation framework so as to be able to guarantee

convergence to a social optimum.

There are some known results of this sort, notably for Pareto efficiency

and maximal egalitarian social welfare.

Next we will consider the case of envy-freeness. Guaranteeing

convergence to an envy-free allocation is particularly difficult:

• Envy-free allocations do not always exist.

• A local deal in one part of society can make another agent

somewhere else envious.

Y. Chevaleyre, U. Endriss, S. Estivie and N. Maudet. Reaching Envy-free States

in Distributed Negotiation Settings. IJCAI-2007.
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Envy-freeness in the Presence of Money

Unfortunately, there are cases where envy-free allocations do not exist.

Example: 2 agents, 1 good desired by both

We can try to circumvent this problem by taking the balance of past

side payments into account when defining envy-freeness:

• Associate each allocation A with a payment balance π : A → R,

mapping agents to the sum of payments they have made so far.

• A state (A, π) is a pair of an allocation and a payment balance.

• Each agent i ∈ A has got a (quasi-linear) utility function

ui : 2G × R → R, defined as follows: ui(R, x) = vi(R) − x.

• A state (A, π) is envy-free iff ui(A(i), π(i)) ≥ ui(A(j), π(j)) for

all agents i, j ∈ A. An efficient envy-free (EEF) state is an

envy-free state maximising utilitarian social welfare.
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Existence of EEF States

Unlike for the case without money, EEF states always exist. There’s a

simple proof for supermodular valuations (proof on next slide):

Theorem 8 (Existence of EEF states) If all valuations are

supermodular, then an EEF state always exists.

Note that supermodular valuations are valuations satisfying the

following condition for all bundles B1, B2 ⊆ G:

v(B1 ∪ B2) ≥ v(B1) + v(B2) − v(B1 ∩ B2)

For ease of presentation (not technically required), from now on we

assume that all valuations are normalised: v({ }) = 0.
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Proof of Theorem 8

Of course, there’s always an efficient allocation; let’s call it A∗.

We’ll try to fix a payment balance π∗ such that (A∗, π∗) is EEF:

π∗(i) = vi(A
∗) − sw(A∗)/n

Note: the π∗(i) add up to 0, so it’s a valid payment balance. X

Now let i, j ∈ A be any two agents. As A∗ is efficient, giving both A∗(i)

and A∗(j) to i won’t increase social welfare any further:

vi(A
∗(i)) + vj(A

∗(j)) ≥ vi(A
∗(i) ∪ A∗(j))

Now apply the supermodularity condition . . . and rewrite:

vi(A
∗(i)) + vj(A

∗(j)) ≥ vi(A
∗(i)) + vi(A

∗(j))

vi(A
∗(i)) − [vi(A

∗)−sw(A∗)/n] ≥ vi(A
∗(j)) − [vj(A

∗)−sw(A∗)/n]

ui(A
∗(i), π∗(i)) ≥ ui(A

∗(j), π∗(j))

That is, i does not envy j. Hence, (A∗, π∗) is envy-free (and EEF). X
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Envy-freeness and Individual Rationality

Now that we know that EEF states always exist, we want to find them

by means of rational negotiation. Unfortunately, this is impossible.

Example: 2 agents, 1 resource

v1({r}) = 4 v2({r}) = 7

Suppose agent 1 owns r to begin with.

The efficient allocation would be where agent 2 owns r.

An individually rational deal would require a payment within (4, 7).

But to ensure envy-freeness, the payment should be in [2, 3.5].

Compromise: We shall enforce an initial equitability payment

π0(i) = vi(A0) − sw(A0)/n before beginning negotiation.

Discussion: If we have vi(A0) = 0 or if we think of A0 as random

(agents cannot derive any entitlements), then this is ok. Also note

that the payments do not achieve either envy-freeness or efficiency.
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Globally Uniform Payments

Again, realise just how unlikely it seems that our goal of guaranteeing

EEF outcomes for distributed negotiation amongst self-interested (IR)

agents could succeed (“non-local effects of local deals”) . . .

We will have to restrict the freedom of agents a little by fixing a

specific payment function (still IR!):

I Let δ = (A, A′) be an IR deal. The payments as given by the

globally uniform payment function (GUPF) are defined as:

p(i) = [vi(A
′) − vi(A)] − [sw(A′) − sw(A)]/n

That is, we evenly distribute the (positive!) social surplus to all agents.
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Convergence in Supermodular Domains

After having deciphered all the acronyms, this should be rather surprising:

Theorem 9 (Convergence) If all valuations are supermodular and if initial

equitability payments have been made, then any sequence of IR deals using

the GUPF will eventually result in an EEF state.

Proof: First try to show that this invariant holds for all states (A, π):

π(i) = vi(A) − sw(A)/n (∗)

True initially by definition (initial equitability payments). Now let

δ = (A, A′) be a deal, with payment balances π and π′. Compute:

π′(i) = π(i) + [vi(A
′) − vi(A)] − [sw(A′) − sw(A)]/n

= vi(A
′) − sw(A′)/n ; (∗) holds by induction

Theorem 5 shows that the system must converge to an efficient allocation

A∗ (whatever the payment function). Then the proof of Theorem 8

demonstrates that (∗) implies that (A∗, π∗) must be an EEF state. X
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Summary: Allocating Indivisible Goods

We have seen that finding a fair/efficient allocation in case of

indivisible goods gives rise to a combinatorial optimisation problem.

Two approaches:

• Centralised: Give a complete specification of the problem to an

optimisation algorithm (related to combinatorial auctions).

• Distributed: Try to get the agents to solve the problem.

For certain fairness criteria and certain assumptions on agent

behaviour, we can predict convergence to an optimal state.

– maximal utilitarian social welfare

– envy-free states (allocation + side payments)
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Literature

Besides listing fairness and efficiency criteria (Part 1), the “MARA Survey”

also gives an overview of allocation procedures for indivisible goods.

(It also covers applications, preference languages, and complexity results.)

We have largely neglected algorithmic and strategic aspects, which are

better developed in the combinatorial auction literature The handbook

edited by Cramton et al. (2006) is a good starting point.

To find out more about convergence in distributed negotiation you may start

by consulting the JAIR 2006 paper cited below.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet, J. Pad-

get, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multiagent Resource

Allocation. Informatica, 30:3–31, 2006.

P. Cramton, Y. Shoham, and R. Steinberg (eds.). Combinatorial Auctions. MIT

Press, 2006.

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal Allo-

cations of Resources. Journal of AI Research, 25:315–348, 2006.
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Conclusion
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Conclusion

Fair division is relevant to multiagent systems research. In this tutorial

we have covered three topics:

• Fairness and efficiency defined in terms of individual preferences.

• Classical algorithms for the cake-cutting problem (divisible good).

• Distributed approach based on negotiation for indivisible goods.

These slides will remain available on the tutorial website, and more

extensive material may be obtained from the website of my course on

Computational Social Choice given at the ILLC in Amsterdam:

• http://www.illc.uva.nl/~ulle/teaching/aamas-2008/

• http://www.illc.uva.nl/~ulle/teaching/comsoc/
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