Logic and Group Decision Making

Eric Pacuit

Department of Philosophy
University of Maryland, College Park
pacuit.org
epacuit@umd.edu

August 12, 2013

An Email

An Email

"Interesting

An Email

"Interesting...but what does logic have to do with group decision making??? I've never seen logic prevail at any of our faculty meetings."

Logic and Group Decision Making

Group decision making from a logicians perspective...

Logic and Group Decision Making

Group decision making from a logicians perspective...

1. Logical (and algebraic) methods can be used to prove various results (Eckert \& Herzberg, Nehring \& Pivato)
2. Two non-standard logics for reasoning about social choice
3. A challenge: probabilities in group decision making (Goranko \& Bulling)
4. Logics for social epistemology (Rendsvig)

Arrow's Theorem

Theorem Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.
K. Arrow. Social Choice \& Individual Values. 1951.

Broader Applications

- Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? No
S. Okasha. Theory choice and social choice: Kuhn versus Arrow. Mind, 120, 477, pgs. 83-115, 2011.

Broader Applications

- Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? $\mathbb{N} / \not / \boldsymbol{Y}$ Yes
S. Okasha. Theory choice and social choice: Kuhn versus Arrow. Mind, 120, 477, pgs. 83-115, 2011.
M. Morreau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice to theory choice. Erkenntnis, forthcoming.

Broader Applications

- Is it possible to choose rationally among rival scientific theories on the basis of the accuracy, simplicity, scope and other relevant criteria? $\mathbb{N} / \not / \boldsymbol{Y}$ Yes
S. Okasha. Theory choice and social choice: Kuhn versus Arrow. Mind, 120, 477, pgs. 83-115, 2011.
M. Morreau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice to theory choice. Erkenntnis, forthcoming.
- Is it possible to rationally merge evidence from multiple methods?
J. Stegenga. An impossibility theorem for amalgamating evidence. Synthese, 2011.

Broader Applications

- Is it possible to merge classic AGM belief revision with the Ramsey test?
P. Gärdenfors. Belief revisions and the Ramsey Test for conditionals. The Philosophical Review, 95, pp. 81-93, 1986.
H. Leitgeb and K. Segerberg. Dynamic doxastic logic: why, how and where to?. Synthese, 2011.
H. Leitgeb. A Dictator Theorem on Belief Revision Derived From Arrow's Theorem. Manuscript, 2011.

Two non-standard logics for reasoning about social choice
D. Osherson and S. Weinstein. Preference based on reasons. Review of Symbolic Logic, 2012.
$\varphi \succeq \chi \psi$ "The agent considers φ at least as good as ψ for reason X "
$\varphi \succeq x \psi$ "The agent considers φ at least as good as ψ for reason X "

The agent envisions a situation in which φ is true and that otherwise differs little from his actual situation. Likewise she envisions a world where ψ is true and otherwise differs little from his actual situation. Finally, the utility according to u_{X} of the first imagined situation exceeds that of the second.
p : "i purchases a fire alarm"
p : "i purchases a fire alarm"
$p \succ_{1} \neg p: u_{1}$ measures safety
p : "i purchases a fire alarm"
$p \succ_{1} \neg p: u_{1}$ measures safety
$p \prec_{2} \neg p: u_{2}$ measures finances
p : "i purchases a fire alarm"
$p \succ_{1} \neg p: u_{1}$ measures safety
$p \prec_{2} \neg p: u_{2}$ measures finances

What is the status of $p \succ_{1,2} \neg p ? \quad p \prec_{1,2} \neg p$?

At a set of atomic proposition, \mathbb{S} a set of reasons.

$$
\langle W, s, u, V\rangle
$$

- W is a set of states
- $s: W \times \wp_{\neq \emptyset}(W) \rightarrow W$ is a selection function $(s(w, A) \in A)$
- $u: W \times \mathbb{S} \rightarrow \mathfrak{R}$ is a utility function
- $V:$ At $\rightarrow \wp(W)$ is a valuation function

At a set of atomic proposition, \mathbb{S} a set of reasons.

$$
\langle W, s, u, V\rangle
$$

- W is a set of states
- $s: W \times \wp_{\neq \emptyset}(W) \rightarrow W$ is a selection function $(s(w, A) \in A)$
- $u: W \times \mathbb{S} \rightarrow \mathfrak{R}$ is a utility function
- $V:$ At $\rightarrow \wp(W)$ is a valuation function
$\mathcal{M}, w \models \theta \succeq x \psi$ iff $u_{X}\left(s\left(w, \llbracket \theta \rrbracket_{\mathcal{M}}\right)\right) \geq u_{X}\left(s\left(w, \llbracket \psi \rrbracket_{\mathcal{M}}\right)\right)$ provided $\llbracket \theta \rrbracket_{\mathcal{M}} \neq \emptyset$ and $\llbracket \psi \rrbracket_{\mathcal{M}} \neq \emptyset$

Universal Modality is Definable

$$
\begin{array}{ll}
\diamond \varphi=\operatorname{def} & \varphi \succeq x \varphi \\
\square \varphi==_{\operatorname{def}} \quad \neg(\neg \varphi \succeq x \neg \varphi)
\end{array}
$$

Reflexive: for all w if $w \in A$ then $s(w, A)=w$.

Reflexive: for all w if $w \in A$ then $s(w, A)=w$.
\mathcal{M} is reflexive implies $(p \succeq x \top) \vee(\neg p \succeq x \top)$ is valid.

Regular: Suppose that $A \subseteq B$ and $w_{1} \in A$ then, if $s(w, B)=w_{1}$ then $s(w, A)=w_{1}$.

Regular: Suppose that $A \subseteq B$ and $w_{1} \in A$ then, if $s(w, B)=w_{1}$ then $s(w, A)=w_{1}$.
\mathcal{M} is regular implies

$$
\left((p \vee q) \succ_{x} r\right) \rightarrow\left(\left(p \succ_{x} r\right) \vee(q \succ x r)\right)
$$

is valid.

Modeling Social Choice Problems

The set of reasons: $\{1\}, \ldots,\{k\},\{1,2, \ldots, k\}$.

The signature contains a monadic predicate P.
$P x_{1} \succ_{i} P x_{2}$: "agent i strictly prefers the object assigned to x_{1} over the object assigned to $x_{2}{ }^{\prime \prime}$
$P x_{1} \succ_{1, \ldots, k} P x_{2}$: "society strictly prefers the object assigned to x_{1} over the object assigned to $x_{2} "$

Universal Domain

Fix a set of variables $x^{1}, x^{2}, \ldots, x^{m}$ (with $m \geq 3$). Let $\chi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be the formula saying that each of x_{1}, \ldots, x_{m} is equal to exactly one of the x^{1}, \ldots, x^{m}.

Universal Domain

Fix a set of variables $x^{1}, x^{2}, \ldots, x^{m}$ (with $m \geq 3$). Let $\chi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ be the formula saying that each of x_{1}, \ldots, x_{m} is equal to exactly one of the x^{1}, \ldots, x^{m}. Suppose that ψ is the conjunction of:

$$
\begin{gathered}
\chi\left(x_{1}, \ldots, x_{m}\right) \wedge\left(P x_{1} \succ_{1} P x_{2}\right) \wedge \cdots \wedge\left(P x_{m-1} \succ_{1} P x_{m}\right) \\
\vdots \\
\chi\left(x_{1}, \ldots, x_{m}\right) \wedge\left(P x_{1} \succ_{k} P x_{2}\right) \wedge \cdots \wedge\left(P x_{m-1} \succ_{k} P x_{m}\right)
\end{gathered}
$$

Let $\varphi_{\text {univ }}$ be the universal closure of $\diamond \psi$

Pareto

Let $\varphi_{\text {pareto }}$ be the universal closure of the above formula

$$
\square\left(\left(P x_{1} \succ_{1} P x_{2} \wedge \ldots P x_{k} \succ_{1} P x_{k}\right) \rightarrow P x \succ_{1, \ldots, k} P y\right)
$$

Fix two variables x, y. Let $\psi\left(x^{\prime}, y^{\prime}\right)$ be the formula that says each of x^{\prime}, y^{\prime} is equal to exactly one of x, y. The formula $\varphi_{i i a}$ is the universal closure of:

$$
\begin{array}{r}
\left(\psi\left(x_{1}, y_{1}\right) \wedge \cdots \wedge \psi\left(x_{k}, y_{k}\right)\right) \rightarrow \\
\left(\diamond\left(\left(P_{x_{1}} \succ_{1} P_{y_{1}} \wedge \cdots \wedge\left(P_{x_{k}} \succ_{k} P y_{k}\right) \wedge P x \succ_{1, \ldots, k} P_{y}\right)\right) \rightarrow\right. \\
\left.\square\left(\left(\left(P_{x_{1}} \succ_{1} P_{y_{1}}\right) \wedge \cdots \wedge\left(P_{x_{k}} \succ_{k} P_{y_{k}}\right)\right) \rightarrow P_{x} \succ_{1, \ldots, k} P_{y}\right)\right)
\end{array}
$$

Dictator

Let $\varphi_{\text {dictator }}$ be the disjunction of:

$$
\begin{gathered}
\forall x_{1} \cdots x_{m} \square\left(\left(\left(P x_{1} \succ_{1} P x_{2}\right) \wedge\left(P x_{2} \succ_{1} P x_{3}\right) \cdots\left(P x_{m-1} \succ_{1} P x_{m}\right)\right) \leftrightarrow\right. \\
\left.\left(\left(P x_{1} \succ_{1, \ldots k} P x_{2}\right) \wedge\left(P x_{2} \succ_{1, \ldots k} P x_{3}\right) \wedge \cdots\left(P x_{m-1} \succ_{1, \ldots k} P x_{m}\right)\right)\right) \\
\vdots \\
\forall x_{1} \cdots x_{m} \square\left(\left(\left(P x_{1} \succ_{k} P x_{2}\right) \wedge\left(P x_{2} \succ_{k} P x_{3}\right) \cdots\left(P x_{m-1} \succ_{k} P x_{m}\right)\right) \leftrightarrow\right. \\
\left.\left(\left(P x_{1} \succ_{1, \ldots k} P x_{2}\right) \wedge\left(P x_{2} \succ_{1, \ldots k} P x_{3}\right) \wedge \cdots\left(P x_{m-1} \succ_{1, \ldots k} P x_{m}\right)\right)\right)
\end{gathered}
$$

Arrow's Theorem

$\left\{\varphi_{\text {univ }}, \varphi_{\text {pareto }}, \varphi_{\text {iia }}\right\} \models \varphi_{\text {dictator }}$

Dependence Logic

J. Väänänen. Dependence Logic. Cambridge University Press, 2007.
E. Grädel and J. Väänänen. Dependence and Independence. Studia Logica, vol. 101(2), pp. 399-410, 2013.

Let \mathcal{V} be a set of variables and D a domain.

A substitution is a function $s: \mathcal{V} \rightarrow D$.

A team X is a set of substitutions.

Let \mathcal{V} be a set of variables and D a domain.

A substitution is a function $s: \mathcal{V} \rightarrow D$.

A team X is a set of substitutions.
$X \models=\left(x_{1}, \ldots, x_{n}, y\right)$ iff for all $s, s^{\prime} \in X$, $\left(s\left(x_{1}, \ldots, x_{n}\right)=s^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow(s(y)=s(y))$

Let \mathcal{V} be a set of variables and D a domain.

A substitution is a function $s: \mathcal{V} \rightarrow D$.

A team X is a set of substitutions.
$X \models=\left(x_{1}, \ldots, x_{n}, y\right)$ iff for all $s, s^{\prime} \in X$, $\left(s\left(x_{1}, \ldots, x_{n}\right)=s^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \rightarrow(s(y)=s(y))$
$X \models\left(x_{1}, \ldots x_{n}\right) \perp y$ iff for all $s, s^{\prime} \in X$, there exists $s^{\prime \prime} \in X$ such that $s^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)=s\left(x_{1}, \ldots, x_{n}\right)$ and $s^{\prime \prime}(y)=s^{\prime}(y)$

- $\mathcal{M}, X \models x=y$ iff for all $s \in X, s(x)=s(y)$
- $\mathcal{M}, X \models \neg x=y$ iff for all $s \in X, s(x) \neq s(y)$
- $\mathcal{M}, X \models R\left(x_{1}, \ldots, x_{n}\right)$ iff for all $s \in X$, $\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right) \in R^{\mathcal{M}}$
- $\mathcal{M}, X \models \neg R\left(x_{1}, \ldots, x_{n}\right)$ iff for all $s \in X$, $\left(s\left(x_{1}\right), \ldots, s\left(x_{n}\right)\right) \notin R^{\mathcal{M}}$
- $\mathcal{M}, X \models \varphi \wedge \psi$ iff $\mathcal{M}, X \models \varphi$ and $\mathcal{M}, X \models \psi$
- $\mathcal{M}, X \models \varphi \vee \psi$ iff there are X_{1}, X_{2} such that $X=X_{1} \cup X_{2}$ and $\mathcal{M}, X_{1} \models \varphi$ and $\mathcal{M}, X_{2} \models \psi$.
- $\mathcal{M}, X \models \exists x \varphi$ iff $\mathcal{M}, X^{\prime} \models \varphi$ for some X^{\prime} such that for all $s \in X$, there is a $d \in D$ such that $s[x / d] \in X^{\prime}$.
- $\mathcal{M}, X \models \forall x \varphi$ iff $\mathcal{M}, X^{\prime} \models \varphi$ for some X^{\prime} such that for all $s \in X$, for all $d \in D, s[x / d] \in X^{\prime}$

Dependence Logic Formalization

Voters are variables $x_{1}, x_{2}, \ldots, x_{n}$
Society's Ranking is the variable y

Dependence Logic Formalization

Voters are variables $x_{1}, x_{2}, \ldots, x_{n}$
Society's Ranking is the variable y
Profiles are assignments $\left(s:\left\{x_{1}, \ldots, x_{n}, y\right\} \rightarrow \mathcal{P}\right)$, where \mathcal{P} is the set of preferences over a set.

A team is a set of profiles (the "constitution")

Dependence Logic Formalization

Voters are variables $x_{1}, x_{2}, \ldots, x_{n}$
Society's Ranking is the variable y
Profiles are assignments $\left(s:\left\{x_{1}, \ldots, x_{n}, y\right\} \rightarrow \mathcal{P}\right)$, where \mathcal{P} is the set of preferences over a set.

A team is a set of profiles (the "constitution")
$P_{a b}(s(x))$ is true if $s(x)$ ranks a strictly above b (similarly for weak preference R and indifference I).
J. Väänänen. Introduction to Dependence Logic. Dagstuhl Workshop on Dependence and Independence, 2013.

To state Arrow's Theorem (and other social choice results), we only need propositional dependence:
$=\left(\varphi_{1}, \ldots, \varphi_{n}, \psi\right)$ (the truth of ψ depends on the truth of $\left.\varphi_{1}, \ldots, \varphi_{n}\right)$.

Unanimity

If each agent ranks a above b, then so does the social welfare function

DL formula $\varphi_{\text {unam }}: \bigwedge_{i} P_{a b}\left(x_{i}\right) \rightarrow P_{a b}(y)$

Universal Domain

Voter's are free to choose any preference they want.

Universal Domain

Voter's are free to choose any preference they want.
$X \models \forall x_{i}$ iff for all $R \in \mathcal{P}$, there is an $s \in X$, such that $s\left(x_{i}\right)=R$
DL formula $\varphi_{\text {univ1 }}: \forall x_{1} \wedge \cdots \wedge \forall x_{n}$

Universal Domain

Voter's are free to choose any preference they want.
$X \models \forall x_{i}$ iff for all $R \in \mathcal{P}$, there is an $s \in X$, such that $s\left(x_{i}\right)=R$
DL formula $\varphi_{\text {univ1 }}: \forall x_{1} \wedge \cdots \wedge \forall x_{n}$

DL formula $\varphi_{\text {univ2 }}:\left\{x_{j} \mid j \neq i\right\} \perp x_{i}$

Independence of Irrelevant Alternatives

The social relative ranking (higher, lower, or indifferent) of two alternatives a and b depends only the relative rankings of a and b for each individual.

DL formula $\varphi_{i i a}:=\left(R_{a b}\left(x_{1}\right), \ldots, R_{a b}\left(x_{n}\right), R_{a b}(y)\right)$

Dictatorship

There is an individual $d \in \mathcal{A}$ such that the society strictly prefers a over b whenever d strictly prefers a over b.

Dictatorship

There is an individual $d \in \mathcal{A}$ such that the society strictly prefers a over b whenever d strictly prefers a over b.

DL formula $\varphi_{\text {dictator }}:=\left(P_{a b}\left(x_{d}\right), P_{a b}(y)\right)$
$\left\{\varphi_{\text {univ } 1}, \varphi_{\text {univ } 2}, \varphi_{\text {pareto }}, \varphi_{\text {iia }}\right\} \models \varphi_{\text {dictator }}$

Independence?

If for each $i \in \mathcal{A}, a R_{i} b$ iff $a R_{i}^{\prime} b$, then $a F(\vec{R}) b$ iff $a F\left(\vec{R}^{\prime}\right) b$.
Two profiles p and q agree on a set B provided $p_{i}=q_{i}$ on B (i.e., the preferences are restricted to candidates in B) for each voter i.
(full) IIA: every set B is independent,

Independence?

If for each $i \in \mathcal{A}, a R_{i} b$ iff $a R_{i}^{\prime} b$, then $a F(\vec{R}) b$ iff $a F\left(\vec{R}^{\prime}\right) b$.
Two profiles p and q agree on a set B provided $p_{i}=q_{i}$ on B (i.e., the preferences are restricted to candidates in B) for each voter i.
(full) IIA: every set B is independent, Binary: every pair is independent,

Independence?

If for each $i \in \mathcal{A}, a R_{i} b$ iff $a R_{i}^{\prime} b$, then $a F(\vec{R}) b$ iff $a F\left(\vec{R}^{\prime}\right) b$.
Two profiles p and q agree on a set B provided $p_{i}=q_{i}$ on B (i.e., the preferences are restricted to candidates in B) for each voter i.
(full) IIA: every set B is independent, Binary: every pair is independent, Ternary: every triple is independent,

Independence?

If for each $i \in \mathcal{A}, a R_{i} b$ iff $a R_{i}^{\prime} b$, then $a F(\vec{R}) b$ iff $a F\left(\vec{R}^{\prime}\right) b$.
Two profiles p and q agree on a set B provided $p_{i}=q_{i}$ on B (i.e., the preferences are restricted to candidates in B) for each voter i.
(full) IIA: every set B is independent, Binary: every pair is independent, Ternary: every triple is independent, m-ary: every m-element set is independent.

Independence?

If for each $i \in \mathcal{A}, a R_{i} b$ iff $a R_{i}^{\prime} b$, then $a F(\vec{R}) b$ iff $a F\left(\vec{R}^{\prime}\right) b$.
Two profiles p and q agree on a set B provided $p_{i}=q_{i}$ on B (i.e., the preferences are restricted to candidates in B) for each voter i.
(full) IIA: every set B is independent, Binary: every pair is independent, Ternary: every triple is independent, m-ary: every m-element set is independent.

Theorem (Blau) If there are at least $m+1$ candidates, then m-ary implies m - 1 -ary

Theorem. Arrow's Theorem can be provided under these weaker conditions: If $|X|>m>1$, then Universal Domain, Unanimity, and m-ary implies that the social welfare function is a dictatorship.

A challenge: probabilities in group decision making

A challenge: probabilities in group decision making

Probabilities in group decision making:

1. Linear pooling
2. Stochastic choice
K. McConway. Marginalization and Linear Opinion Pools. Journal of the American Statistical Association, 76:374, pgs. 410-414, 1981.

Suppose there are n agents who have assessed distributions π_{1}, \ldots, π_{n} over a space Ω.

Suppose there are n agents who have assessed distributions π_{1}, \ldots, π_{n} over a space Ω.

Let S be a σ-algebra over Ω, then $\pi_{i}: S \rightarrow[0,1]$ (satisfying the usual Kolmogrov axioms). Let $\Delta(S)$ be the set of all probability measures on S. Let Σ be the set of all σ-algebras over Ω.

Suppose there are n agents who have assessed distributions π_{1}, \ldots, π_{n} over a space Ω.

Let S be a σ-algebra over Ω, then $\pi_{i}: S \rightarrow[0,1]$ (satisfying the usual Kolmogrov axioms). Let $\Delta(S)$ be the set of all probability measures on S. Let Σ be the set of all σ-algebras over Ω.

For a σ-algebra S, a consensus function is a map
$C_{S}: \Delta(S)^{n} \rightarrow \Delta(S)$.

Suppose there are n agents who have assessed distributions π_{1}, \ldots, π_{n} over a space Ω.

Let S be a σ-algebra over Ω, then $\pi_{i}: S \rightarrow[0,1]$ (satisfying the usual Kolmogrov axioms). Let $\Delta(S)$ be the set of all probability measures on S. Let Σ be the set of all σ-algebras over Ω.

For a σ-algebra S, a consensus function is a map
$C_{S}: \Delta(S)^{n} \rightarrow \Delta(S)$.

Linear Pooling: $C_{S}(A)=\sum_{1}^{n} \alpha_{i} \pi_{i}(A)$ for each $A \in S$, where the weights α_{i} are non-negative and sum to 1 .

Pareto: For all $S \in \Sigma$, for all $\pi_{1}, \ldots, \pi_{n} \in \Delta(S)$ and for all $A \in S$, If $\pi_{1}(A)=\pi_{2}(A)=\cdots=\pi_{n}(A)=0$, then $C_{S}\left(\pi_{1}, \ldots, \pi_{n}\right)(A)=0$

Pareto: For all $S \in \Sigma$, for all $\pi_{1}, \ldots, \pi_{n} \in \Delta(S)$ and for all $A \in S$, If $\pi_{1}(A)=\pi_{2}(A)=\cdots=\pi_{n}(A)=0$, then $C_{S}\left(\pi_{1}, \ldots, \pi_{n}\right)(A)=0$

Weak setwise function property (Independence): Suppose that Q is $\wp(\Omega)-\{\emptyset, \Omega\} \times[0,1]^{n} \cup\{(\emptyset, 0, \ldots, 0),(\Omega, 1, \ldots, 1)\}$. There exists a function $F: Q \rightarrow[0,1]$ such that for all $S \in \Sigma$,

$$
C_{S}\left(\pi_{1} \ldots, \pi_{n}\right)(A)=F\left(A, \pi_{1}(A), \ldots, \pi_{n}(A)\right)
$$

for all $A \in S$ and $\pi_{1}, \ldots, \pi_{n} \in \Delta(S)$.

Strong setwise function property (Systematicity): There exists a function $G:[0,1]^{n} \rightarrow[0,1]$ such that for all $S \in \Sigma$,

$$
C_{S}\left(\pi_{1} \ldots, \pi_{n}\right)(A)=G\left(\pi_{1}(A), \ldots, \pi_{n}(A)\right)
$$

for all $A \in S$ and $\pi_{1}, \ldots, \pi_{n} \in \Delta(S)$.

Theorem. The following are equivalent: (a) The consensus function satisfies Pareto and independence and (b) The consensus function satisfies systematicity.

Theorem. If there are at least three distinct points in Ω, then for a class of consensus functions the following are equivalent
a. The class satisfies systematicity
b. There exists real numbers $\alpha_{1}, \ldots, \alpha_{n}$ that are non-negative and sum to 1 such that for all $S \in \Sigma$, all $A \in S$ and $\pi_{1}, \ldots, \pi_{n} \in \Delta(S)$,

$$
C_{S}\left(\pi_{1}, \ldots, \pi_{n}\right)(A)=\sum_{i=1}^{n} \alpha_{i} \pi_{i}(A)
$$

General Aggregation Theory

F. Dietrich and C. List. The aggregation of propositional attitudes: Towards a general theory. Oxford Studies in Epistemology, Vol. 3, pgs. 215-234, 2010.
F. Herzberg. Universal algebra for general aggregation theory: Many-valued propositional-attitude aggregators as MV-homomorphisms. Journal of Logic and Computation, 2013.
T. Daniëls and EP. A general approach to aggregation problems. Journal of Logic and Computation, 19, pgs. 517-536, 2009.
M. Intriligator. A Probabilistic Model of Social Choice. The Review of Economic Studies, 40:4, pgs. 553-560, 1973.

Stochastic Choice

$$
\mathbf{q}_{i}=\left(q_{i 1}, \ldots, q_{i n}\right) \text { such that for all } i, j q_{i j} \geq 0 \text { and for all } i, \sum_{j=1}^{n} q_{i j}=1
$$

$q_{i j}$ is the probability that agent i would choose alternative A_{j} if he could act alone in deciding among the alternatives.
D. Luce. A Probabilistic Theory of Utility. Econometrica, 26, pgs. 193-224, 1958.

$$
\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \text { such that for all } j p_{j} \geq 0 \text { and } \sum_{i j=1}^{n} p_{j}=1
$$

p_{i} is the probability that society will choose alternative A_{i}

Universal Domain: Given any set of individual probabilities, the rule specifies a unique set of social probabilities.

Universal Domain: Given any set of individual probabilities, the rule specifies a unique set of social probabilities. Any $m \times n$ matrix $Q=\left(q_{i j}\right)$ with rows containing non-negative numbers and summing to 1 is mapped to a probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Universal Domain: Given any set of individual probabilities, the rule specifies a unique set of social probabilities. Any $m \times n$ matrix $Q=\left(q_{i j}\right)$ with rows containing non-negative numbers and summing to 1 is mapped to a probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Unanimity of Loser: If all individuals reject an alternative then so does society.

Universal Domain: Given any set of individual probabilities, the rule specifies a unique set of social probabilities. Any $m \times n$ matrix $Q=\left(q_{i j}\right)$ with rows containing non-negative numbers and summing to 1 is mapped to a probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$.

Unanimity of Loser: If all individuals reject an alternative then so does society. If $q_{i j_{0}}=0$ for all i, then $p_{j_{0}}=0$.

Strict Sensitivity to Individual Probabilities: Social probabilities are strictly sensitive to the changes in individual probabilities and all agents are treated equally.

Strict Sensitivity to Individual Probabilities: Social probabilities are strictly sensitive to the changes in individual probabilities and all agents are treated equally.

$$
\begin{gathered}
p_{j}=f_{j}\left(q_{11}, \ldots q_{m 1}, \ldots, q_{1 j}, \ldots, q_{m j}, \ldots q_{1 n}, \ldots, q_{m n}\right) \\
\frac{\partial f_{j}}{\partial q_{i k}}= \begin{cases}\mu_{j} \neq 0 & \text { if } k=j \\
0 & \text { if } k \neq j\end{cases}
\end{gathered}
$$

Average Rule: For all j,

$$
p_{j}=\frac{1}{m} \sum_{i=1}^{m} q_{i j}
$$

Average Rule: For all j,

$$
p_{j}=\frac{1}{m} \sum_{i=1}^{m} q_{i j}
$$

Theorem. The average rule is the only rule satisfying universal domain, unanimity of a loser and strict sensitivity to individual probabilities.

Logics for social epistemology

"Wisdom" of the Crowd

A. Lyon and EP. The Wisdom of Crowds: Methods of Human Judgement Aggregation. The Handbook of Human Computation, 2013.

"Wisdom" of the Crowd

A. Lyon and EP. The Wisdom of Crowds: Methods of Human Judgement Aggregation. The Handbook of Human Computation, 2013.

- The power of averaging (Diversity Theorem)

"Wisdom" of the Crowd

A. Lyon and EP. The Wisdom of Crowds: Methods of Human Judgement Aggregation. The Handbook of Human Computation, 2013.

- The power of averaging (Diversity Theorem)
- Dynamics of group deliberation (information cascades, anchoring effect, "common knowledge" effect)

"Wisdom" of the Crowd

A. Lyon and EP. The Wisdom of Crowds: Methods of Human Judgement Aggregation. The Handbook of Human Computation, 2013.

- The power of averaging (Diversity Theorem)
- Dynamics of group deliberation (information cascades, anchoring effect, "common knowledge" effect)
- Prediction markets (Combinatorial markets: bets are made on events of the form "horse A will win" rather than "horse A will beat horse B which will beat horse C ", "horse A will win and horse B will come in third" or "horse A will win if horse B comes in second")

Logic and Group Decision Making

Group decision making from a logicians perspective...

1. Logical (and algebraic) methods can be used to prove various results (Eckert \& Herzberg, Nehring \& Pivato)
2. Two non-standard logics for reasoning about social choice
3. A challenge: probabilities in group decision making (Goranko \& Bulling)
4. Logics for social epistemology (Rendsvig)

Thank you!

