Mixed Multi-Unit Combinatorial Auctions for

 Supply Chain Automation

 Supply Chain Automation}> Andrea Gíovannucci
> Meritxell Vinyals
> Jesus Cerquides
> Ulle Endriss
> Juan Antonio Rodriguez-Aguilar
> Pedro Meseguer

Institut d’Investigació en Intel.ligència Artificial (IIIA-CSIC)

Outline

- Motivation
- Background (MMUCA)
- Limitations of WD solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Motivations

- The organisational structure of enterprises is changing
- Increment of outsourced activity
- From monolithic to collaborative structures that tend to reduce their size

Chinese Motorbike Industry

- Small firms meet in online places and coffee shops
- Each one is assigned the task it is best at
- A self-organísing system of design and production

Background

- Design a selection and coordination process among multiple partners so that:
- it is easy to automate
- it meets particular production requirements
- it optimises production costs

Procurement Stage

Make~or-Buy

Make-or-Buy-or-Collaborate

Make-or-Buy-or-Collaborate

Make-or-Buy-or-Collaborate

- Mixed Multiunit Combinatorial Auctions (MMCICA)
- Automatically selects the best Make-or-Buy-or-Collaborate decisions
- Bidding Language (IJCAl07)
- Winner Determination Problem
(1) Definition (IJCAl07)
- MMUCA
(2) Solvers
- Petri-Nets based (AAMAS07)
- Direct Integer Programming (IJCAlo7)
- Connected Component/nteger Program (AAMASO8)
o Empirical Evaluation (1JA08)

Outline

- Motivation
- Background (MMUCA)
- Limitations of WDP solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Mixed Multi-unit Combinatorial Auctions

- An extension of Combinatorial Auctions that provides:
- A formal language to express preferences over operations across the supply chain
- A formalisation of the optimisation problem that selects:
(1) The best business partners
(2) A feasible sequence of operations

Automatically selects the best Make-or-Buy-or-Collaborate decisions

Mixed Multi-unit Combinatorial Auctions

Atomic Bid and Supply Chain Operation

$S C O=($ Inputs, Outputs)

$\underline{\mathrm{SCO}_{4}}=\left(2 \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{O}_{2}+2 \mathrm{H}_{2}\right)$

- $\mathrm{SCO}_{5}=\left(1^{\prime} \mathrm{O}_{2}+2 \cdot \mathrm{H}_{2}\right.$, nothing $)$

$$
\mathrm{BID}_{1}=\left(1, \underline{\mathrm{SCO}_{1}}+2, \underline{\mathrm{SCO}_{2}},-\epsilon_{2}\right)
$$

$\mathrm{BID}_{1} X O R \mathrm{BID}_{2} X O R \mathrm{BID}_{3} X O R \mathrm{BID}_{4}$ $B I D_{1}$ ORBID2 OR $_{1} \mathrm{BID}_{3}$ ORBID 4

Bidding Language

- Abidder can express preferences over bundles of SCOs (Atomic Bid)
- A bidder can submit combinations of Atomic Bids (e.g. XOR, OR)
- Theorem: $X \bigcirc R$ is expressive enough to represent any valuation

MMUCAWDP

Winner Determination Problem

Compute a sequence of SCOs selected among the ones submitted by bidders such that:

- it fulfils the constraints expressed by the bids
- it is feasible
- it maximises the auctioneer's revenue

Outline

- Motivation
- Background (MMUCA)
- Limitations of WD solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Comparing solvers for MMCLCA

SOLVER	TOPOLOGY	$\frac{\text { DDecision }}{\text { Variables }}$
Petri-Nets Based IntegerProgram	ACYCLIC	$O(N)$
Direct IntegerProgram	ANY	$O\left(N^{2}\right)$
Connected Components IP	ANY	$O(N) \leq ? ? \ll O\left(N^{2}\right)$

N : overall number of Supply Chain Operations

Cyclic topologies

WDP SOLVERS LIMITATIONS Petri-Nets Based

Cyclic topologies

Direct Integer Program

Direct Integer Programming approach

DIP explained

Positions	1	2	3	4	5	6
SCOs	SCO,	SCO	SCO_{1}	SCO_{1}	,	
	SCO_{2}	SCO_{2}	SCO_{2}	SCO_{2}	SCO_{2}	SCO_{2}
	SCO_{3}	SCO_{3}	SCO_{3}	SCO_{3}	SCO_{3}	SCO
	SCO_{+}	SCO_{+}	SCO_{4}	SCO_{4}	SCO_{4}	SCO_{4}
	SCO_{5}	SCO_{5}	SCO_{5}	SCO_{5}	SCO_{5}	SCO_{5}
	SCO_{6}	SCO_{6}	SCO_{6}	SCO_{6}	SCO_{6}	SCO_{6}

Problem

- The search space associated to DIP is big
- This affects the computational performance of DIP
- Can we reduce the associated search space?

Outline

- Motivation
- Background (MMUCA)
- Limitations of WD solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Equivalent Solutions

Equivalent Solutions

Reducing the search space

- Can we avoid considering re-orderings of the solution sequence?
- Indeed: Assume that the auctioneer doesn't care about the ordering of a solution sequence as long as enough goods are available for every SCO in the sequence

Equivalent Sequences

How to remove some sequences

- Each solution to the MMCICA WDP can be reordered into a solution that complies with a given TEMPLATE
- This template is built considering the dependency relationships among SCOs

SCO Dependency Graph

SCO Dependency Graph

$5 \mathrm{SO}_{2}$
SCO

SCO Dependency Graph

SCODependency Graph

SCO Dependency Graph

SCO Dependency Graph
SCO_{4} depends on SCO_{2}
SCO_{2} depends on SCO_{+}
$\mathrm{SCO}_{2}, \mathrm{SCO}_{4}$ belong to a loop

Strongly Connected Components
$\mathrm{SCO}_{2}, \mathrm{SCO}_{3}, \mathrm{SCO}_{4}$ cannot be ordered among them

We group them: GCC

Strongly Connected Components

Strongly Connected Components

The Solution Template

Proof of correctness

- THE OREM: "each solution to the MMUCAWDP can be reordered into an equivalent solution that fulfils the solution template"
- If we reduce the search space to the sequences fulfilling the solution template we do not to lose any solutions

Comparing DIP and CCIP

- The hypothesis behind DIP is that a SCO can hold any position within the solution sequence

$$
5 \times 6=30
$$

Comparing DIP and CCIP

- The hypothesis behind CCIP is that a SCO can hold only the positions allowed by the template

Positions	1	2	3	4	5	6
${ }^{\text {Template }}$	SCO_{4}	SCO_{1}	SCO_{2}	SCO_{2}	SCO_{2}	SCO_{2}
			SCO_{4}	SCO_{3}	SCO_{3}	SCO_{3}

Outline

- Motivation
- Background (MMUCA)
- Limitations of WD solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Empirical Evaluation

(a) Components of a car engine. (b) Supply chain for a car's engine.

MMCICA WDP Generator

Conclusions

- The scalability of an IP implementation of MMCICA is affected by the size of the largest connected components
- When there is a "natural" flow in the supply chain, CCIP scales reasonably well wrt number of transformations and goods

Outline

- Motivation
- Background (MMUCA)
- Limitations of WD solvers for MMUCA
- The Improved Solver
- Empirical evaluation
- Future work

Future Work

- Incorporate tíme
- time to perform operations
- time to finish before a deadline
- Incorporate uncertainty
- bidders may fail
- maximise the expected value
- Study connections to Planning

