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“Interesting...but what does logic have to do with group
decision making??? I’ve never seen logic prevail at any of
our faculty meetings.”
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Logic and Group Decision Making

Group decision making from a logicians perspective...

1. Logical (and algebraic) methods can be used to prove various
results (Eckert & Herzberg, Nehring & Pivato)

2. Two non-standard logics for reasoning about social choice

3. A challenge: probabilities in group decision making (Goranko
& Bulling)

4. Logics for social epistemology (Rendsvig)
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Arrow’s Theorem

Theorem Any social welfare function that satisfies universal
domain, independence of irrelevant alternatives and unanimity is a
dictatorship.

K. Arrow. Social Choice & Individual Values. 1951.
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Broader Applications

I Is it possible to choose rationally among rival scientific
theories on the basis of the accuracy, simplicity, scope and
other relevant criteria? No Yes

S. Okasha. Theory choice and social choice: Kuhn versus Arrow. Mind, 120,
477, pgs. 83 - 115, 2011.

M. Moureau. Mr. Accuracy, Mr. Simplicity and Mr. Scope: from social choice
to theory choice. FEW, 2012.

Is it possible to rationally merge evidence from multiple
methods?

J. Stegenga. An impossibility theorem for amalgamating evidence. Synthese,
2011.
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Broader Applications

I Is it possible to merge classic AGM belief revision with the
Ramsey test?

P. Gärdenfors. Belief revisions and the Ramsey Test for conditionals. The Philo-
sophical Review, 95, pp. 81 - 93, 1986.

H. Leitgeb and K. Segerberg. Dynamic doxastic logic: why, how and where to?.
Synthese, 2011.

H. Leitgeb. A Dictator Theorem on Belief Revision Derived From Arrow’s The-
orem. Manuscript, 2011.
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Two non-standard logics for reasoning about social choice
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D. Osherson and S. Weinstein. Preference based on reasons. Review of Symbolic
Logic, 2012.
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ϕ �X ψ “The agent considers ϕ at least as good as ψ for reason X”

The agent envisions a situation in which ϕ is true and
that otherwise differs little from his actual situation.
Likewise she envisions a world where ψ is true and
otherwise differs little from his actual situation. Finally,
the utility according to uX of the first imagined situation
exceeds that of the second.
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p: “i purchases a fire alarm”

p �1 ¬p: u1 measures safety

p ≺2 ¬p: u2 measures finances

What is the status of p �1,2 ¬p? p ≺1,2 ¬p?
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At a set of atomic proposition, S a set of reasons.

〈W , s, u,V 〉

I W is a set of states

I s : W × ℘6=∅(W )→W is a selection function (s(w ,A) ∈ A)

I u : W × S→ R is a utility function

I V : At→ ℘(W ) is a valuation function

M,w |= θ �X ψ iff uX (s(w , [[θ]]M)) ≥ uX (s(w , [[ψ]]M)) provided
[[θ]]M 6= ∅ and [[ψ]]M 6= ∅
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Universal Modality is Definable

♦ϕ =def ϕ �X ϕ

�ϕ =def ¬(¬ϕ �X ¬ϕ)
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Reflexive: for all w if w ∈ A then s(w ,A) = w .

M is reflexive implies (p �X >) ∨ (¬p �X >) is valid.
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Regular: Suppose that A ⊆ B and w1 ∈ A then, if s(w ,B) = w1

then s(w ,A) = w1.

M is regular implies

((p ∨ q) �X r)→ ((p �X r) ∨ (q �X r))

is valid.
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Modeling Social Choice Problems

The set of reasons: {1}, . . . , {k}, {1, 2, . . . , k}.

The signature contains a monadic predicate P.

Px1 �i Px2: “agent i strictly prefers the object assigned to x1 over
the object assigned to x2”

Px1 �1,...,k Px2: “society strictly prefers the object assigned to x1
over the object assigned to x2”
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Universal Domain

Fix a set of variables x1, x2, . . . , xm (with m ≥ 3). Let
χ(x1, x2, . . . , xm) be the formula saying that each of x1, . . . , xm is
equal to exactly one of the x1, . . . , xm.

Suppose that ψ is the
conjunction of:

χ(x1, . . . , xm) ∧ (Px1 �1 Px2) ∧ · · · ∧ (Pxm−1 �1 Pxm)

...

χ(x1, . . . , xm) ∧ (Px1 �k Px2) ∧ · · · ∧ (Pxm−1 �k Pxm)

Let ϕuniv be the universal closure of ♦ψ
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Pareto

Let ϕpareto be the universal closure of the above formula

�((Px1 �1 Px2 ∧ · · ·Pxk �1 Pxk)→ Px �1,...,k Py)

Eric Pacuit 16



IIA

Fix two variables x , y . Let ψ(x ′, y ′) be the formula that says each
of x ′, y ′ is equal to exactly one of x , y . The formula ϕiia is the
universal closure of:

(ψ(x1, y1) ∧ · · · ∧ ψ(xk , yk))→

(♦((Px1 �1 Py1 ∧ · · · ∧ (Pxk �k Pyk) ∧ Px �1,...,k Py))→

�(((Px1 �1 Py1) ∧ · · · ∧ (Pxk �k Pyk))→ Px �1,...,k Py))
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Dictator

Let ϕdictator be the disjunction of:

∀x1 · · · xm�(((Px1 �1 Px2) ∧ (Px2 �1 Px3) · · · (Pxm−1 �1 Pxm))↔
((Px1 �1,...k Px2) ∧ (Px2 �1,...k Px3) ∧ · · · (Pxm−1 �1,...k Pxm)))

...

∀x1 · · · xm�(((Px1 �k Px2) ∧ (Px2 �k Px3) · · · (Pxm−1 �k Pxm))↔
((Px1 �1,...k Px2) ∧ (Px2 �1,...k Px3) ∧ · · · (Pxm−1 �1,...k Pxm)))
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Arrow’s Theorem

{ϕuniv , ϕpareto , ϕiia} |= ϕdictator
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Dependence Logic

J. Väänänen. Dependence Logic. Cambridge University Press, 2007.

E. Grädel and J. Väänänen. Dependence and Independence. Studia Logica, vol.
101(2), pp. 399-410, 2013.
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Let V be a set of variables and D a domain.

A substitution is a function s : V → D.

A team X is a set of substitutions.

X |= =(x1, . . . , xn, y) iff for all s, s ′ ∈ X ,
(s(x1, . . . , xn) = s ′(x1, . . . , xn))→ (s(y) = s(y))

X |= (x1, . . . xn) ⊥ y iff for all s, s ′ ∈ X , there exists s ′′ ∈ X such
that s ′′(x1, . . . , xn) = s(x1, . . . , xn) and s ′′(y) = s ′(y)

Eric Pacuit 21



Let V be a set of variables and D a domain.

A substitution is a function s : V → D.

A team X is a set of substitutions.

X |= =(x1, . . . , xn, y) iff for all s, s ′ ∈ X ,
(s(x1, . . . , xn) = s ′(x1, . . . , xn))→ (s(y) = s(y))

X |= (x1, . . . xn) ⊥ y iff for all s, s ′ ∈ X , there exists s ′′ ∈ X such
that s ′′(x1, . . . , xn) = s(x1, . . . , xn) and s ′′(y) = s ′(y)

Eric Pacuit 21



Let V be a set of variables and D a domain.

A substitution is a function s : V → D.

A team X is a set of substitutions.

X |= =(x1, . . . , xn, y) iff for all s, s ′ ∈ X ,
(s(x1, . . . , xn) = s ′(x1, . . . , xn))→ (s(y) = s(y))

X |= (x1, . . . xn) ⊥ y iff for all s, s ′ ∈ X , there exists s ′′ ∈ X such
that s ′′(x1, . . . , xn) = s(x1, . . . , xn) and s ′′(y) = s ′(y)

Eric Pacuit 21



I M,X |= x = y iff for all s ∈ X , s(x) = s(y)

I M,X |= ¬x = y iff for all s ∈ X , s(x) 6= s(y)

I M,X |= R(x1, . . . , xn) iff for all s ∈ X ,
(s(x1), . . . , s(xn)) ∈ RM

I M,X |= ¬R(x1, . . . , xn) iff for all s ∈ X ,
(s(x1), . . . , s(xn)) 6∈ RM

Eric Pacuit 22



I M,X |= ϕ ∧ ψ iff M,X |= ϕ and M,X |= ψ

I M,X |= ϕ∨ψ iff there are X1,X2 such that X = X1 ∪X2 and
M,X1 |= ϕ and M,X2 |= ψ.

I M,X |= ∃xϕ iff M,X ′ |= ϕ for some X ′ such that for all
s ∈ X , there is a d ∈ D such that s[x/d ] ∈ X ′.

I M,X |= ∀xϕ iff M,X ′ |= ϕ for some X ′ such that for all
s ∈ X , for all d ∈ D, s[x/d ] ∈ X ′

Eric Pacuit 23



Dependence Logic Formalization

Voters are variables x1, x2, . . . , xn

Society’s Ranking is the variable y

Profiles are assignments (s : {x1, . . . , xn, y} → P), where P is the
set of preferences over a set.

A team is a set of profiles (the “constitution”)

Pab(s(x)) is true if s(x) ranks a strictly above b (similarly for weak
preference R and indifference I ).

J. Väänänen. Introduction to Dependence Logic. Dagstuhl Workshop on De-
pendence and Independence, 2013.
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To state Arrow’s Theorem (and other social choice results), we
only need propositional dependence:

=(ϕ1, . . . , ϕn, ψ) (the truth of ψ depends on the truth of
ϕ1, . . . , ϕn).

Eric Pacuit 25



Unanimity

If each agent ranks a above b, then so does the social welfare
function

DL formula ϕunam:
∧

i Pab(xi )→ Pab(y)

Eric Pacuit 26



Universal Domain

Voter’s are free to choose any preference they want.

X |= ∀xi iff for all R ∈ P, there is an s ∈ X , such that s(xi ) = R

DL formula ϕuniv1: ∀x1 ∧ · · · ∧ ∀xn

DL formula ϕuniv2: {xj | j 6= i} ⊥ xi
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Independence of Irrelevant Alternatives

The social relative ranking (higher, lower, or indifferent) of two
alternatives a and b depends only the relative rankings of a and b
for each individual.

DL formula ϕiia: =(Rab(x1), . . . ,Rab(xn),Rab(y))

Eric Pacuit 28



Dictatorship

There is an individual d ∈ A such that the society strictly prefers a
over b whenever d strictly prefers a over b.

DL formula ϕdictator : =(Pab(xd),Pab(y))
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{ϕuniv1, ϕuniv2, ϕpareto , ϕiia} |= ϕdictator
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Independence?

If for each i ∈ A, aRib iff aR ′i b, then aF (~R)b iff aF (~R ′)b.

Two profiles p and q agree on a set B provided pi = qi on B (i.e.,
the preferences are restricted to candidates in B) for each voter i .

(full) IIA: every set B is independent,

Binary: every pair is
independent, Ternary: every triple is independent, m-ary: every
m-element set is independent.

Theorem (Blau) If there are at least m + 1 candidates, then m-ary
implies m − 1-ary

Theorem. Arrow’s Theorem can be provided under these weaker
conditions: If |X | > m > 1, then Universal Domain, Unanimity,
and m-ary implies that the social welfare function is a dictatorship.
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A challenge: probabilities in group decision making

Probabilities in group decision making:

1. Linear pooling

2. Stochastic choice
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K. McConway. Marginalization and Linear Opinion Pools. Journal of the Amer-
ican Statistical Association, 76:374, pgs. 410 - 414, 1981.
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Suppose there are n agents who have assessed distributions
π1, . . . , πn over a space Ω.

Let S be a σ-algebra over Ω, then πi : S → [0, 1] (satisfying the
usual Kolmogrov axioms). Let ∆(S) be the set of all probability
measures on S . Let Σ be the set of all σ-algebras over Ω.

For a σ-algebra S , a consensus function is a map
CS : ∆(S)n → ∆(S).

Linear Pooling: CS(A) =
∑n

1 αiπi (A) for each A ∈ S , where the
weights αi are non-negative and sum to 1.
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Pareto: For all S ∈ Σ, for all π1, . . . , πn ∈ ∆(S) and for all A ∈ S ,
If π1(A) = π2(A) = · · · = πn(A) = 0, then CS(π1, . . . , πn)(A) = 0

Weak setwise function property (Independence): Suppose that
Q is ℘(Ω)− {∅,Ω} × [0, 1]n ∪ {(∅, 0, . . . , 0), (Ω, 1, . . . , 1)}. There
exists a function F : Q → [0, 1] such that for all S ∈ Σ,

CS(π1 . . . , πn)(A) = F (A, π1(A), . . . , πn(A))

for all A ∈ S and π1, . . . , πn ∈ ∆(S).

Eric Pacuit 35



Pareto: For all S ∈ Σ, for all π1, . . . , πn ∈ ∆(S) and for all A ∈ S ,
If π1(A) = π2(A) = · · · = πn(A) = 0, then CS(π1, . . . , πn)(A) = 0

Weak setwise function property (Independence): Suppose that
Q is ℘(Ω)− {∅,Ω} × [0, 1]n ∪ {(∅, 0, . . . , 0), (Ω, 1, . . . , 1)}. There
exists a function F : Q → [0, 1] such that for all S ∈ Σ,

CS(π1 . . . , πn)(A) = F (A, π1(A), . . . , πn(A))

for all A ∈ S and π1, . . . , πn ∈ ∆(S).

Eric Pacuit 35



Strong setwise function property (Systematicity): There exists
a function G : [0, 1]n → [0, 1] such that for all S ∈ Σ,

CS(π1 . . . , πn)(A) = G (π1(A), . . . , πn(A))

for all A ∈ S and π1, . . . , πn ∈ ∆(S).
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Theorem. The following are equivalent: (a) The consensus
function satisfies Pareto and independence and (b) The consensus
function satisfies systematicity.

Theorem. If there are at least three distinct points in Ω, then for
a class of consensus functions the following are equivalent

a. The class satisfies systematicity

b. There exists real numbers α1, . . . , αn that are non-negative
and sum to 1 such that for all S ∈ Σ, all A ∈ S and
π1, . . . , πn ∈ ∆(S),

CS(π1, . . . , πn)(A) =
n∑

i=1

αiπi (A)
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General Aggregation Theory

F. Dietrich and C. List. The aggregation of propositional attitudes: Towards a
general theory. Oxford Studies in Epistemology, Vol. 3, pgs. 215 - 234, 2010.

F. Herzberg. Universal algebra for general aggregation theory: Many-valued
propositional-attitude aggregators as MV-homomorphisms. Journal of Logic and
Computation, 2013.

T. Daniëls and EP. A general approach to aggregation problems. Journal of
Logic and Computation, 19, pgs. 517 - 536, 2009.
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M. Intriligator. A Probabilistic Model of Social Choice. The Review of Economic
Studies, 40:4, pgs. 553 - 560, 1973.
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Stochastic Choice

qi = (qi1, . . . , qin) such that for all i , j qij ≥ 0 and for all i ,
n∑

j=1

qij = 1

qij is the probability that agent i would choose alternative Aj if he
could act alone in deciding among the alternatives.

D. Luce. A Probabilistic Theory of Utility. Econometrica, 26, pgs. 193 - 224,
1958.
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p = (p1, . . . , pn) such that for all j pj ≥ 0 and
n∑

ij=1

pj = 1

pi is the probability that society will choose alternative Ai
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Universal Domain: Given any set of individual probabilities, the
rule specifies a unique set of social probabilities.

Any m × n matrix
Q = (qij) with rows containing non-negative numbers and
summing to 1 is mapped to a probability vector p = (p1, . . . , pn).

Unanimity of Loser: If all individuals reject an alternative then so
does society. If qij0 = 0 for all i , then pj0 = 0.
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Strict Sensitivity to Individual Probabilities: Social probabilities
are strictly sensitive to the changes in individual probabilities and
all agents are treated equally.

pj = fj(q11, . . . qm1, . . . , q1j , . . . , qmj , . . . q1n, . . . , qmn)

∂fj
∂qik

=

{
µj 6= 0 if k = j

0 if k 6= j
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Average Rule: For all j ,

pj =
1

m

m∑
i=1

qij

Theorem. The average rule is the only rule satisfying universal
domain, unanimity of a loser and strict sensitivity to individual
probabilities.
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Logics for social epistemology
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“Wisdom” of the Crowd

A. Lyon and EP. The Wisdom of Crowds: Methods of Human Judgement Ag-
gregation. The Handbook of Human Computation, 2013.

I The power of averaging (Diversity Theorem)

I Dynamics of group deliberation (information cascades,
anchoring effect, “common knowledge” effect)

I Prediction markets (Combinatorial markets: bets are made on
events of the form “horse A will win” rather than “horse A
will beat horse B which will beat horse C”, “horse A will win
and horse B will come in third” or “horse A will win if horse B
comes in second”)
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Logic and Group Decision Making

Group decision making from a logicians perspective...

1. Logical (and algebraic) methods can be used to prove various
results (Eckert & Herzberg, Nehring & Pivato)

2. Two non-standard logics for reasoning about social choice

3. A challenge: probabilities in group decision making (Goranko
& Bulling)

4. Logics for social epistemology (Rendsvig)
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Thank you!

Eric Pacuit 48


