SYSU Lectures on the Theory of Aggregation Lecture 2: Binary Aggregation with Integrity Constraints

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

[http://www.illc.uva.nl/~ulle/sysu-2014/]

Plan for Today

Today's lecture will be devoted to the framework of *binary aggregation* with integrity constraints. Rough outline:

- Old and new examples for aggregation problems and paradoxes
- General perspective on aggregation and paradoxes
- Formal framework of binary aggregation with integrity constraints
- Embedding preference aggregation and judgment aggregation
- New idea: lifting rationality assumptions
- Designing attractive aggregators: representative-voter rules

Preference Aggregation

Expert 1: $\triangle \succ \bigcirc \succ \Box$ Expert 2: $\bigcirc \succ \Box \succ \bigtriangleup$ Expert 3: $\Box \succ \bigtriangleup \succ \bigcirc$ Expert 4: $\Box \succ \bigtriangleup \succ \bigcirc$ Expert 5: $\bigcirc \succ \Box \succ \bigtriangleup$

?

Judgment Aggregation

	p	$p \to q$	q
Judge 1:	True	True	True
Judge 2:	True	False	False
Judge 3:	False	True	False

?

Multiple Referenda

	fund museum?	fund school?	fund metro?	
Voter 1:	Yes	Yes	No	
Voter 2:	Yes	No	Yes	
Voter 3:	Νο	Yes	Yes	
?				
[Constraint: we have money for <i>at most two projects</i>]				

General Perspective

The last example is actually pretty general. We can rephrase many aggregation problems as problems of *binary aggregation*:

Do you rank option \triangle above option \bigcirc ?Yes/NoDo you believe formula " $p \rightarrow q$ " is true?Yes/NoDo you want the new school to get funded?Yes/NoEach problem domain comes with its own rationality constraints:

Rankings should be transitive and not have any cycles. The accepted set of formulas should be logically consistent. We should fund at most two projects.

The *paradoxes* we have seen show that the *majority rule* does not *lift* our rationality constraints from the *individual* to the *collective* level.

Binary Aggregation with Integrity Constraints

Basic terminology and notation:

- Set of *individuals* $\mathcal{N} = \{1, \ldots, n\}$; set of *issues* $\mathcal{I} = \{1, \ldots, m\}$.
- Corresponding set of *propositional symbols* $PS = \{p_1, \ldots, p_m\}$ and *propositional language* \mathcal{L}_{PS} interpreted on $\mathcal{D} = \{0, 1\}^m$.
- An aggregation rule is a function F : Dⁿ → D. That is, each individual i ∈ N votes by submitting a ballot B_i ∈ D.
- An *integrity constraint* is a formula IC ∈ L_{PS} encoding a "rationality assumption". Ballot B ∈ D is *rational* iff B ⊨ IC.

U. Grandi and U. Endriss. Binary Aggregation with Integrity Constraints. *Proc. IJCAI-2011*.

Example

Our multiple-referenda example is formalised as follows:

- Three individuals: $\mathcal{N} = \{1, 2, 3\}$
- Three issues/prop. symbols: $\mathcal{I} = \{ \texttt{museum}, \texttt{school}, \texttt{metro} \}$.
- Integrity constraint: $IC = \neg(museum \land school \land metro)$
- Profile: $\boldsymbol{B} = (B_1, B_2, B_3)$ with

 $B_1 = (1, 1, 0)$ $B_2 = (1, 0, 1)$ $B_3 = (0, 1, 1)$

Note that $B_i \models \text{IC}$ for all $i \in \{1, 2, 3\}$

• However, $F_{maj}(\boldsymbol{B}) = (1, 1, 1)$ and $(1, 1, 1) \not\models IC$.

Axioms for Binary Aggregation

Classical axioms are easily adapted to this framework. Examples:

- Unanimity: For any profile of rational ballots (B_1, \ldots, B_n) and any $x \in \{0, 1\}$, if $b_{i,j} = x$ for all $i \in \mathcal{N}$, then $F(B_1, \ldots, B_n)_j = x$.
- Anonymity: For any rational profile (B_1, \ldots, B_n) and any permutation $\pi : \mathcal{N} \to \mathcal{N}$, we get $F(B_1..B_n) = F(B_{\pi(1)}..B_{\pi(n)})$.
- Independence: For any issue $j \in \mathcal{I}$ and any two rational profiles B, B', if $b_{i,j} = b'_{i,j}$ for all $i \in \mathcal{N}$, then $F(B)_j = F(B')_j$.
- Issue-Neutrality: For any two issues $j, j' \in \mathcal{I}$ and any rational profile B, if $b_{i,j} = b_{i,j'}$ for all $i \in \mathcal{N}$, then $F(B)_j = F(B)_{j'}$.
- **Domain-Neutrality:** For any two issues $j, j' \in \mathcal{I}$ and any rational profile B, if $b_{i,j} = 1 b_{i,j'}$ for all $i \in \mathcal{N}$, then $F(B)_j = 1 F(B)_{j'}$.

Axioms are (usually) defined for a given *domain of aggregation:* those profiles in \mathcal{D}^n that are rational for a given IC.

Embedding Preference Aggregation

We can translate Arrovian preference aggregation (for linear orders) into binary aggregation with integrity constraints:

- Introduce propositional symbols p_{xy} to mean "x is better than y".
- Include integrity constraints for *irreflexivity* $(\neg p_{xx})$, *completeness* $(p_{xy} \lor p_{yx})$, and *transitivity* $(p_{xy} \land p_{yz} \rightarrow p_{xz})$.

Now the *Condorcet paradox* corresponds to this example:

	p_{AB}	p_{BC}	p_{AC}	corresponding order
Ann:	1	1	1	$A \succ B \succ C$
Bob:	0	1	0	$B \succ C \succ A$
Cindy:	1	0	0	$C \succ A \succ B$

Embedding Judgment Aggregation

We can also translate formula-based judgment aggregation into binary aggregation with integrity constraints.

- Introduce propositional symbol p_{φ} for every formula φ in the agenda Φ .
- Model *completeness* by imposing the IC p_φ ∨ p_{¬φ} for every non-negated formula φ in the agenda Φ.
- Model *consistency* by imposing the IC $\neg(\bigwedge_{\varphi \in S} p_{\varphi})$ for every minimally inconsistent subset S of the agenda Φ

Note that from a computational point of view this is not always a good translation (the size of the representation can increase exponentially).

Example: For the agenda $\{p, \neg p, q, \neg q, p \land q, \neg (p \land q)\}$, we obtain:

IC =
$$(p_p \lor p_{\neg p}) \land (p_q \lor p_{\neg q}) \land (p_{p \land q} \lor p_{\neg(p \land q)}) \land$$

 $\neg (p_p \land p_{\neg p}) \land \neg (p_q \land p_{\neg q}) \land \neg (p_{p \land q} \land p_{\neg(p \land q)}) \land$
 $\neg (p_{\neg p} \land p_{p \land q}) \land \neg (p_{\neg q} \land p_{p \land q}) \land \neg (p_p \land p_q \land p_{\neg(p \land q)})$

Paradoxes

We are now able to give a general definition of "paradox" that captures many of the paradoxes in the literature on social choice theory.

A paradox is a triple $\langle F, IC, \mathbf{B} \rangle$, consisting of an aggregation rule F, a profile \mathbf{B} , and an integritry constraint IC, such that $B_i \models IC$ for all individuals $i \in \mathcal{N}$ but $F(\mathbf{B}) \not\models IC$.

Collective Rationality

An aggregation rule $F : \mathcal{D}^n \to \mathcal{D}$ is *collectively rational* for $IC \in \mathcal{L}_{PS}$ if $B_i \models IC$ for all $i \in \mathcal{N}$ implies $F(B_1, \ldots, B_n) \models IC$.

That is, F is collectively rational for IC, if there exists not profile B such that $\langle F, IC, B \rangle$ is a paradox.

We also say: F can *lift* IC from the individual to the collective level.

Template for Results

Let $\mathcal{L} \subseteq \mathcal{L}_{PS}$ be a *language of integrity constraints*. By fixing \mathcal{L} we fix a range of possible domains of aggregation (one for each $IC \in \mathcal{L}$). Two ways of defining classes of aggregation rules:

• The class of rules defined by a given list of *axioms* AX:

 $\mathcal{F}_{\mathcal{L}}[\mathsf{AX}] := \{F: \mathcal{D}^n \to \mathcal{D} \mid F \text{ satisfies AX on all } \mathcal{L}\text{-domains}\}$

• The class of rules that *lift* all integrity constraints in \mathcal{L} :

 $\mathcal{CR}[\mathcal{L}] := \{F: \mathcal{D}^n \to \mathcal{D} \mid F \text{ is collect. rat. for all } \mathrm{IC} \in \mathcal{L}\}$

What we want: $\mathcal{CR}[\mathcal{L}] = \mathcal{F}_{\mathcal{L}}[\mathsf{AX}]$

Example for a Characterisation Result

Theorem 1 F will lift all integrity constraints that can be expressed as a conjunction of literals ("cube") if and only if F is unanimous:

 $\mathcal{CR}[\text{cubes}] = \mathcal{F}_{\text{cubes}}[\text{Unanimity}]$

U. Grandi and U. Endriss. Lifting Integrity Constraints in Binary Aggregation. *Artificial Intelligence*, 199–200:45–66, 2013.

More Results

Characterisation results (selection):

- F lifts all constraints $p_j \leftrightarrow p_k$ iff F is issue-neutral
- F lifts all constraints $p_j \leftrightarrow \neg p_k$ iff F is domain-neutral

Negative results:

- there exists no language that characterises anonymous rules
- there exists *no language* that characterises *independent* rules

U. Grandi and U. Endriss. Lifting Integrity Constraints in Binary Aggregation. *Artificial Intelligence*, 199–200:45–66, 2013.

Example

Suppose 13 voters are asked to each vote *yes* or *no* on three issues; and we use the majority rule for each issue independently:

- 3 voters each vote for YNN, NYN, NNY.
- 1 voter each votes for YYY, YYN, YNY, NYY.
- No voter votes for NNN.

NNN wins: 7 out of 13 vote *no* on each issue.

This is an instance of the *paradox of multiple elections:* the winning combination received the fewest number of (actually: *no*) votes.

▶ But is it a paradox according to our definition?

S.J. Brams, D.M. Kilgour, and W.S. Zwicker. The Paradox of Multiple Elections. *Social Choice and Welfare*, 15(2):211–236, 1998.

Designing Good Aggregation Rules

We want to identify good methods for binary aggregating.

- Problem: the simple methods people usually use ("issue-wise majority") can lead to paradoxical outcomes.
- Problem: more sophisticated methods ("distance-based") are computationally intractable (as we will see).
- New idea: use an aggregation rule that identifies the "most representative" voter and just copies that voter's ballot.

Take-home message will be: simple, but works surprisingly well.

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Representative Voter. *Proc. MPREF-2013*.

Distance-based Aggregation

How to avoid paradoxes?

- $\rightarrow\,$ Only consider outcomes that respect the integrity constraint.
- \rightarrow Which one to pick?—the one "closest" to the individual inputs.

These considerations suggest the following rule:

- The (Hamming) *distance* between an individual input and the outcome is the number of "point decisions" on which they differ.
- Elect the (consistent/rational) outcome that *minimises* the sum of distances to the individual inputs! (+ break ties if needed)

For preference aggregation (with "point decisions" being pairwise rankings), this is the famous *Kemeny rule*. No rule is perfect, but many consider this one to be pretty much the best there is.

<u>But</u>: this is Θ_2^p -complete ("complete for parallel access to NP"). \odot

Taming the Complexity

Where does this complexity come from?

 \rightarrow We need to search through all candidate outcomes.

- there might be exponentially many of those
- for each of them, checking consistency might be nontrivial

An idea:

- restrict set of choices to a small set of candidate outcomes
- make sure you can be certain all candidate outcomes are consistent

The easiest way of doing this:

candidate outcomes = choices made by individuals ("support")

Example

Find the outcome that minimises the sum of distances for this profile:

Issue:	1	2	3
20 voters:	0	1	1
10 voters:	1	0	1
11 voters:	1	1	0

<u>Solution</u>: (1,1,1). The distance is 41 (41 voters \times 1 disagreement).

<u>Note:</u> same as majority outcome (as there's no integrity constraint).

Now suppose there's an IC that says that (1,1,1) is not ok.

Example (continued)

Find the outcome that minimises the sum of distances for this profile:

Issue:	1	2	3
20 voters:	0	1	1
10 voters:	1	0	1
11 voters:	1	1	0

"Average voter" says: (0, 1, 1).

The distance is 42 (20 with no disagreements + 21 with 2 each).

<u>So:</u> not much worse (42 *vs.* 41), but easier to find (choose from 3 rather than $2^3 = 8$ outcomes; all 3 known to be consistent *a priori*)

Additional Notation and Terminology

- Hamming distance between ballots: $H(B, B') = |\{j \in \mathcal{I} \mid b_j \neq b'_j\}|$ and between a ballot and a profile: $\mathcal{H}(B, \mathbf{B}) = \sum_{i \in \mathcal{N}} H(B, B_i)$.
- Support of profile \boldsymbol{B} : SUPP $(\boldsymbol{B}) = \{B_1\} \cup \cdots \cup \{B_n\}.$

Rules Based on Representative Voters

<u>Idea:</u> Choose an outcome by first choosing a voter (based on the input profile) and then copying that voter's ballot.

Fix $g: \mathcal{D}^n \to \mathcal{N}$. Then let $F: \mathbf{B} \mapsto B_{g(\mathbf{B})}$.

Good properties (of all these rules):

- No paradoxes ever, whatever the IC (not true for any other rule).
- Unanimity guaranteed. [obvious]
- Neutrality (both kinds) guaranteed. [maybe less obvious]
- Low complexity for natural choices of g.

But:

• Includes some really bad rules, such as Arrovian *dictatorships*:

 $g \equiv i$, i.e., $F : (B_1, \ldots, B_n) \mapsto B_i$ with i being the dictator

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Representative Voter. *Proc. MPREF-2013*.

Two Representative-Voter Rules

The *average-voter rule* selects those individual ballots that minimise the Hamming distance to the profile:

 $\operatorname{AVR}(\boldsymbol{B}) = \operatorname{argmin}_{B \in \operatorname{Supp}(\boldsymbol{B})} \mathcal{H}(B, \boldsymbol{B})$

<u>Remark</u>: if you replace the set SUPP(B) by Mod(IC), the set of *all* consistent outcomes, you obtain the full distance-based rule.

The *majority-voter rule* selects those individual ballots that minimise the Hamming distance to one of the majority outcomes:

$$MVR(\boldsymbol{B}) = \underset{B \in SUPP(\boldsymbol{B})}{\operatorname{argmin}} \min\{H(B, B') \mid B' \in \operatorname{Maj}(\boldsymbol{B})\}$$

Connections:

- AVR related to *Kemeny* rule in voting/preference aggregation.
- MVR related to *Slater* rule in voting/preference aggregation.

Example

The AVR and the MVR really can give different outcomes:

Issue:	1	2	3	4	5
1 voter:	0	1	1	1	1
2 voters:	1	0	0	0	0
10 voters:	0	1	1	0	0
10 voters:	0	0	0	1	1
Maj:	0	0	0	0	0
MVR:	1	0	0	0	0
AVR:	0	0	0	1	1

<u>Remark</u>: This is the AVR-winner for one way of breaking ties (for the other way it is also different from the MVR-winner).

Which rule is better?

We will compare the $\ensuremath{\mathrm{AVR}}$ and the $\ensuremath{\mathrm{MVR}}$ according to

- algorithmic efficiency [MVR wins]
- satisfaction of a choice-theoretic axiom [AVR wins]
- relative distance to the input profile [AVR wins]

Algorithmic Efficiency

<u>Recall</u>: m is the number of issues; n is the number of voters. Winner determination for the MVR is in O(mn):

- compute the majority vector in O(mn)
- compare each ballot to the majority vector in O(mn)

Winner determination for the AVR is in $O(mn \log n)$:

- compute the vector of sums in O(mn)
- compute the difference between each ballot (multiplied by n) to the vector of sums in $O(mn \log n)$

 $[O(\log n)$ because we are working with integers up to n]

 $\underline{So:}$ both rules are efficient, but the MVR more so.

Axiom: Reinforcement

We are looking for an axiom that separates the two rules

F satisfies *reinforcement* if for any two profiles \boldsymbol{B} and \boldsymbol{B}' with

- $\operatorname{Supp}(\boldsymbol{B}) = \operatorname{Supp}(\boldsymbol{B}')$ and
- $F(\boldsymbol{B}) \cap F(\boldsymbol{B'}) \neq \emptyset$

it is the case that $F(B \oplus B') = F(B) \cap F(B')$.

This is a natural requirement: if two groups independently agree that a certain outcome is best, we would expect them to uphold this choice when choosing together.

Theorem 2 The AVR satisfies reinforcement, but the MVR does not.

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Representative Voter. *Proc. MPREF-2013*.

Relative Distance to the Input Profile

Both rules select from SUPP(B) and the AVR by definition picks the candidate outcome closest to the profile. Thus:

<u>Fact:</u> The Hamming distance between the (worst) AVR-winner and the profile never exceeds the Hamming distance between the (best) MVR-winner and the profile.

More importantly, as we shall see next, both rules are very good approximations of the full distance-based rule ...

Approximation Results

F is said to be an α -approximation of *F*' if for every profile **B**:

 $\max \mathcal{H}(F(\boldsymbol{B}), \boldsymbol{B}) \leqslant \alpha \cdot \min \mathcal{H}(F'(\boldsymbol{B}), \boldsymbol{B})$

If F' is a "nice" but computationally intractable rule and if α is a constant, then this would be considered great news for F.

Theorem 3 The AVR and the MVR are (strict) 2-approximations of the full distance-based rule (for any IC).

Proof: next slide

An important additional insight here is that approximations get better as we increase the logical strength of the IC (reason: the stronger IC, the fewer outcome the distance-based rule can choose from).

U. Endriss and U. Grandi. Binary Aggregation by Selection of the Most Representative Voter. *Proc. MPREF-2013*.

Proof Sketch

We will prove that the MVR is a (strict) 2-approx. of the *majority rule* (= distance-based rule with $IC = \top$). All other claims then follow.

To simplify presentation, suppose there is only a single majority winner. W.I.o.g., suppose it is $(0, \ldots, 0)$.

Let m_i be the number of issues labelled as 1 by individual i. Let i^* be the voter selected by the MVR, i.e., $m_{i^*} \leq m_i$ for all $i \in \mathcal{N}$.

If $m_{i^*} = 0$, then we are done (approx. ratio 1). So suppose $m_{i^*} \neq 0$. We need to show:

$$\sum_{i \in \mathcal{N}} H(B_{i^{\star}}, B_i) < 2 \cdot \sum_{i \in \mathcal{N}} m_i$$

But this is the case:

- $H(B_{i^{\star}}, B_i) \leq m_{i^{\star}} + m_i \leq 2 \cdot m_i$ for all $i \neq i^{\star}$ (triangle inequality)
- $H(B_{i^{\star}}, B_{i^{\star}}) = 0 < 2 \cdot m_{i^{\star}} \checkmark$

Summary

Binary aggregation with integrity constraints:

- *language* to express *rationality assumptions* in binary aggregation
- concept of *collective rationality* with respect to an IC
- characterisation results, relating *axioms* and *languages*
- application: *embedding* preference + judgment aggregation
- application: design of aggregation rules that avoid all paradoxes (*representative-voter rules* have surprisingly good properties)

In principle, *any* aggregation problem can be modelled using binary aggregation. But sometimes a more domain-specific framework will be more insightful and/or will have better algorithmic properties.

For an introduction to binary aggregation with integrity constraints, consult the paper cited below.

U. Grandi and U. Endriss. Binary Aggregation with Integrity Constraints. *Proc. IJCAI-2011*.