Smith and Rawls Share a Room: Stability and Medians

Bettina Klaus and Flip Klijn

Maastricht University, The Netherlands and Institute for Economic Analysis (CSIC), Spain

Our Quest

- Selection of a particularly appealing stable matching for matching problems with multiple stable matchings.
- Elementary, graphic proofs.
- Identification of key properties.
(9) Roommate markets
- Graphic tool: bi-choice graph
(2) Roommate markets: basic results using "graphic proofs"
- The lonely wolf theorem
- Decomposability
- Smith and Rawls share a room: stability versus justice
(3) Marriage markets: generalized medians

4 College admissions: generalized medians
(5) Concluding examples

Roommate Markets

- In their seminal paper Gale and Shapley (AMM 1962) introduced the very simple (?) and appealing roommate problem as follows:
- "An even number of boys wish to divide up into pairs of roommates."
- A very common extension of this problem is to allow also for odd numbers of agents and to consider the formation of pairs and singletons (rooms can be occupied either by one or by two agents).
- $N=\{1, \ldots, n\}$: set of agents.
- \succeq_{i} : agent i's preferences over sharing a room with any of the agents in $N \backslash\{i\}$ and having a room for himself (or outside option).
- Assumption: preferences are strict, e.g., $j \succ_{i} k \succ_{i} i \succ_{i} h \succ_{i} \ldots$
- A roommate market consists of a set of agents N and their preferences \succeq and is denoted by (N, \succeq).
- A marriage market is a roommate market (N, \succeq) such that N is the union of two disjoint sets M and W, and each agent in M (respectively W) prefers being single to being matched with any other agent in M (respectively W).

COALITION FORMATION

- A matching μ for roommate market (N, \succeq) is a function $\mu: N \rightarrow N$ of order two, i.e, for all $i \in N, \mu(\mu(i))=i$.
- For a matching $\mu,\{i, j\}$ is a blocking pair if $j \succ_{i} \mu(i)$ and $i \succ_{j} \mu(j)$.
- Matching μ is individually rational if no blocking pair $\{i, i\}$ exists.
- Matching μ is stable if no blocking pair $\{i, j\}$ exists.
- The core equals the set of stable matchings.

The Core for Marriage Markets

- For marriage markets and college admission markets the core is always non-empty and has the very strong structure of a distributive lattice that reflects the polarization between the two sides of the market.

"women" optimal

The Core for Marriage Markets

- In addition, for marriage markets and college admission markets there is an easy and fast algorithm to find the two optimal stable matchings: Gale and Shapley's deferred acceptance algorithm. To compute men optimal matching μ_{M} :
- Step 1.a. Each man proposes to his favorite woman.
- Step 1.b. Each woman rejects any unacceptable man, and each woman who receives more than one proposal rejects all but her most preferred of these (this man is kept "engaged")
- ...
- Step k.a. Each man currently not engaged proposes to his favorite woman among those who have not yet rejected him.
- Step k.b. Each woman rejects any unacceptable man, and each woman rejects all proposals but her most preferred among the group consisting of the new proposers together with the man she was engaged with (if any).
- REPEAT until no man is rejected. Final matching: μ_{M}.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1} 1$,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1}$ 1,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1}$ 1,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1}$ 1,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1}$ 1,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

A Roommate Market with an Empty Core

Example
Agent 1: $2 P_{1} 3 P_{1} 1$,
Agent 2: $3 P_{2} 1 P_{2}$ 2,
Agent 3: $1 P_{3} 2 P_{3} 3$.

- All agents being single is not a core matching.
- If agents 1 and 2 are matched, then agent 3 will "seduce" agent 2 to block.
- If agents 2 and 3 are matched, then agent 1 will "seduce" agent 3 to block.
- If agents 1 and 3 are matched, then agent 2 will "seduce" agent 1 to block.

A roommate market with a non-empty core is called solvable.

Henceforth, we consider solvable roommate markets. Typically, there are multiple stable matchings.

Selection problem: can we select a particularly appealing stable matching?

- Can selection be based on the number of matched agents?
- Can we choose a stable matching without favoring any agent?

Henceforth, the red matching μ and the blue matching μ^{\prime} are two stable matchings.

We introduce a bi-choice graph $G\left(\mu, \mu^{\prime}\right)=(V, E)$.

- Vertices: $V=N$.
- Edges: E. Let $i, j \in N$. Then there is an edge

E1. $i \longrightarrow \bullet j$ if $j=\mu(i) \succ_{i} \mu^{\prime}(i)$;
E2. $i \bullet--\rightarrow \cdot j$ if $j=\mu^{\prime}(i) \succ_{i} \mu(i)$;
E3. $i \bullet \longrightarrow j$ if $j=\mu(i) \sim_{i} \mu^{\prime}(i)$ (i.e., a loop $i \longleftrightarrow$ if $j=i$).

Lemma

Bi-choice graph components

Consider $G\left(\mu, \mu^{\prime}\right)$. Let $i \in N$. Then, agent i's component of $G\left(\mu, \mu^{\prime}\right)$ either
(a) equals $i \bullet \longrightarrow j$ for some agent j (i.e., $i \longleftrightarrow$ if $j=i$), or
(b) is a directed even cycle (with ≥ 4 agents) where continuous and discontinuous edges alternate.

An example of such a cyclical component is

An example of a bi-choice-graph is

Hence, any two stable matchings μ and μ^{\prime} decompose the set of agents into a set of even cycles and singletons.

We prove the following basic results for solvable roommate markets with our graphic approach:

- The lonely wolf theorem
- Decomposability
- Smith and Rawls share a room: stability versus justice

```
Theorem
Lonely wolves
\mu and \mp@subsup{\mu}{}{\prime}}\mathrm{ have the same set of single agents, i.e., }\mu(i)=i\Leftrightarrow\mp@subsup{\mu}{}{\prime}(i)=i
```


Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.
Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.
Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

$$
\begin{aligned}
& i=i_{1} \\
& \stackrel{a}{ } \because \mu^{\prime}(i)=i_{2}
\end{aligned}
$$

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.
Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.
Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.

Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.

Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Theorem

Lonely wolves

μ and μ^{\prime} have the same set of single agents, i.e., $\mu(i)=i \Leftrightarrow \mu^{\prime}(i)=i$.

Proof.

Suppose w.l.o.g. $\mu(i)=i$ but $\mu^{\prime}(i) \neq i$. Then,

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$.

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$.

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,
$\xrightarrow{i} \mu(i)=j$

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

$$
\Rightarrow \mu^{\prime}(j) \succ_{j} \mu(j) .
$$

(b) Suppose $\mu^{\prime}(i) \succ_{i} \mu(i)=j$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$.

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

$$
\Rightarrow \mu^{\prime}(j) \succ_{j} \mu(j) .
$$

(b) Suppose $\mu^{\prime}(i) \succ_{i} \mu(i)=j$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

$$
\Rightarrow \mu^{\prime}(j) \succ_{j} \mu(j) .
$$

(b) Suppose $\mu^{\prime}(i) \succ_{i} \mu(i)=j$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

Lemma

Decomposability

Let $\mu(i)=j$. Then,
(a) $\mu(i) \succ_{i} \mu^{\prime}(i)$ implies $\mu^{\prime}(j) \succ_{j} \mu(j)$ and
(b) $\mu^{\prime}(i) \succ_{i} \mu(i)$ implies $\mu(j) \succ_{j} \mu^{\prime}(j)$.

Proof.

(a) Suppose $j=\mu(i) \succ_{i} \mu^{\prime}(i)$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,
$\xrightarrow{i \xrightarrow{\mu(i)}=j} \quad \Rightarrow \mu^{\prime}(j) \succ_{j} \mu(j)$.
(b) Suppose $\mu^{\prime}(i) \succ_{i} \mu(i)=j$. Then, lonely wolf theorem: $j, \mu^{\prime}(i) \neq i$. Moreover,

$$
\begin{gathered}
\Rightarrow \begin{array}{l}
i=\mu(k), \text { i.e., } j=k \\
\text { and } \mu(j) \succ_{j} \mu^{\prime}(j) .
\end{array}
\end{gathered}
$$

Let $\mu_{1}, \ldots, \mu_{2 k+1}$ be an odd number of (possibly non-distinct) stable matchings. Let each agent rank these matchings according to his preferences, e.g.,

$$
\mu_{1}(i) \succ_{1} \mu_{2}(i) \sim_{i} \mu_{3}(i) \succ_{i} \underbrace{\mu_{4}(i)}_{\operatorname{med}\left\{\mu_{1}(i), \ldots, \mu_{7}(i)\right\}} \sim_{i} \mu_{5}(i) \succ_{i} \mu_{6}(i) \succ_{i} \mu_{7}(i) .
$$

We denote agent i 's $(k+1)$-st ranked (the median) match by
$\mu_{\text {med }}(i) \equiv \operatorname{med}\left\{\mu_{1}(i), \ldots, \mu_{2 k+1}(i)\right\}$.

Theorem

Smith and Rawls share a room

Let $\mu_{1}, \ldots, \mu_{2 k+1}$ be an odd number of stable matchings. Then, the median matching $\mu_{\text {med }}$ is a well-defined stable matching.
W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\operatorname{med}}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j}
$$

$$
\underbrace{\mu_{3}(j)}_{=i}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\operatorname{med}}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$\underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \quad \mu_{2}(j)$
W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\mu_{1}(i) \succeq_{i} \quad \mu_{2}(i) \succeq_{i} \quad \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j}
$$

$$
\underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \quad \mu_{2}(j)
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\mu_{1}(i) \succeq_{i} \quad \mu_{2}(i) \succeq_{i} \quad \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j}
$$

$$
\underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \quad \mu_{2}(j) \quad, \quad \mu_{1}(j)
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{aligned}
\mu_{1}(i) \quad \succeq_{i} \quad \mu_{2}(i) \quad \succeq_{i} \quad \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} & \succeq_{i} \quad \mu_{4}(i) \\
& \underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \mu_{2}(j) \quad, \quad \mu_{1}(j)
\end{aligned}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{aligned}
& \mu_{1}(i) \quad \succeq_{i} \quad \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \\
& \succeq_{i} \quad \mu_{4}(i) \\
& \mu_{4}(j) \succeq_{j} \underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \quad \mu_{2}(j) \quad, \quad \mu_{1}(j)
\end{aligned}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{array}{r}
\mu_{1}(i) \quad \succeq_{i} \mu_{2}(i) \quad \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \quad \succeq_{i} \quad \mu_{5}(i) \\
\mu_{4}(j) \quad \succeq_{j} \underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \mu_{2}(j), \quad \mu_{1}(j)
\end{array}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{aligned}
& \mu_{1}(i) \quad \succeq_{i} \quad \mu_{2}(i) \quad \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \quad \mu_{4}(i) \quad \succeq_{i} \quad \mu_{5}(i) \\
& \mu_{5}(j) \quad, \quad \mu_{4}(j) \succeq_{j} \underbrace{\mu_{3}(j)}_{=i} \succeq_{j} \mu_{2}(j), \quad \mu_{1}(j)
\end{aligned}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{aligned}
& \mu_{1}(i) \quad \succeq_{i} \quad \mu_{2}(i) \quad \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \quad \mu_{4}(i) \quad \succeq_{i} \quad \mu_{5}(i) \\
& \mu_{5}(j) \quad, \quad \mu_{4}(j) \succeq_{j} \underbrace{\mu_{3}(j)}_{\mu_{\text {med }}(j)=i} \succeq_{j} \mu_{2}(j), \quad \mu_{1}(j)
\end{aligned}
$$

W.l.o.g.,

$$
\mu_{1}(i) \succeq_{1} \mu_{2}(i) \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\text {med }}(i)=j} \succeq_{i} \mu_{4}(i) \succeq_{i} \mu_{5}(i) .
$$

Then,

$$
\begin{aligned}
& \mu_{1}(i) \quad \succeq_{i} \quad \mu_{2}(i) \quad \succeq_{i} \underbrace{\mu_{3}(i)}_{\mu_{\operatorname{med}}(i)=j} \succeq_{i} \quad \mu_{4}(i) \quad \succeq_{i} \quad \mu_{5}(i) \\
& \mu_{5}(j) \quad, \quad \mu_{4}(j) \succeq_{j} \underbrace{\mu_{3}(j)}_{\mu_{\operatorname{med}}(j)=i} \succeq_{j} \quad \mu_{2}(j), \quad \mu_{1}(j)
\end{aligned}
$$

Hence, $\mu_{\text {med }}$ is a well-defined matching.
W.I.o.g., $\{i, j\}$ blocking pair for $\mu_{\text {med }}$. Then,

$$
\begin{aligned}
& j \succ_{i} \overbrace{\mu_{\text {med }}(i) \succeq_{i}}^{k+1 \text { stable partners }}, \ldots \\
& i \succ_{j} \underbrace{\mu_{\text {med }}(j) \succeq_{j} \quad \ldots}_{k+1 \text { stable partners }}
\end{aligned}
$$

W.I.o.g., $\{i, j\}$ blocking pair for $\mu_{\text {med }}$. Then,

$$
\begin{aligned}
& j \succ_{i} \overbrace{\mu_{\text {med }}(i) \succeq_{i} \ldots \mu^{\prime}(i) \ldots}^{k+1 \text { stable partners }}, \\
& i \succ_{j} \underbrace{\mu_{\text {med }}(j) \succeq_{j} \quad \ldots \mu^{\prime}(j) \ldots}_{k+1 \text { stable partners }}
\end{aligned}
$$

W.l.o.g., $\{i, j\}$ blocking pair for $\mu_{\text {med }}$. Then,

$$
\begin{aligned}
& j \succ_{i} \overbrace{\mu_{\text {med }}(i) \succeq_{i} \ldots \mu^{\prime}(i) \ldots}^{k+1 \text { stable partners }} \\
& i \succ_{j} \underbrace{\mu_{\text {med }}(j) \succeq_{j} \quad \ldots \mu^{\prime}(j) .}_{k+1 \text { stable partners }}
\end{aligned}
$$

By "transitivity of blocking," $\{i, j\}$ is a blocking pair for matching μ^{\prime}, which contradicts stability of μ^{\prime}. Hence, $\mu_{\text {med }}$ is a stable matching.

Corollary

Smith and Rawls (almost) share a room

Let $\mu_{1}, \ldots, \mu_{2 k}$ be an even number of stable matchings. Then, there exists a stable matching at which each agent is assigned a match of rank k or $k+1$.

Key properties in "Smith and Rawls share a room:"

- Decomposability
- Transitivity of blocking

Using these properties and the same proof technique we obtain an even stronger result for marriage markets.

Let μ_{1}, \ldots, μ_{k} be (possibly non-distinct) stable matchings. Let each agent rank these matchings according to his/her preferences.

For any $I \in\{1, \ldots, k\}$, we define the generalized median matching α_{I} as the function $\alpha_{I}: M \cup W \rightarrow M \cup W$ such that

$$
\alpha_{l}(i):= \begin{cases}l \text {-th ranked match of } i & \text { if } i \in M ; \\ (k-l+1) \text {-st ranked match of } i & \text { if } i \in W .\end{cases}
$$

Theorem
Marriage and compromise - generalized median Let μ_{1}, \ldots, μ_{k} be stable matchings. Then, for any $I \in\{1, \ldots, k\}$, α_{l} is a well-defined stable matching.

In fact, the same proof is essentially valid for its generalization to the college admissions model.

However, the extended proof is no longer elementary in the sense that the key properties identified earlier are based on well-known but non-trivial results for the college admissions model.

- $S=\left\{s_{1}, \ldots, s_{m}\right\}$: set of students.
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$: set of colleges. College C has quota q_{C}.
- \succeq_{s} : student s 's strict preferences over $\mathcal{C} \cup\{s\}$.
- \succeq_{c} : college C 's preferences over feasible sets of students $\mathcal{P}\left(S, q_{C}\right):=\left\{S^{\prime} \subseteq S:\left|S^{\prime}\right| \leq q_{C}\right\}$.
- Assumption on \succeq_{c} : responsiveness, i.e.,
- if $s \notin S^{\prime}$ and $\left|S^{\prime}\right|<q_{C}$, then $\left(S^{\prime} \cup s\right) \succ_{C} S^{\prime}$ if and only if $s \succ_{C} \emptyset$ and
- if $s \notin S^{\prime}$ and $t \in S^{\prime}$, then $\left(\left(S^{\prime} \backslash t\right) \cup s\right) \succ_{c} S^{\prime}$ if and only if $s \succ_{c} t$.
- A college admissions market is a triple $\left(S, \mathcal{C},\left(\succeq_{i}\right)_{i \in S \cup \mathcal{C}}\right)$.
- A matching μ for college admissions market $\left(S, \mathcal{C},\left(\succeq_{i}\right)_{i \in S \cup C}\right)$ is a function μ on the set $S \cup \mathcal{C}$ such that
- for all $\boldsymbol{s} \in \mathcal{S}$, either $\mu(\boldsymbol{s}) \in \mathcal{C}$ or $\mu(\boldsymbol{s})=\boldsymbol{s}$,
- for all $C \in \mathcal{C}, \mu(C) \in \mathcal{P}\left(S, q_{C}\right)$, and
- for all $s \in S$ and $C \in \mathcal{C}, \mu(s)=C$ if and only if $s \in \mu(C)$.
- Matching μ is individually rational if $\mu(\boldsymbol{s})=C$, then $C \succ_{s} \boldsymbol{S}$ and $\mu(C) \succ_{C}(\mu(C) \backslash \boldsymbol{s})$.
- A pair (s, C) blocks $(\mu(s), \mu(C))$ if $C \succ_{s} \mu(s)$ and B1. $\left[|\mu(C)|<q_{C}\right.$ and $\left.s \succ_{C} \emptyset\right]$ or
B2. [there exists $t \in \mu(C)$ such that $s \succ_{C} t$].
- Matching μ is stable if it is individually rational and there is no pair (s, C) that blocks $(\mu(s), \mu(C))$.

Lemma

Weak decomposability, Roth and Sotomayor 1990 Let μ and μ^{\prime} be stable matchings.
Let $C \in \mathcal{C}, s \in S$, and $s \in \mu(C) \cup \mu^{\prime}(C)$. Then,
(a) $\mu(C) \succ_{c} \mu^{\prime}(C)$ implies $\mu^{\prime}(s) \succeq_{s} \mu(s)$;
(b) $\mu(s) \succ_{s} \mu^{\prime}(s)$ implies $\mu^{\prime}(C) \succeq_{c} \mu(C)$.

Lemma

Transitivity of blocking for college admissions

Let μ and μ^{\prime} be matchings, $C \in \mathcal{C}$, and $s \in S$. Suppose (s, C) blocks $(\mu(s), \mu(C))$. Suppose also that C is assigned groups of students $\mu(C)$ and $\mu^{\prime}(C)$ under some stable matchings.
If $\mu(s) \succeq_{s} \mu^{\prime}(s)$ and $\mu(C) \succeq_{c} \mu^{\prime}(C)$, then (s, C) blocks $\left(\mu^{\prime}(s), \mu^{\prime}(C)\right)$.

Let μ_{1}, \ldots, μ_{k} be (possibly non-distinct) stable matchings. Let each student/college rank these matchings according to his/its preferences.

For any $I \in\{1, \ldots, k\}$, we define the generalized median matching α_{l} by

$$
\alpha_{l}(i):= \begin{cases}l \text {-th ranked match of } i & \text { if } i \in S ; \\ (k-I+1) \text {-st ranked match of } i & \text { if } i \in \mathcal{C} .\end{cases}
$$

Theorem

College admissions and compromise - generalized median Let μ_{1}, \ldots, μ_{k} be stable matchings. Then, for any $I \in\{1, \ldots, k\}$, α_{l} is a well-defined stable matching.

Example 1

No compromise for q-separable and substitutable preferences
Consider the college admissions market with 4 students $s_{1}, s_{2}, s_{3}, s_{4}$, 2 colleges C_{1} and C_{2} with 2 seats each, and preferences as listed in the table below (Martínez et al., 2000, Example 2). The colleges' preferences are q-separable and substitutable.

$\succ_{c_{1}}$	$\succ_{C_{2}}$	$\succ_{s_{1}}$	$\succ_{s_{2}}$	$\succ_{s_{3}}$	$\succ_{s_{4}}$
$\left\{s_{1}, s_{2}\right\}$	$\left\{s_{3}, s_{4}\right\}$	C_{2}	C_{2}	C_{1}	C_{1}
$\left\{s_{1}, s_{3}\right\}$	$\left\{s_{2}, s_{4}\right\}$	C_{1}	C_{1}	C_{2}	C_{2}
$\left\{s_{2}, s_{4}\right\}$	$\left\{s_{1}, s_{3}\right\}$				
$\left\{s_{3}, s_{4}\right\}$	$\left\{s_{1}, s_{2}\right\}$				
$\left\{s_{1}, s_{4}\right\}$	$\left\{s_{1}, s_{4}\right\}$				
$\left\{s_{2}, s_{3}\right\}$	$\left\{s_{2}, s_{3}\right\}$				
$\left\{s_{1}\right\}$	$\left\{s_{1}\right\}$				
$\left\{s_{2}\right\}$	$\left\{s_{2}\right\}$				
$\left\{s_{3}\right\}$	$\left\{s_{3}\right\}$				
$\left\{s_{4}\right\}$	$\left\{s_{4}\right\}$				

There are 4 stable matchings:

$$
\begin{aligned}
& \mu_{1}=\left\{\left\{C_{1}, s_{1}, s_{2}\right\},\left\{C_{2}, s_{3}, s_{4}\right\}\right\} \\
& \mu_{2}=\left\{\left\{C_{1}, s_{1}, s_{3}\right\},\left\{C_{2}, s_{2}, s_{4}\right\}\right\} \\
& \mu_{3}=\left\{\left\{C_{1}, s_{2}, s_{4}\right\},\left\{C_{2}, s_{1}, s_{3}\right\}\right\} \\
& \mu_{4}=\left\{\left\{C_{1}, s_{3}, s_{4}\right\},\left\{C_{2}, s_{1}, s_{2}\right\}\right\}
\end{aligned}
$$

Violation of weak decomposability:

$$
s_{3} \in \mu_{2}\left(C_{1}\right), \mu_{2}\left(s_{3}\right) \succ_{s_{3}} \mu_{3}\left(s_{3}\right), \text { and } \mu_{2}\left(C_{1}\right) \succ c_{1} \mu_{3}\left(C_{1}\right)
$$

Considering the first three matchings, one straightforwardly checks that matching each agent with its median match is not a matching: C_{1} would be matched with $\left\{s_{1}, s_{3}\right\}$, but at the same time s_{3} would be matched with C_{2}.

Example 2

An unstable compromise for a network formation problem

We extend the notion of blocking for the matching problems considered so far to this network formation problem in a natural way as follows.

Two agents can block a given network by adding a link if and only if this is beneficial for both agents. Furthermore, a single agent can block a given network by destroying a link if that is beneficial for him/her.
Then, there are 3 stable networks μ_{1}, μ_{2}, and μ_{3} which are given by

respectively. Let each agent choose the median of the three sets of links with which he can be associated. Then, each agent chooses to connect with both of the other agents. Hence, the resulting median network is the well-defined but unstable complete network:

Transitivity of blocking for network formation

Let μ and μ^{\prime} be networks and i, j agents such that $\{i, j\}$ (possibly $i=j$) blocks network μ. Suppose also that for all $k=i, j$, agent k is assigned the set of links $\mu(k)$ and $\mu^{\prime}(k)$ under some stable network. ${ }^{1}$ If $\mu \succeq_{i} \mu^{\prime}$ and $\mu \succeq_{j} \mu^{\prime}$, then $\{i, j\}$ also blocks μ^{\prime}.

We now show that transitivity of blocking is violated. Consider

$$
\mu=\varlimsup_{3}^{1} \text { and } \mu^{\prime}=1 \quad 3 \quad \text { ? }
$$

- Note $\{i, j\}=\{1\}$ blocks μ by breaking the link with agent 2 (or 3),
- $\mu_{2}=\stackrel{1}{3} \quad 2$ and $\mu_{3}=\stackrel{3}{2} \quad 3 \quad$ are stable with $\mu_{2}(1)=\mu(1)$ and $\mu_{3}(1)=\mu^{\prime}(1)$,
- $\mu \succeq_{1} \mu^{\prime}$, BUT
- in contradiction to transitivity of blocking, $\{1\}$ cannot block μ^{\prime}.
${ }^{1}$ That is, there are stable $\bar{\mu}$ and $\bar{\mu}^{\prime}$ with $\bar{\mu}(k)=\mu(k)$ and $\bar{\mu}^{\prime}(k)=\mu^{\prime}(k)$.

Note: also a violation of weak decomposability:
$\mu_{2} \succ_{1} \mu_{3}$, agent 1 is linked to agent 3 at μ_{2}, but $\mu_{2} \succ_{3} \mu_{3}$.

So far, we did not succeed in constructing an example where

- the median outcome is well-defined but unstable,
- (weak) decomposability is satisfied,
- and transitivity of blocking is violated.

