SYSU Lectures on the Theory of Aggregation Lecture 3: Graph Aggregation

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

[http://www.illc.uva.nl/~ulle/sysu-2014/]

Plan for Today

This will be a lecture on the relatively new framework of graph aggregation, which in terms of level of abstraction is located somewhere between preference and binary aggregation.

- Formal framework and axioms
- Example for a characterisation result: quota rules
- Collective rationality and some simple possibility results
- A general impossibility result (generalising Arrow's Theorem)
- Using modal logic to specify collective rationality requirements

Graph Aggregation

Fix a finite set of vertices V. A (directed) graph $G = \langle V, E \rangle$ over V is defined by a set of edges $E \subseteq V \times V$ [so we can talk about E, not G]. Each member of a finite set of individuals $\mathcal{N} = \{1, \ldots, n\}$ provides such a graph, giving rise to a profile $\mathbf{E} = (E_1, \ldots, E_n)$.

An *aggregation rule* is a function mapping profiles to collective graphs:

$$F: (2^{V \times V})^n \to 2^{V \times V}$$

Example: *majority rule* (accept an edge *iff* $> \frac{n}{2}$ of the individuals do)

U. Endriss and U. Grandi. Graph Aggregation. Proc. COMSOC-2012.

Special Case: Preference Aggregation

Preference aggregation, with preferences being strict *linear orders* (as discussed on Tuesday), is a special case of graph aggregation:

- vertices = alternatives
- edges = *preferred-to* relation

Preference aggregation, with preferences being *weak orders* (another standard framework) is also a special case of graph aggregation.

On the other hand, graph aggregation is itself a special case of the framework of *binary aggregation* (issues = edges).

Applications

Graphs are everywhere. Examples for recent work that can be cast as instances of graph aggregation:

- Nonstandard preference aggregation, e.g., when preferences are taken to be *partial orders* to account for bounded rationality (Pini et al., 2009).
- Merging argumentation frameworks (e.g., Coste-Marquis et al., 2007).
- Aggregation of different *logics*, with edges corresponding to consequence relations (Wen and Liu, 2013).

Another promising area might be the merging of *social networks*.

M.S. Pini, F. Rossi, K.B. Venable, and T. Walsh, Aggregating Partially Ordered Preferences. *Journal of Logic and Computation*, 19(3):475–502, 2009.

S. Coste-Marquis, C. Devred, S. Konieczny, M.-C. Lagasquie-Schiex, and P. Marquis. On the Merging of Dung's Argumentation Systems. *Artificial Intelligence*, 171(10–15):730–753, 2007.

X. Wen and H. Liu. Logic Aggregation. Proc. LORI-2013.

Axioms

We may want to impose certain axioms on $F:(2^{V\times V})^n\to 2^{V\times V}$, e.g.:

- Anonymous: $F(E_1, ..., E_n) = F(E_{\pi(1)}, ..., E_{\pi(n)})$
- Nondictatorial: for no $i^* \in \mathcal{N}$ you always get $F(\mathbf{E}) = E_{i^*}$
- Unanimous: $F(\mathbf{E}) \supseteq E_1 \cap \cdots \cap E_n$
- Grounded: $F(\mathbf{E}) \subseteq E_1 \cup \cdots \cup E_n$
- Neutral: $N_e^{\boldsymbol{E}} = N_{e'}^{\boldsymbol{E}}$ implies $e \in F(\boldsymbol{E}) \Leftrightarrow e' \in F(\boldsymbol{E})$
- Independent: $N_e^{\boldsymbol{E}} = N_e^{\boldsymbol{E'}}$ implies $e \in F(\boldsymbol{E}) \Leftrightarrow e \in F(\boldsymbol{E'})$
- Monotonic: e ∈ F(E) implies e ∈ F(E') whenever E' is obtained from E by having one additional individual accept e

For technical reasons, we'll restrict some axioms to *nonreflexive edges* $(x, y) \in V \times V$ with $x \neq y$ (NR-neutral, NR-nondictatorial).

<u>Notation</u>: $N_e^{\boldsymbol{E}} = \{i \in \mathcal{N} \mid e \in E_i\} = coalition \text{ accepting edge } e \text{ in } \boldsymbol{E}$

Quota Rules

A *quota rule* is an aggregation rule F_q , defined via a function $q: V \times V \rightarrow \{0, 1, \dots, n, n+1\}$, such that for every profile E:

$$F_q(\mathbf{E}) = \{e \in V \times V \mid |N_e^{\mathbf{E}}| \ge q(e)\}$$

 F_q is called *uniform* if q is a constant function.

Examples:

- Strict majority rule: $q \equiv \lceil \frac{n+1}{2} \rceil$
- Union rule: $q \equiv 1$, i.e., $F_q(\mathbf{E}) = E_1 \cup \cdots \cup E_n$
- Intersection rule: $q \equiv n$, i.e., $F_q(\mathbf{E}) = E_1 \cap \cdots \cap E_n$
- Trivial quota rules (constant): $q \equiv 0$ or $q \equiv n+1$

Characterisation

Adapting similar results in judgment aggregation due to Dietrich and List (2007), we obtain the following characterisation:

Proposition 1 An aggregator is anonymous, independent, and monotonic if and only if ist is a quota rule.

<u>Proof sketch:</u> (\Leftarrow) Clear. \checkmark

 (\Rightarrow) By independence, decision on e only depends on $N_e^{\bm{E}}.$ By anonymity, only $|N_e^{\bm{E}}|$ matters. By monotonicity, "no gaps". \checkmark

Furthermore:

- Adding *neutrality*, we get *uniform* quota rules.
- Adding *unanimity* and *groundedness*, we get *nontrivial* rules.

F. Dietrich and C. List. Judgment Aggregation by Quota Rules: Majority Voting Generalized. *Journal of Theoretical Politics*, 19(4):391–424, 2007.

Collective Rationality

Aggregator F is collectively rational (CR) for graph property P if, whenever all individual graphs E_i satisfy P, so does the outcome F(E). Examples for graph properties: reflexivity, transitivity, seriality, ...

Example

Three agents each provide a graph on the same set of four vertices:

If we aggregate using the *majority rule*, we obtain this graph:

Observations:

- Majority rule not collectively rational for *seriality*.
- But *symmetry* is preserved.
- So is *reflexivity* (easy: individuals violate it).

Two Simple Possibility Results

The fact that the example worked for reflexivity is no coincidence:

Proposition 2 Any unanimous aggregator is CR for reflexivity.

<u>Proof:</u> If every individual graph includes edge (x, x), then unanimity ensures the same for the collective outcome graph. \checkmark

By a similar argument, we obtain:

Proposition 3 Any grounded aggregator is CR for irreflexivity.

Recall: Arrow's Theorem

This is how we had phrased Arrow's Theorem on Tuesday:

Theorem 4 (Arrow, 1951) Any SWF for ≥ 3 alternatives that satisfies the Pareto condition and IIA must be a dictatorship.

This is the version for strict linear orders (Arrow's original formulation was for weak orders, which doesn't make much of a difference though). I still owe you a proof.

K.J. Arrow. *Social Choice and Individual Values*. John Wiley and Sons, 2nd edition, 1963. First edition published in 1951.

Arrow's Theorem in Graph Aggregation

Our formulation in graph aggregation:

For $|V| \ge 3$, there exists <u>no</u> NR-nondictatorial, unanimous, grounded, and independent aggregator that is CR for irreflexivity, transitivity, and completeness.

This implies the standard formulation, because:

- preferences (linear orders) = irreflexive, transitive, complete graphs
- nondictatorial = NR-nondictatorial for irreflexive graphs
- (weak) Pareto \Rightarrow unanimous + grounded
- CR for irreflexivity is vacuous (implied by groundedness)

Main question for the next part:

► For what other classes of graphs does this go through?

Winning Coalitions

If an aggregator F is *independent*, then for every edge e there exists a set of *winning coalitions* $\mathcal{W}_e \subseteq 2^{\mathcal{N}}$ such that $e \in F(\mathbf{E}) \Leftrightarrow N_e^{\mathbf{E}} \in \mathcal{W}_e$. Furthermore:

- If F is *unanimous*, then $\mathcal{N} \in \mathcal{W}_e$ for all edges e.
- If F is grounded, then $\emptyset \notin \mathcal{W}_e$ for all edges e.
- If F is *neutral*, then there is *one* \mathcal{W} with $\mathcal{W} = \mathcal{W}_e$ for all edges e.

Proof Plan

<u>Given</u>: Arrovian aggregator F (unanimous, grounded, independent) <u>Want</u>: Impossibility for collective rationality for graph property PThis will work if P is contagious, implicative, and disjunctive (TBD). <u>Lemma</u>: CR for contagious $P \Rightarrow F$ is NR-neutral.

 $\Rightarrow F \text{ characterised by some } \mathcal{W}: \ (x,y) \in F(\boldsymbol{E}) \Leftrightarrow N_{(x,y)}^{\boldsymbol{E}} \in \mathcal{W} \ [x \neq y]$

<u>Lemma:</u> CR for *implicative* & *disjunctive* $P \Rightarrow W$ is an *ultrafilter*, i.e.:

(i) $\emptyset \notin \mathcal{W}$ [this is immediate from groundedness] (ii) $C_1, C_2 \in \mathcal{W}$ implies $C_1 \cap C_2 \in \mathcal{W}$ (closure under intersections) (iii) C or $\mathcal{N} \setminus C$ is in \mathcal{W} for all $C \subseteq \mathcal{N}$ (maximality)

 \mathcal{N} is finite $\Rightarrow \mathcal{W}$ is principal: $\exists i^* \in \mathcal{N}$ s.t. $\mathcal{W} = \{C \in 2^{\mathcal{N}} \mid i^* \in C\}$ But this just means that i^* is a dictator: F is (NR-)dictatorial. \checkmark

Neutrality Lemma

Consider any Arrovian aggregator (unanimous, grounded, independent).

Call a property P xy/zw-contagious if there exist disjoint $S^+, S^- \subseteq V \times V$ s.t. every graph $E \in P$ satisfies $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [xEy \rightarrow zEw].$

CR for xy/zw-contagious *P* implies: coalition $C \in \mathcal{W}_{(x,y)} \Rightarrow C \in \mathcal{W}_{(z,w)}$

Call *P* contagious if it satisfies (at least) one of the three conditions below:

- (i) P is xy/yz-contagious for all $x, y, z \in V$.
- (ii) P is xy/zx-contagious for all $x, y, z \in V$.
- (*iii*) P is xy/xz-contagious and xy/zy-contagious for all $x, y, z \in V$.

Example: Transitivity $([yEz] \rightarrow [xEy \rightarrow xEz] \text{ and } [zEx] \rightarrow [xEy \rightarrow zEy])$

Contagiousness allows us to reach every NR edge from every other NR edge. Thus, *CR for contagious* P implies $W_e = W_{e'}$ for all NR edges e, e'.

<u>So:</u> Collective rationality for a contagious property implies NR-neutrality.

Ultrafilter Lemma

Let F be unanimous, grounded, independent, NR-neutral, and CR for P. So there exists a family of winning coalitions \mathcal{W} s.t. $e \in F(\mathbf{E}) \Leftrightarrow N_e^{\mathbf{E}} \in \mathcal{W}$. Show that \mathcal{W} is an ultrafilter (under certain assumptions on P):

- (i) $\emptyset \notin \mathcal{W}$: immediate form groundedness
- (*ii*) Closure under intersections: $C_1, C_2 \in \mathcal{W} \Rightarrow C_1 \cap C_2 \in \mathcal{W}$

Call *P* implicative if there exist disjoint sets $S^+, S^- \subseteq V \times V$ and distinct edges $e_1, e_2, e_3 \in V \times V \setminus (S^+ \cup S^-)$ s.t. all graphs $E \in P$ satisfy $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [e_1 \land e_2 \rightarrow e_3].$

Example: transitivity

CR for implicative $P \Rightarrow$ closure under intersections

<u>Proof</u>: Consider a profile where C_1 accept e_1 , C_2 accept e_2 , $C_1 \cap C_2$ accept e_3 , everyone accepts S^+ , and nobody accepts any edge in S^- .

Ultrafilter Lemma (continued)

Still showing that \mathcal{W} is an *ultrafilter* (for certain assumptions on P):

(*iii*) *Maximality*: C or $\mathcal{N} \setminus C$ in \mathcal{W} for all $C \subseteq \mathcal{N}$

Call P disjunctive if there exist disjoint sets $S^+, S^- \subseteq V \times V$ and distinct edges $e_1, e_2 \in V \times V \setminus (S^+ \cup S^-)$ s.t. all graphs $E \in P$ satisfy $[\bigwedge S^+ \land \neg \bigvee S^-] \rightarrow [e_1 \lor e_2]$.

Example: completeness

CR for disjunctive $P \Rightarrow maximality$

<u>Proof:</u> Consider a profile where C accept e_1 , $\mathcal{N} \setminus C$ accept e_2 , everyone accepts S^+ , and nobody accepts any edge in S^- .

End of Proof: Dictatorship

We have shown that our assumptions imply that F is characterised by a single family \mathcal{W} of winning coalitions $((x, y) \in F(\mathbf{E}) \Leftrightarrow N_{(x,y)}^{\mathbf{E}} \in \mathcal{W}$ for $x \neq y$) and that \mathcal{W} must be an *ultrafilter*:

(i) $\emptyset \notin \mathcal{W}$

(*ii*) $C_1, C_2 \in \mathcal{W}$ implies $C_1 \cap C_2 \in \mathcal{W}$ (closure under intersections) (*iii*) C or $\mathcal{N} \setminus C$ is in \mathcal{W} for all $C \subseteq \mathcal{N}$ (maximality)

Take the *intersection* of all winning coalitions (possible, as \mathcal{N} is *finite*). By (ii), this must be a winning coalition itself. By (i), not empty. By (iii) cannot have two or more elements. Thus, it must be a singleton $\{i^{\star}\}$, meaning that i^{\star} is a dictator. \checkmark

C/I/D

General Impossibility Theorem

We have seen a proof for the following theorem:

Theorem 5 For $|V| \ge 3$, there exists <u>no</u> NR-nondictatorial, unanimous, grounded, and independent aggregator that is CR for any graph property that is contagious, implicative, and disjunctive.

Many combinations of graph properties have our meta-properties:

		/ /
Transitivity	$\forall xyz.(xEy \land yEz \rightarrow xEz)$	++-
Right Euclidean	$\forall xyz.(xEy \land xEz \rightarrow yEz)$	+ + -
Left Euclidean	$\forall xyz.(xEy \land zEy \rightarrow zEx)$	+ + -
Seriality	$\forall x. \exists y. xEy$	+
Completeness	$\forall xy. [x \neq y \rightarrow (xEy \lor yEx)]$	+
Connectedness	$\forall xyz.[xEy \land xEz \rightarrow (yEz \lor zEy)]$	+ + +
Negative Transitivity	$\forall xyz.[xEy \rightarrow (xEz \lor zEy)]$	+ - +

<u>Arrow's Theorem</u>: use transitivity and completeness \checkmark

Collective Rationality and Modal Logic

Modal logic is a useful language for talking about graphs. This suggests trying to express CR requirements in modal logic. On the following slides, we will see some preliminary results in this directions:

- The modal logic perspective suggests a differentiation into three *levels of collective rationality*.
- For properties expressible as modal logic formulas satisfying certain *syntactic constraints*, we obtain simple *possibility results*.

I shall assume familiarity with basic modal logic.

Levels of Collective Rationality

Graphs $\langle V, E \rangle$ may be considered Kripke frames. The semantics of modal logic suggests three levels of collective rationality:

- F is *frame-CR* for a modal integrity constraint φ if $\langle V, E_i \rangle \models \varphi$ for all $i \in \mathcal{N}$ implies $\langle V, F(\mathbf{E}) \rangle \models \varphi$.
- *F* is *model-CR* for a modal IC φ if for all valuations $Val: \Phi \to 2^V$ $\langle \langle V, E_i \rangle, Val \rangle \models \varphi$ for all $i \in \mathcal{N}$ implies $\langle \langle V, F(\boldsymbol{E}) \rangle, Val \rangle \models \varphi$.
- F is world-CR for a modal IC φ if for all valuations $Val: \Phi \to 2^V$ and worlds $x \in V$ we have $\langle \langle V, E_i \rangle, Val \rangle, x \models \varphi$ for all $i \in \mathcal{N}$ implying $\langle \langle V, F(\mathbf{E}) \rangle, Val \rangle, x \models \varphi$.

Via modal correspondence theory, frame-CR corresponds to our original notion of collective rationality.

Connections

Proposition 6 Let F be an aggregator and let φ a modal integrity constraint. Then the following implications hold:

(i) If F is world-CR for φ , then F is also model-CR for φ .

(*ii*) If F is model-CR for φ , then F is also frame-CR for φ .

These implications are strict. Example:

Suppose F returns the full graph if all individual graphs satisfy $\Diamond(p \lor \neg p)$, and the empty graph otherwise. Then F is model-CR but not world-CR for $\Diamond(p \lor \neg p)$: Take a profile of graphs with two worlds where $E_i = \{(x, y)\}$ for all $i \in \mathcal{N}$. The outcome returned by F is the empty graph, in violation of world-CR for $\Diamond(p \lor \neg p)$ at world x.

<u>Remark:</u> Impossibility results are most interesting for frame-CR. Possibility results are most interesting for world-CR.

Possibility Results

Let us call a \Box -formula any formula in NNF without any occurrences of \diamond (and define \diamond -formulas accordingly).

Proposition 7 If an aggregator F is such that for every profile Ethere exists an individual $i^* \in \mathcal{N}$ such that $F(E) \subseteq E_{i^*}$, then F is world-CR for all \Box -formulas.

Proposition 8 If an aggregator F is such that for every profile Ethere exists an individual $i^* \in \mathcal{N}$ such that $F(E) \supseteq E_{i^*}$, then F is world-CR for all \diamondsuit -formulas.

Proposition 9 If an aggregator F is such that for every profile Ethere exists an individual $i^* \in \mathcal{N}$ such that $F(E) = E_{i^*}$, then F is world-CR for all modal integrity constraints.

This last result is related to the fact that no representative-voter rule can ever cause a paradox (lecture on binary aggregation).

Summary

We have introduced *graph aggregation* as a generalisation of preference aggregation and then considered *collective rationality*.

Why is this interesting?

- Potential for *applications*: abstract argumentation, social networks
- Deep insights into the *structure of impossibilities*: direct link between CR requirements and neutrality/ultrafilter conditions

Topics covered:

- Axiomatic characterisation of quota rules
- Simple possibility results (e.g., unanimity lifting reflexivity)
- General impossibility theorem, ultrafilter proof technique
- The modal logic perspective