# A Graphical Framework for the Analysis of Mixed Multi-Unit Combinatorial Auctions

M. Vinyals<sup>1</sup> A. Giovannucci<sup>1</sup> J.A.Rodriguez<sup>1</sup> B.Rosell<sup>1</sup> J.Cerquides  $^2$ 

 $^{1} \hbox{IIIA-CSIC}$  Artificial Intelligence Research Institute

<sup>2</sup>WAI Universitat de Barcelona

3rd MARA Get Together, 2008



## Outline

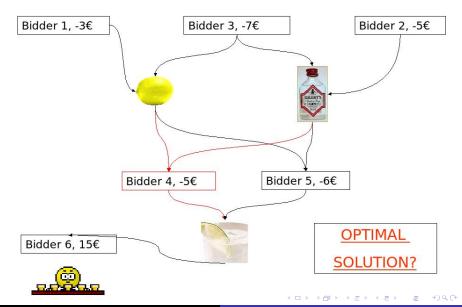
- Mixed Multi-Unit Combinatorial Auctions
- The Mixed Multi-Unit Auction Platform
- Automated design of electronic institutions

## Outline

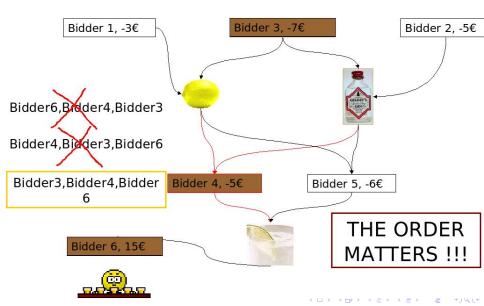
- Mixed Multi-Unit Combinatorial Auctions
- The Mixed Multi-Unit Auction Platform
- Automated design of electronic institutions

## Outline

- Mixed Multi-Unit Combinatorial Auctions
- The Mixed Multi-Unit Auction Platform
- Automated design of electronic institutions


- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform
- A bidder would be able to express his ability to transform goods at a certain cost:
  - $1 \text{ gin} + 1 \text{ lemon juice} \longrightarrow 1 \text{ gin lemon}$  for 5 \$
- We call the resulting model mixed auctions (direct and reverse auctions combined) Mixed Multi-Unit Combinatorial
   Auctions
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)

- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform
- A bidder would be able to express his ability to transform goods at a certain cost:
  - $1 \text{ gin} + 1 \text{ lemon juice} \longrightarrow 1 \text{ gin lemon}$  for 5 \$
- We call the resulting model mixed auctions (direct and reverse auctions combined) Mixed Multi-Unit Combinatorial Auctions
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)

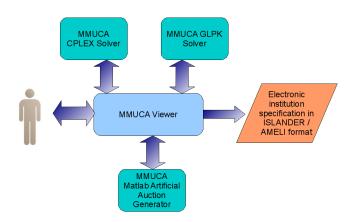

- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform
- A bidder would be able to express his ability to transform goods at a certain cost:
  - $1 \text{ gin} + 1 \text{ lemon juice} \longrightarrow 1 \text{ gin lemon}$  for 5 \$
- We call the resulting model mixed auctions (direct and reverse auctions combined) Mixed Multi-Unit Combinatorial Auctions
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)

- Suppose that an auctioneer allows agents to bid for goods to buy, to sell or to transform
- A bidder would be able to express his ability to transform goods at a certain cost:
  - $1 \text{ gin} + 1 \text{ lemon juice} \longrightarrow 1 \text{ gin lemon}$  for 5 \$
- We call the resulting model mixed auctions (direct and reverse auctions combined) Mixed Multi-Unit Combinatorial Auctions
- Generalizes several type of combinatorial auctions (Cerquides et al, IJCAI 2007)

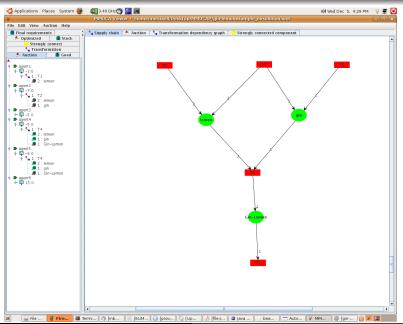
# Example of MMUCA: GIN & LEMON



# Example of MMUCA: GIN & LEMON




## Mixed Multi-Unit Auction Platform


#### Goals:

- Prototype and demonstrate the possibilities of application of MMUCA for Supply Chain Formation.
- Experiment with graphical visualization tools and user interfaces for MMUCA and evaluate their usefulness and comprehensibility.
- Integrate access to MMUCA tools.
- Automate the process of generation of an electronic institution for Supply Chain Formation

# Architecture of the MMUCA platform

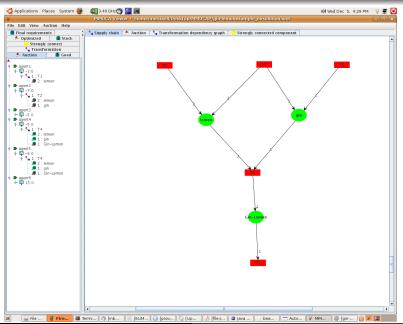


# MMUCA Viewer



# The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids
- Bids submitted are loaded in the MMUCA viewer
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
- Optimal solution is loaded in the MMUCA viewer
- Automated generation of the supply chain processes as the specification of an electronic institution
   The resulting specification can be either:
  - Uploaded by ISLANDER for further refinements
  - Uploaded by AMELI to run the supply chain as an electronic institution

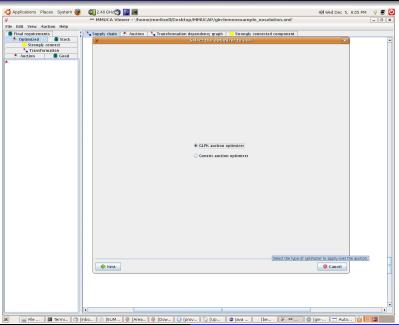



# The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids
- Bids submitted are loaded in the MMUCA viewer
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chair configuration.
- Optimal solution is loaded in the MMUCA viewer
- Automated generation of the supply chain processes as the specification of an electronic institution
   The resulting specification can be either:
  - Uploaded by ISLANDER for further refinements
  - Uploaded by AMELI to run the supply chain as an electronic institution



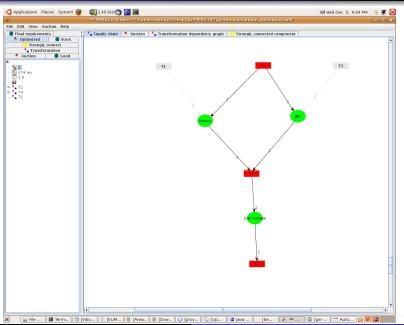
# MMUCA Viewer




# The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids
- Bids submitted are loaded in the MMUCA viewer
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
- Optimal solution is loaded in the MMUCA viewer
- Automated generation of the supply chain processes as the specification of an electronic institution
   The resulting specification can be either:
  - Uploaded by ISLANDER for further refinements
  - Uploaded by AMELI to run the supply chain as an electronic institution



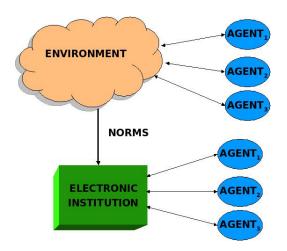

#### MMUCA Viewer



# The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids
- Bids submitted are loaded in the MMUCA viewer
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chair configuration.
- Optimal solution is loaded in the MMUCA viewer
- Automated generation of the supply chain processes as the specification of an electronic institution
   The resulting specification can be either:
  - Uploaded by ISLANDER for further refinements
  - Uploaded by AMELI to run the supply chain as an electronic institution

# MMUCA Viewer

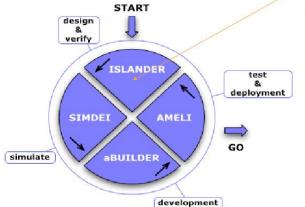



# The Supply Chain Generation Process

- An auctioneer starts a Mixed Multi-Unit Combinatorial Auction (MMUCA) and agents are free to submit their bids
- Bids submitted are loaded in the MMUCA viewer
- The auctioneer collects all bids and solves the winner determination problem to assess the optimal supply chain configuration.
- Optimal solution is loaded in the MMUCA viewer
- Automated generation of the supply chain processes as the specification of an electronic institution
   The resulting specification can be either:
  - Uploaded by ISLANDER for further refinements
  - Uploaded by AMELI to run the supply chain as an electronic institution



# Electronic Institutions

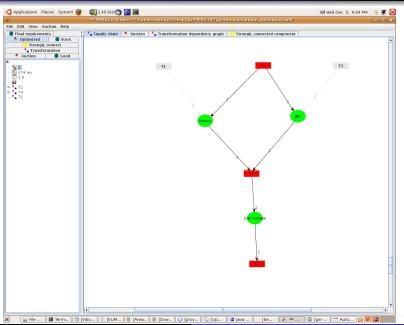



Institutions in the sense proposed by North "... set of artificial constraints that articulate agent interactions"

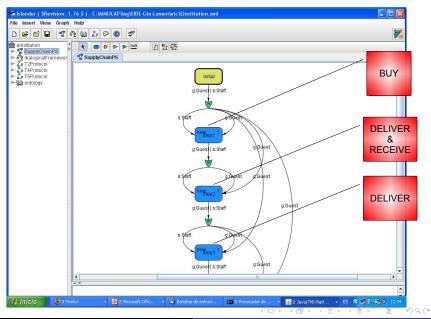
# Electronic Institutions Development Environment (EIDE)

http://e-institutions.iiia.csic.es

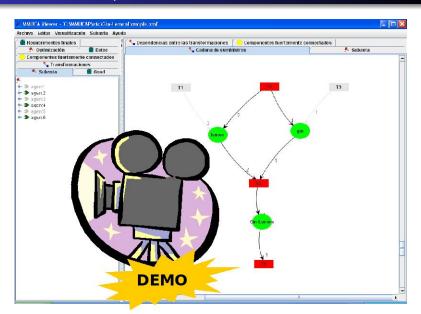
DESIGN
BY HAND!




#### Islander


The xml specifies for the generated supply chain:

- Peformance Structure
- Roles
- Ontology
- Scenes & protocols


# MMUCA Viewer



#### Islander



# Demo: MMUCA platform

