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Plan for Today

Today’s lecture will be devoted to the framework of binary aggregation

with integrity constraints. Rough outline:

• Old and new examples for aggregation problems and paradoxes

• General perspective on aggregation and paradoxes

• Formal framework of binary aggregation with integrity constraints

• Embedding preference aggregation and judgment aggregation

• New idea: lifting rationality assumptions

• Designing attractive aggregators: representative-voter rules
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Preference Aggregation

Expert 1: 4 � # � �

Expert 2: # � � � 4
Expert 3: � � 4 � #

Expert 4: � � 4 � #

Expert 5: # � � � 4

?
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Judgment Aggregation

p p → q q

Judge 1: True True True

Judge 2: True False False

Judge 3: False True False

?
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Multiple Referenda

fund museum? fund school? fund metro?

Voter 1: Yes Yes No

Voter 2: Yes No Yes

Voter 3: No Yes Yes

?[
Constraint: we have money for at most two projects

]
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General Perspective

The last example is actually pretty general. We can rephrase many

aggregation problems as problems of binary aggregation:

Do you rank option 4 above option #? Yes/No

Do you believe formula “p → q” is true? Yes/No

Do you want the new school to get funded? Yes/No

Each problem domain comes with its own rationality constraints:

Rankings should be transitive and not have any cycles.

The accepted set of formulas should be logically consistent.

We should fund at most two projects.

The paradoxes we have seen show that the majority rule does not lift

our rationality constraints from the individual to the collective level.

Ulle Endriss 6



Theory of Aggregation 2 SYSU, April 2014

Binary Aggregation with Integrity Constraints

Basic terminology and notation:

• Set of individuals N = {1, . . . , n}; set of issues I = {1, . . . ,m}.

• Corresponding set of propositional symbols PS = {p1, . . . , pm}
and propositional language LPS interpreted on D = {0, 1}m.

• An aggregation rule is a function F : Dn → D. That is, each

individual i ∈ N votes by submitting a ballot Bi ∈ D.

• An integrity constraint is a formula IC ∈ LPS encoding a

“rationality assumption”. Ballot B ∈ D is rational iff B |= IC.

U. Grandi and U. Endriss. Binary Aggregation with Integrity Constraints. Proc.

IJCAI-2011.
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Example

Our multiple-referenda example is formalised as follows:

• Three individuals: N = {1, 2, 3}

• Three issues/prop. symbols: I = {museum, school, metro}.

• Integrity constraint: IC = ¬(museum ∧ school ∧ metro)

• Profile: B = (B1, B2, B3) with

B1 = (1, 1, 0)

B2 = (1, 0, 1)

B3 = (0, 1, 1)

Note that Bi |= IC for all i ∈ {1, 2, 3}

• However, Fmaj(B) = (1, 1, 1) and (1, 1, 1) 6|= IC.
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Axioms for Binary Aggregation

Classical axioms are easily adapted to this framework. Examples:

• Unanimity: For any profile of rational ballots (B1, . . . , Bn) and

any x ∈ {0, 1}, if bi,j = x for all i ∈ N , then F (B1, . . . , Bn)j = x.

• Anonymity: For any rational profile (B1, . . . , Bn) and any

permutation π : N → N , we get F (B1..Bn) = F (Bπ(1)..Bπ(n)).

• Independence: For any issue j ∈ I and any two rational profiles

B,B′, if bi,j = b′i,j for all i ∈ N , then F (B)j = F (B′)j .

• Issue-Neutrality: For any two issues j, j′ ∈ I and any rational

profile B, if bi,j = bi,j′ for all i ∈ N , then F (B)j = F (B)j′ .

• Domain-Neutrality: For any two issues j, j′ ∈ I and any rational

profile B, if bi,j = 1− bi,j′ for all i ∈ N , then F (B)j = 1− F (B)j′ .

Axioms are (usually) defined for a given domain of aggregation: those

profiles in Dn that are rational for a given IC.

Ulle Endriss 9



Theory of Aggregation 2 SYSU, April 2014

Embedding Preference Aggregation

We can translate Arrovian preference aggregation (for linear orders)

into binary aggregation with integrity constraints:

• Introduce propositional symbols pxy to mean “x is better than y”.

• Include integrity constraints for irreflexivity (¬pxx), completeness

(pxy ∨ pyx), and transitivity (pxy ∧ pyz → pxz).

Now the Condorcet paradox corresponds to this example:

pAB pBC pAC corresponding order

Ann: 1 1 1 A � B � C

Bob: 0 1 0 B � C � A

Cindy: 1 0 0 C � A � B
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Embedding Judgment Aggregation

We can also translate formula-based judgment aggregation into binary

aggregation with integrity constraints.

• Introduce propositional symbol pϕ for every formula ϕ in the agenda Φ.

• Model completeness by imposing the IC pϕ ∨ p¬ϕ for every non-negated

formula ϕ in the agenda Φ.

• Model consistency by imposing the IC ¬(
V

ϕ∈S pϕ) for every minimally

inconsistent subset S of the agenda Φ

Note that from a computational point of view this is not always a good

translation (the size of the representation can increase exponentially).

Example: For the agenda {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}, we obtain:

IC = (pp ∨ p¬p) ∧ (pq ∨ p¬q) ∧ (pp∧q ∨ p¬(p∧q)) ∧

¬(pp ∧ p¬p) ∧ ¬(pq ∧ p¬q) ∧ ¬(pp∧q ∧ p¬(p∧q)) ∧

¬(p¬p ∧ pp∧q) ∧ ¬(p¬q ∧ pp∧q) ∧ ¬(pp ∧ pq ∧ p¬(p∧q))

Ulle Endriss 11



Theory of Aggregation 2 SYSU, April 2014

Paradoxes

We are now able to give a general definition of “paradox” that captures

many of the paradoxes in the literature on social choice theory.

A paradox is a triple 〈F, IC,B〉, consisting of an aggregation

rule F , a profile B, and an integritry constraint IC, such that

Bi |= IC for all individuals i ∈ N but F (B) 6|= IC.

Ulle Endriss 12



Theory of Aggregation 2 SYSU, April 2014

Collective Rationality

An aggregation rule F : Dn → D is collectively rational for IC ∈ LPS

if Bi |= IC for all i ∈ N implies F (B1, . . . , Bn) |= IC.

That is, F is collectively rational for IC, if there exists not profile B

such that 〈F, IC,B〉 is a paradox.

We also say: F can lift IC from the individual to the collective level.
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Template for Results

Let L ⊆ LPS be a language of integrity constraints. By fixing L we fix

a range of possible domains of aggregation (one for each IC ∈ L).

Two ways of defining classes of aggregation rules:

• The class of rules defined by a given list of axioms AX:

FL[AX] := {F : Dn → D | F satisfies AX on all L-domains}

• The class of rules that lift all integrity constraints in L:

CR[L] := {F : Dn → D | F is collect. rat. for all IC ∈ L}

What we want:

CR[L] = FL[AX]
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Example for a Characterisation Result

Theorem 1 F will lift all integrity constraints that can be expressed

as a conjunction of literals (“cube”) if and only if F is unanimous:

CR[cubes] = Fcubes[Unanimity]

U. Grandi and U. Endriss. Lifting Integrity Constraints in Binary Aggregation.

Artificial Intelligence, 199–200:45–66, 2013.
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More Results

Characterisation results (selection):

• F lifts all constraints pj ↔ pk iff F is issue-neutral

• F lifts all constraints pj ↔ ¬pk iff F is domain-neutral

Negative results:

• there exists no language that characterises anonymous rules

• there exists no language that characterises independent rules

U. Grandi and U. Endriss. Lifting Integrity Constraints in Binary Aggregation.

Artificial Intelligence, 199–200:45–66, 2013.
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Example

Suppose 13 voters are asked to each vote yes or no on three issues;

and we use the majority rule for each issue independently:

• 3 voters each vote for YNN, NYN, NNY.

• 1 voter each votes for YYY, YYN, YNY, NYY.

• No voter votes for NNN.

NNN wins: 7 out of 13 vote no on each issue.

This is an instance of the paradox of multiple elections: the winning

combination received the fewest number of (actually: no) votes.

I But is it a paradox according to our definition?

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections.

Social Choice and Welfare, 15(2):211–236, 1998.
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Designing Good Aggregation Rules

We want to identify good methods for binary aggregating.

• Problem: the simple methods people usually use (“issue-wise

majority”) can lead to paradoxical outcomes.

• Problem: more sophisticated methods (“distance-based”) are

computationally intractable (as we will see).

• New idea: use an aggregation rule that identifies the

“most representative” voter and just copies that voter’s ballot.

Take-home message will be: simple, but works surprisingly well.

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Represen-

tative Voter. Proc. MPREF-2013.
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Distance-based Aggregation

How to avoid paradoxes?

→ Only consider outcomes that respect the integrity constraint.

→ Which one to pick?—the one “closest” to the individual inputs.

These considerations suggest the following rule:

• The (Hamming) distance between an individual input and the

outcome is the number of “point decisions” on which they differ.

• Elect the (consistent/rational) outcome that minimises the sum of

distances to the individual inputs! (+ break ties if needed)

For preference aggregation (with “point decisions” being pairwise

rankings), this is the famous Kemeny rule. No rule is perfect, but

many consider this one to be pretty much the best there is.

But: this is Θp
2-complete (“complete for parallel access to NP”). /
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Taming the Complexity

Where does this complexity come from?

→ We need to search through all candidate outcomes.

• there might be exponentially many of those

• for each of them, checking consistency might be nontrivial

An idea:

• restrict set of choices to a small set of candidate outcomes

• make sure you can be certain all candidate outcomes are consistent

The easiest way of doing this:

candidate outcomes = choices made by individuals (“support”)
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Example

Find the outcome that minimises the sum of distances for this profile:

Issue: 1 2 3

20 voters: 0 1 1

10 voters: 1 0 1

11 voters: 1 1 0

Solution: (1, 1, 1). The distance is 41 (41 voters × 1 disagreement).

Note: same as majority outcome (as there’s no integrity constraint).

Now suppose there’s an IC that says that (1, 1, 1) is not ok.
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Example (continued)

Find the outcome that minimises the sum of distances for this profile:

Issue: 1 2 3

20 voters: 0 1 1

10 voters: 1 0 1

11 voters: 1 1 0

“Average voter” says: (0, 1, 1).
The distance is 42 (20 with no disagreements + 21 with 2 each).

So: not much worse (42 vs. 41), but easier to find (choose from 3

rather than 23 = 8 outcomes; all 3 known to be consistent a priori)

Ulle Endriss 22



Theory of Aggregation 2 SYSU, April 2014

Additional Notation and Terminology

• Hamming distance between ballots: H(B,B′)= |{j ∈ I | bj 6=b′j}|
and between a ballot and a profile: H(B,B) =

∑
i∈N H(B,Bi).

• Support of profile B: Supp(B) = {B1} ∪ · · · ∪ {Bn}.
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Rules Based on Representative Voters

Idea: Choose an outcome by first choosing a voter (based on the input

profile) and then copying that voter’s ballot.

Fix g : Dn → N . Then let F : B 7→ Bg(B).

Good properties (of all these rules):

• No paradoxes ever, whatever the IC (not true for any other rule).

• Unanimity guaranteed. [obvious]

• Neutrality (both kinds) guaranteed. [maybe less obvious]

• Low complexity for natural choices of g.

But:

• Includes some really bad rules, such as Arrovian dictatorships:

g ≡ i, i.e., F : (B1, . . . , Bn) 7→ Bi with i being the dictator

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Represen-

tative Voter. Proc. MPREF-2013.
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Two Representative-Voter Rules

The average-voter rule selects those individual ballots that minimise

the Hamming distance to the profile:

AVR(B) = argmin
B∈Supp(B)

H(B,B)

Remark: if you replace the set Supp(B) by Mod(IC), the set of all

consistent outcomes, you obtain the full distance-based rule.

The majority-voter rule selects those individual ballots that minimise

the Hamming distance to one of the majority outcomes:

MVR(B) = argmin
B∈Supp(B)

min{H(B,B′) | B′ ∈ Maj(B)}

Connections:

• AVR related to Kemeny rule in voting/preference aggregation.

• MVR related to Slater rule in voting/preference aggregation.
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Example

The AVR and the MVR really can give different outcomes:

Issue: 1 2 3 4 5

1 voter: 0 1 1 1 1

2 voters: 1 0 0 0 0

10 voters: 0 1 1 0 0

10 voters: 0 0 0 1 1

Maj: 0 0 0 0 0

MVR: 1 0 0 0 0

AVR: 0 0 0 1 1

Remark: This is the AVR-winner for one way of breaking ties (for the

other way it is also different from the MVR-winner).
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Which rule is better?

We will compare the AVR and the MVR according to

• algorithmic efficiency [MVR wins]

• satisfaction of a choice-theoretic axiom [AVR wins]

• relative distance to the input profile [AVR wins]
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Algorithmic Efficiency

Recall: m is the number of issues; n is the number of voters.

Winner determination for the MVR is in O(mn):

• compute the majority vector in O(mn)
• compare each ballot to the majority vector in O(mn)

Winner determination for the AVR is in O(mn log n):

• compute the vector of sums in O(mn)
• compute the difference between each ballot (multiplied by n) to

the vector of sums in O(mn log n)
[O(log n) because we are working with integers up to n]

So: both rules are efficient, but the MVR more so.
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Axiom: Reinforcement

We are looking for an axiom that separates the two rules . . .

F satisfies reinforcement if for any two profiles B and B′ with

• Supp(B) = Supp(B′) and

• F (B) ∩ F (B′) 6= ∅

it is the case that F (B ⊕B′) = F (B) ∩ F (B′).

This is a natural requirement: if two groups independently agree that

a certain outcome is best, we would expect them to uphold this choice

when choosing together.

Theorem 2 The AVR satisfies reinforcement, but the MVR does not.

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Represen-

tative Voter. Proc. MPREF-2013.
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Relative Distance to the Input Profile

Both rules select from Supp(B) and the AVR by definition picks the

candidate outcome closest to the profile. Thus:

Fact: The Hamming distance between the (worst)

AVR-winner and the profile never exceeds the Hamming

distance between the (best) MVR-winner and the profile.

More importantly, as we shall see next, both rules are very good

approximations of the full distance-based rule . . .
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Approximation Results

F is said to be an α-approximation of F ′ if for every profile B:

maxH(F (B),B) 6 α ·minH(F ′(B),B)

If F ′ is a “nice” but computationally intractable rule and if α is a

constant, then this would be considered great news for F .

Theorem 3 The AVR and the MVR are (strict) 2-approximations of

the full distance-based rule (for any IC).

Proof: next slide

An important additional insight here is that approximations get better

as we increase the logical strength of the IC (reason: the stronger IC,

the fewer outcome the distance-based rule can choose from).

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Represen-

tative Voter. Proc. MPREF-2013.
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Proof Sketch

We will prove that the MVR is a (strict) 2-approx. of the majority rule

(= distance-based rule with IC = >). All other claims then follow.

To simplify presentation, suppose there is only a single majority

winner. W.l.o.g., suppose it is (0, . . . , 0).

Let mi be the number of issues labelled as 1 by individual i. Let i? be

the voter selected by the MVR, i.e., mi? 6 mi for all i ∈ N .

If mi? = 0, then we are done (approx. ratio 1). So suppose mi? 6= 0.

We need to show: ∑
i∈N

H(Bi? , Bi) < 2 ·
∑
i∈N

mi

But this is the case:

• H(Bi? , Bi) 6 mi? + mi 6 2 ·mi for all i 6= i? (triangle inequality)

• H(Bi? , Bi?) = 0 < 2 ·mi? X
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Summary

Binary aggregation with integrity constraints:

• language to express rationality assumptions in binary aggregation

• concept of collective rationality with respect to an IC

• characterisation results, relating axioms and languages

• application: embedding preference + judgment aggregation

• application: design of aggregation rules that avoid all paradoxes

(representative-voter rules have surprisingly good properties)

In principle, any aggregation problem can be modelled using binary

aggregation. But sometimes a more domain-specific framework will be

more insightful and/or will have better algorithmic properties.

For an introduction to binary aggregation with integrity constraints,

consult the paper cited below.

U. Grandi and U. Endriss. Binary Aggregation with Integrity Constraints. Proc.

IJCAI-2011.
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