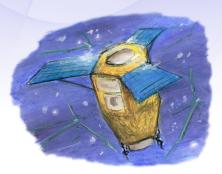
Fair Allocation of Indivisible Goods: Modelling, Compact Representation using Logic, and Complexity

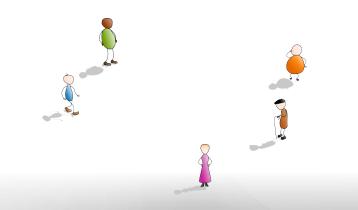


MARA-revival Workshop. 6th June 2008. Sylvain Bouveret

PhD Committee: Christian BESSIÈRE, Ulle ENDRISS, Thibault GAJDOS, Jean-Michel LACHIVER (supervisor), Jérôme LANG (supervisor), Michel LEMAÎTRE (supervisor), Patrice PERNY, Thomas SCHIEX

PhD Reviewers: Boi FALTINGS, Patrice PERNY

Inputs • A finite set \mathcal{N} of agents .



Inputs • A finite set \mathcal{N} of agents .

• A limited common resource.

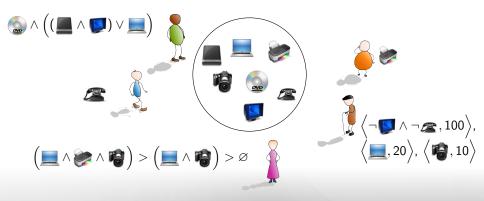
Inputs • A finite set \mathcal{N} of agents .

• A limited common resource.



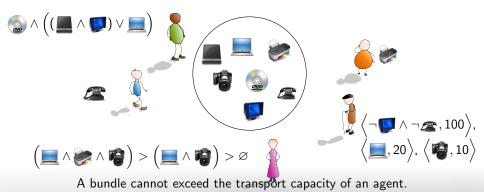
Inputs • A finite set \mathcal{N} of agents having some requests and preferences on the resources.

• A limited common resource.



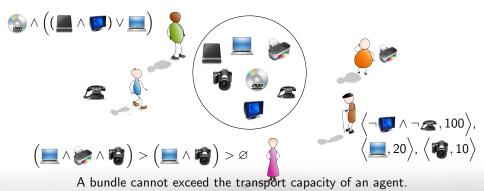
Inputs

- A finite set \mathcal{N} of agents having some requests and preferences on the resources.
 - A limited common resource.
 - A set of constraints (physical, legal, moral,...).



Inputs

- A finite set \mathcal{N} of agents having some requests and preferences on the resources.
 - A limited common resource.
 - A set of constraints (physical, legal, moral,...).
 - An optimization or decision criterion.

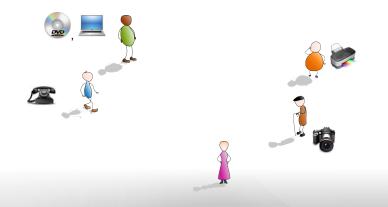


Inputs

- A finite set \mathcal{N} of agents having some requests and preferences on the resources.
 - A limited common resource.
 - A set of constraints (physical, legal, moral,...).
 - An optimization or decision criterion.

Output

• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

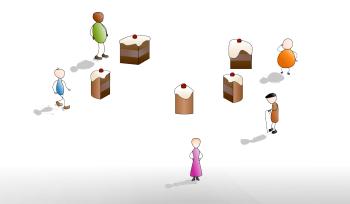


Inputs

- A finite set \mathcal{N} of agents having some requests and preferences on the resources.
 - A limited common resource.
 - A set of constraints (physical, legal, moral,...).
 - An optimization or decision criterion.

Output

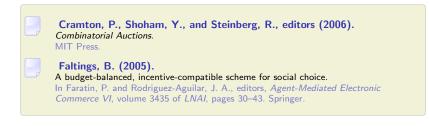
• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.



Real-world applications

An ubiquitous problem...

- Fair share of Earth Observation Satellites.
- Tasks or subjects allocation.
- Combinatorial auctions problems [Cramton et al., 2006].
- Computer network sharing, rostering problems, allocation of take-off and landing slots in airports [Faltings, 2005],....



4 / 49

Outline of the talk

We focus on **fair** and **constrained** resource allocation problems, on **combinatorial domains** :

- Basic concepts and modelling.
- Compact representation and complexity.

Outline

1 The elements of the fair resource allocation problem

- The resource
- Admissibility constraints
- The agents' preferences
- Welfarism
- 2 Compact representation and complexity
 - About compact representation...
 - Collective utility maximization problem: representation and complexity
 - Efficiency and envy-freeness: representation and complexity

Inputs	 A set <i>N</i> of agents expressing preferences on the resource. A limited common resource.
	 A set of constraints (physical, legal, moral,). A decision or optimisation criterion
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

The resource allocation problem

Inputs	 A set N of agents expressing preferences on the resource. A limited common resource.
	 → Continuous resource, discrete, indivisible, mixed; → Possibility of monetary compensations. A set of constraints (physical, legal, moral,). A decision or optimisation criterion
Sortie	• The allocation of a part of or the whole resource to each agent , no violated constraint / criterion optimized or verified.

The resource allocation problem

Inputs ● A set N of agents expressing preferences on the resource. ● A limited common resource. ~ Continuous resource, discrete, indivisible, mixed; ~ Possibility of monetary compensations. ● A set of constraints (physical, legal, moral,...). ● A decision or optimisation criterion Sortie ● The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

Indivisible resource, share, allocation

- Indivisible resource : set of objects 𝒪.
- Share of an agent : $\pi \subseteq \mathscr{O}$.
- Allocation : $\overrightarrow{\pi} \in 2^{\mathscr{O}^n}$.

The resource allocation problem

Inputs	 A set <i>N</i> of agents expressing preferences on the resource. The resource → a finite set <i>O</i> of indivisible objects.
	 A set of constraints (physical, legal, moral,). A decision or optimisation criterion
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

Constraints on the resource

Admissibility constraint, admissible allocation

- Constraint : subset $C \subseteq 2^{\mathcal{O}^n}$.
- Admissible allocation : allocation $\overrightarrow{\pi} \in \bigcap_{C \in \mathscr{C}} C$.

8 / 49

Constraints on the resource

Admissibility constraint, admissible allocation

- Constraint : subset $C \subseteq 2^{\mathcal{O}^n}$.
- Admissible allocation : allocation $\overrightarrow{\pi} \in \bigcap_{C \in \mathscr{C}} C$.

Preemption constraint

An object cannot be allocated to more than one agent :

$$C_{preempt} = \{ \overrightarrow{\pi} \mid \forall i \neq j, \ \pi_i \cap \pi_j \neq \varnothing \}$$

8 / 49

Constraints on the resource

Admissibility constraint, admissible allocation

- Constraint : subset $C \subseteq 2^{\mathcal{O}^n}$.
- Admissible allocation : allocation $\overrightarrow{\pi} \in \bigcap_{C \in \mathscr{C}} C$.
- Preemption constraint.
- Exclusion constraint.
- Volume constraint.

The resource allocation problem

Inputs	 A set <i>N</i> of agents expressing preferences on the resource. The resource → a finite set <i>O</i> of indivisible objects.
	 Some constraints → a finite set C ⊂ 2^{2^{0ⁿ}}. A decision or optimisation criterion
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

10 / 49

Preference structure

Usual model in decision theory :

Preference structure

Binary reflexive relation \Re_S on the set of alternatives \mathscr{E} . $x \Re_S y \Leftrightarrow x$ is at least as good as y.

Main kinds of preference structures

- Ordinal preference structure.
 - Dichotomous preference structure.
- Cardinal preference structure.
- Semi-orders (threshold models), interval orders (variable threshold models), fuzzy preference structure,...

11 / 49

Main kinds of preference structures

• Ordinal preference structure.

- Dichotomous preference structure.
- Cardinal preference structure.
- Semi-orders (threshold models), interval orders (variable threshold models), fuzzy preference structure,...

Ordinal preference structure

A complete preorder \succeq on the alternatives (\Re_{S} + transitivity + completeness).

Main kinds of preference structures

- Ordinal preference structure.
 - Dichotomous preference structure.
- Cardinal preference structure.
- Semi-orders (threshold models), interval orders (variable threshold models), fuzzy preference structure,...

Ordinal preference structure

A complete preorder \succeq on the alternatives (\Re_{S} + transitivity + completeness).

Dichotomous preference structure

Degenerated kind of ordinal preferences, with two equivalence classes :

- a set of "good" alternatives,
- a set of "bad" alternatives.

11 / 49

Main kinds of preference structures

- Ordinal preference structure.
 - Dichotomous preference structure.
- Cardinal preference structure.
- Semi-orders (threshold models), interval orders (variable threshold models), fuzzy preference structure,...

Cardinal preference structure

Refinement of the ordinal model by a **utility function** $u : \mathscr{E} \to \mathscr{V}$. \mathscr{V} totally ordered valuation space (*e.g.* \mathbb{R} , \mathbb{N}).

Main kinds of preference structures

- Ordinal preference structure.
 - Dichotomous preference structure.
- Cardinal preference structure.
- Semi-orders (threshold models), interval orders (variable threshold models), fuzzy preference structure,...

Target space of the preferences

On which set of alternatives do the agents express their preferences ?

Assumption (non exogenous preferences) : Each agent can only express preferences on the set of possible allocations (in particular, s/he cannot take into account what the others receive).

set of alternatives = set of possible shares. For an agent *i*, $2^{\mathcal{O}}$.

The resource allocation problem

Inputs	 A set <i>N</i> of agents expressing preferences on the resource using preorders <i>≥_i</i> or utility functions <i>u_i</i>. The resource → a finite set <i>Ø</i> of indivisible objects.
	 Some constraints → a finite set C ⊂ 2^{2^{Cⁿ}}. A decision or optimisation criterion
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

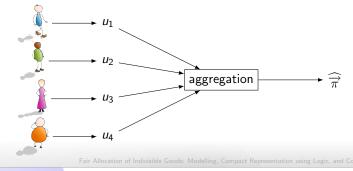
Preference aggregation...

The problem : How to distribute the resource among the agents, in a way such that it takes into account in an equitable way their antagonistic preferences ?

Preference aggregation...

The problem : How to distribute the resource among the agents, in a way such that it takes into account in an equitable way their antagonistic preferences ?

The theory of **cardinal welfarism** handles this collective decision making problem by attaching to each feasible alternative the vector of individual utilities (u_1, \ldots, u_n) .



The cardinal welfarism

The theory of **cardinal welfarism** handles this collective decision making problem by attaching to each feasible alternative the vector of individual utilities (u_1, \ldots, u_n) .

Social Welfare Ordering

A social welfare ordering is a preorder \leq on \mathcal{V}^n .

A social welfare ordering reflects the **collective preference ordering** regarding the set of possible allocations.

Collective utility function

A collective utility function is a function from \mathscr{V}^n to \mathscr{V} .

A collective utility function represents a particular social welfare ordering.

Fairness?

Fairness [Young, 1994]

"[...] appropriate to the need, status and contribution of [the society's] various members."

Four principles of distributive justice from Aristotle (*Nicomachean Ethics, Book V*) – see [Moulin, 2003] :

- compensation ;
- merits;
- exogenous rights;
- fitness.



Young, H. P. (1994). Equity in Theory and Practice. Princeton University Press.

17 / 49

Basic properties of Social Welfare Orderings

Unanimity

A utility vector \vec{u} **Pareto-dominates** another utility vector \vec{v} iff for all $i, u_i \ge v_i$ and there is an i s.t. $u_i > v_i$. A non Pareto-dominated vector is said **Pareto-efficient**. A Social Welfare Ordering \preceq satisfies **unanimity** iff :

 \overrightarrow{u} Pareto-dominates $\overrightarrow{v} \Rightarrow \overrightarrow{u} \succ \overrightarrow{v}$.

Anonymity

$$(u_1,\ldots,u_n)\sim (u_{\sigma(1)},\ldots,u_{\sigma(n)}),$$

for all permutation σ of $\llbracket 1, n \rrbracket$.

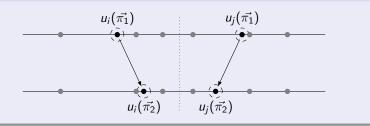
Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante).
 - Pareto-compatible.
 - Fair share guaranteed.
 - Reduction of inequalities.
- Properties of allocations :
 - Pareto-efficiency.
 - Fair share test.
 - Inequality measurement. Atkinson and Gini indices, Lorenz curve...
 - Envy-freeness test.

Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante).
 - Pareto-compatible.
 - Fair share guaranteed.
 - Reduction of inequalities.
- Properties of allocations :
 - Pareto-efficiency.
 - Fair share test.
 - Inequality measurement. Atkinson and Gini indices, Lorenz curve...
 - Envy-freeness test.

Reduction of inequalities (Pigou-Dalton principle)



Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante).
 - Pareto-compatible.
 - Fair share guaranteed.
 - Reduction of inequalities.
- Properties of allocations :
 - Pareto-efficiency.
 - Fair share test.
 - Inequality measurement. Atkinson and Gini indices, Lorenz curve...
 - Envy-freeness test.

Envy-freeness

```
\overrightarrow{\pi} is envy-free iff for each i \neq j, \pi_i \succ_i \pi_j.
```

Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante). ~> Exogenous rights
 - Pareto-compatible.
 - Fair share guaranteed.
 - Reduction of inequalities.
- Properties of allocations :
 - Pareto-efficiency.
 - Fair share test.
 - Inequality measurement. Atkinson and Gini indices, Lorenz curve...
 - Envy-freeness test.

Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante). ~> Exogenous rights
 - Pareto-compatible. ~> Fitness
 - Fair share guaranteed.
 - Reduction of inequalities.
- Properties of allocations :
 - Pareto-efficiency. ~> Fitness
 - Fair share test.
 - Inequality measurement. Atkinson and Gini indices, Lorenz curve...
 - Envy-freeness test.

Fairness...

- Properties of Social Welfare Orderings :
 - Anonymity (property of fairness ex-ante). ~> Exogenous rights
 - Pareto-compatible. ~→ Fitness
 - Fair share guaranteed. ~> Compensation
 - $\bullet~$ Reduction of inequalities. $\rightsquigarrow~$ Compensation
- Properties of allocations :
 - Pareto-efficiency. ~> Fitness
 - $\bullet~$ Fair share test. $\rightsquigarrow~$ Compensation
 - \bullet Inequality measurement. Atkinson and Gini indices, Lorenz curve. . . \rightsquigarrow Compensation
 - Envy-freeness test.

Usual Social Welfare Orderings

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Usual Social Welfare Orderings

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Classical utilitarianism [Harsanyi]

 $\overrightarrow{u} \preceq \overrightarrow{v} \Leftrightarrow \sum_{i=1}^n u_i \leq \sum_{i=1}^n v_i.$

Features

Conveys the sum-fitness principle (resource goes to who makes the best use of it). Indifferent to inequalities (Pigou-Dalton) \rightsquigarrow can lead to huge inequalities between the agents.

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Egalitarianism [Rawls]

 $\overrightarrow{u} \preceq \overrightarrow{v} \Leftrightarrow \min_{i=1}^n u_i \leq \min_{i=1}^n v_i.$

Features

Conveys the compensation principle : the least well-off must be made as well-off as possible (justice according to needs) \rightsquigarrow tends to equalize the utility profile.

Usual Social Welfare Orderings

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Egalitarianism [Rawls]

 $\overrightarrow{u} \preceq \overrightarrow{v} \Leftrightarrow \min_{i=1}^n u_i \leq \min_{i=1}^n v_i.$

Features

Conveys the compensation principle : the least well-off must be made as well-off as possible (justice according to needs) \rightsquigarrow tends to equalize the utility profile.

However, it can lead to non Pareto-efficient decisions (drowning effect).

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Egalitarianism [Rawls]

 $\overrightarrow{u} \preceq \overrightarrow{v} \Leftrightarrow \min_{i=1}^n u_i \leq \min_{i=1}^n v_i.$

Egalitarian SWO and Pareto-efficiency

 $\langle 1,1,1,1\rangle\sim\langle 1000,1,1000,1000\rangle$, whereas $\langle 1,1,1,1\rangle$ and $\langle 1000,1,1000,1000\rangle$ are very different !

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Leximin egalitarianism [Sen, 1970; Kolm, 1972]

Let \overrightarrow{x} be a vector. We write $\overrightarrow{x^{\uparrow}}$ the sorted version of \overrightarrow{x} . $\overrightarrow{u} \succ_{leximin} \overrightarrow{v} \Leftrightarrow \exists k$ such that $\forall i \leq k, \ u_i^{\uparrow} = v_i^{\uparrow}$ and $u_{k+1}^{\uparrow} > v_{k+1}^{\uparrow}$. This is a lexicographical comparison over sorted vectors.

Perform a leximin comparison...

Two vectors to compare : $\overrightarrow{u} = \langle 4, 10, 3, 5 \rangle$ and $\overrightarrow{v} = \langle 4, 3, 6, 6 \rangle$.

- We sort the two vectors : $\begin{cases} \overrightarrow{u}^{\uparrow} = \langle 3, 4, 5, 10 \rangle \\ \overrightarrow{v}^{\uparrow} = \langle 3, 4, 6, 6 \rangle \end{cases}$
- We lexicographically sort the ordered vectors : $\overrightarrow{u}^{\uparrow} \prec_{\textit{lexico}} \overrightarrow{v}^{\uparrow}$

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Leximin egalitarianism [Sen, 1970; Kolm, 1972]

Let \overrightarrow{x} be a vector. We write $\overrightarrow{x^{\uparrow}}$ the sorted version of \overrightarrow{x} . $\overrightarrow{u} \succ_{leximin} \overrightarrow{v} \Leftrightarrow \exists k$ such that $\forall i \leq k, \ u_i^{\uparrow} = v_i^{\uparrow}$ and $u_{k+1}^{\uparrow} > v_{k+1}^{\uparrow}$. This is a lexicographical comparison over sorted vectors.

Features

This SWO both refines the egalitarian SWO and the Pareto relation \rightsquigarrow it inherits of the fairness features of egalitarism, while overcoming drowning effect.

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (×), families OWA and sum of powers,...

Leximin egalitarianism [Sen, 1970; Kolm, 1972]

Let \overrightarrow{x} be a vector. We write $\overrightarrow{x^{\uparrow}}$ the sorted version of \overrightarrow{x} . $\overrightarrow{u} \succ_{leximin} \overrightarrow{v} \Leftrightarrow \exists k$ such that $\forall i \leq k, \ u_i^{\uparrow} = v_i^{\uparrow}$ and $u_{k+1}^{\uparrow} > v_{k+1}^{\uparrow}$. This is a lexicographical comparison over sorted vectors.

Leximin SWO leximin and Pareto-efficiency

 $\langle 1,1,1,1\rangle \prec \langle 1000,1,1000,1000\rangle$ (the second value of the two vectors is discriminating).

- Classical utilitarian order.
- Egalitarian order.
- Leximin egalitarian order.
- Compromises between classical utilitarianism and egalitarianism : Nash (\times), families OWA and sum of powers,...

(Ex-post) Fairness and efficiency in resource allocation

Two different points of view :

- Reduction of inequalities :
 - Aggregation of utilities using a SWO or CUF compatible with the Pigou-Dalton principle (and with the Pareto relation).
 - Example : leximin.
 - Needs the interpersonnal comparison of utilities.

• Envy-freeness :

- One looks for an envy-free (and Pareto-efficient) allocation.
- Only based on the agents' personnal point of view.
- Purely ordinal property.
- However, not always relevant (for ethical or technical reasons).

(Ex-post) Fairness and efficiency in resource allocation

Two different points of view :

- Reduction of inequalities :
 - Aggregation of utilities using a SWO or CUF compatible with the Pigou-Dalton principle (and with the Pareto relation).
 - Example : leximin.
 - Needs the interpersonnal comparison of utilities.

• Envy-freeness :

- One looks for an envy-free (and Pareto-efficient) allocation.
- Only based on the agents' personnal point of view.
- Purely ordinal property.
- However, not always relevant (for ethical or technical reasons).

The resource allocation problem

Inputs	 A set N of agents expressing preferences on the resource. The resource → a finite set O of indivisible objects. Some constraints → a finite set C ⊂ 2^{2^{On}}.
	 Some constraints → a finite set % ⊂ 2². A criterion → maximization of a SWO or of a CUF, or efficiency
	and envy-freeness.
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

Some other issues

- Unequal exogenous rights :
 - One weight (hierarchy, age, ...) per agent.
 - Duplication of agents principle.
- Repeated resource allocation :
 - Possibility of compensation over time.
 - Using exogenous rights to bias future resource allocations?
- Partial knowledge.
 - The resource allocator has a partial knowledge of the agents' preferences.
 - The agents have partial knowledge of the other agents, and of their preferences.

Outline

1 The elements of the fair resource allocation problem

- The resource
- Admissibility constraints
- The agents' preferences
- Welfarism

2 Compact representation and complexity

- About compact representation...
- Collective utility maximization problem: representation and complexity
- Efficiency and envy-freeness: representation and complexity

A representation language

Inputs	• A set \mathcal{N} of agents expressing preferences on the resource.
	• The resource \sim a finite set \mathscr{O} of indivisible objects.
	• Some constraints \rightsquigarrow a finite set $\mathscr{C} \subset 2^{2^{\mathscr{O}^n}}$.
	\bullet A criterion \rightsquigarrow maximization of a SWO or of a CUF, or efficiency
	and envy-freeness.
	• Possibly unequal exogenous rights \overrightarrow{e} .
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

No idea on how the instances are **formally represented**, and how they should be implemented.

These precisions are crucial, particularly for the representation of **constraints** and **preferences**.

A representation language

Inputs	• A set \mathcal{N} of agents expressing preferences on the resource.
	• The resource \rightsquigarrow a finite set \mathscr{O} of indivisible objects.
	• Some constraints \rightsquigarrow a finite set $\mathscr{C} \subset 2^{2^{\mathscr{O}^n}}$.
	\bullet A criterion \rightsquigarrow maximization of a SWO or of a CUF, or efficiency
	and envy-freeness.
	• Possibly unequal exogenous rights \overrightarrow{e} .
Sortie	• The allocation of a part of or the whole resource to each agent / no violated constraint / criterion optimized or verified.

No idea on how the instances are **formally represented**, and how they should be implemented.

These precisions are crucial, particularly for the representation of **constraints** and **preferences**.

Compact preference representation

Example

Resource allocation problem with 2 objects o_1 and o_2 . Expression of the utility function : $u(\emptyset) = 0, u(o_1) = 5, u(o_2) = 7, u(\{o_1, o_2\}) = 3.$

Compact preference representation

Example

Resource allocation problem with 4 objects o_1 , o_2 , o_3 and o_4 . Expression of the utility function : $u(\emptyset) = 0$, $u(o_1) = 5$, $u(o_2) = 7$, $u(o_3) = 2$, $u(o_4) = 8$, $u(\{o_1, o_2\}) = 3$, $u(\{o_1, o_3\}) = 5$, $u(\{o_1, o_4\}) = 3$, $u(\{o_2, o_3\}) = 0$, $u(\{o_2, o_4\}) = 6$, $u(\{o_3, o_4\}) = 2$, $u(\{o_1, o_2, o_3\}) = 8$, $u(\{o_1, o_2, o_4\}) = 9$, $u(\{o_1, o_3, o_4\}) = 10$, $u(\{o_2, o_3, o_4\}) = 3$, $u(\{o_1, o_2, o_3, o_4\}) = 10$.

Compact preference representation

Example

Resource allocation problem with 20 objects o_1, \ldots, o_{20} Expression of the utility function :

 $\begin{array}{l} u(\varnothing) = 0, \ u(o_1) = 5, \ u(o_2) = 7, \ u(o_3) = 2, \ u(o_4) = 8, \ u(o_5) = 5, \ u(o_6) = 0, \ u(o_7) = 1, \\ u(o_8) = 15, \ u(o_9) = 4, \ u(o_{10}) = 6, \ u(o_{11}) = 6, \ u(o_{12}) = 8, \ u(o_{13}) = 5, \ u(o_{14}) = 7, \\ u(o_{15}) = 2, \ u(o_{16}) = 8, \ u(o_{17}) = 7, \ u(o_{18}) = 2, \ u(o_{19}) = 8, \ u(o_{20}) = 7, \ u(\{o_1, o_2\}) = 15, \\ u(\{o_1, o_3\}) = 12, \ u(\{o_1, o_4\}) = 5, \ u(\{o_1, o_5\}) = 1, \ u(\{o_1, o_6\}) = 4, \ u(\{o_1, o_7\}) = 2, \\ u(\{o_1, o_8\}) = 8, \ u(\{o_1, o_9\}) = 10, \ u(\{o_1, o_{15}\}) = 3, \ u(\{o_1, o_{16}\}) = 15, \ u(\{o_1, o_{17}\}) = 1, \\ u(\{o_1, o_{18}\}) = 3, \ u(\{o_1, o_{19}\}) = 11, \ u(\{o_2, o_8\}) = 3, \ u(\{o_2, o_4\}) = 5, \ u(\{o_2, o_6\}) = 1, \\ u(\{o_2, o_6\}) = 4, \ u(\{o_2, o_{17}\}) = 12, \ u(\{o_2, o_{13}\}) = 5, \ u(\{o_2, o_{15}\}) = 3, \\ u(\{o_2, o_{16}\}) = 15, \ u(\{o_2, o_{17}\}) = 1, \ u(\{o_2, o_{18}\}) = 3, \ u(\{o_2, o_{19}\}) = 11, \ u(\{o_3, o_{18}\}) = 3, \\ u(\{o_3, o_{18}\}) = 1, \ u(\{o_3, o_{18}\}) = 1, \ u(\{o_3, o_{18}\}) = 1, \\ u(\{o_3, o_{18}\}) = 1, \ u(\{o_3, o_{18}\}) = 1, \ u(\{o_3, o_{18}\}) = 1, \\ u(\{o_3, o_{18}\}) = 1, \ u(\{o_3, o_{1$

Compact preference representation

Example

Resource allocation problem with 20 objects o_1, \ldots, o_{20} Expression of the utility function :

$$\begin{split} & u(\emptyset) = 0, \ u(o_1) = 5, \ u(o_2) = 7, \ u(o_3) = 2, \ u(o_4) = 8, \ u(o_5) = 5, \ u(o_6) = 0, \ u(o_7) = 1, \\ & u(o_8) = 15, \ u(o_9) = 4, \ u(o_{10}) = 6, \ u(o_{11}) = 6, \ u(o_{12}) = 8, \ u(o_{13}) = 5, \ u(o_{14}) = 7, \\ & u(o_{15}) = 2, \ u(o_{16}) = 8, \ u(o_{17}) = 7, \ u(o_{18}) = 2, \ u(o_{19}) = 8, \ u(o_{20}) = 7, \ u(\{o_1, o_2\}) = 15, \\ & u(\{o_1, o_3\}) = 12, \ u(\{o_1, o_4\}) = 5, \ u(\{o_1, o_5\}) = 1, \ u(\{o_1, o_6\}) = 4, \ u(\{o_1, o_7\}) = 2, \\ & u\{o_1, o_8\} = 8, \ u(\{o_1, o_4\}) = 5, \ u(\{o_1, o_{16}\}) = 3, \ u(\{o_1, o_{16}\}) = 15, \ u(\{o_1, o_{17}\}) = 1, \\ & u(\{o_1, o_{18}\}) = 3, \ u(\{o_1, o_{19}\}) = 11, \ u(\{o_2, o_8\}) = 8, \ u(\{o_2, o_4\}) = 5, \ u(\{o_2, o_5\}) = 1, \\ & u(\{o_2, o_6\}) = 4, \ u(\{o_2, o_{17}\}) = 12, \ u(\{o_2, o_{13}\}) = 5, \ u(\{o_2, o_{14}\}) = 13, \ u(\{o_2, o_{14}\}) = 13, \ u(\{o_3, o_4\}) = 3, \\ & u(\{o_3, o_6\}) = 1, \ u(\{o_3, o_6\}) = 4, \ u(\{o_3, o_7\}) = 2, \ u(\{o_3, o_8\}) = 3, \ u(\{o_3, o_9\}) = 10, \\ & u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 10, \ u(\{o_3, o_9\}) = 10, \\ & u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 10, \ u(\{o_3, o_9\}) = 10, \\ & u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 1, \ u(\{o_3, o_9\}) = 10, \$$

1048576 values \rightsquigarrow the expression needs more than 12 days (supposing the agent expresses 1 value per second).

Compact preference representation

Three possible answers to combinatorial explosion :

- Ignore it and suppose that the number of objects is low [Herreiner and Puppe, 2002].
- Add some restrictive assumptions on the preferences (for example : additivity) that make the expression possible [Brams et al., 2003] and [Demko and Hill, 1998].
- Use a compact representation language.

P

Brams, S. J., Edelman, P. H., and Fishburn, P. C. (2003). Fair division of indivisible items. *Theory and Decision*, 55(2) :147–180.

Demko, S. and Hill, T. P. (1998). Equitable distribution of indivisible items. *Mathematical Social Sciences*, 16:145–158.

7

Herreiner, D. K. and Puppe, C. (2002). A simple procedure for finding equitable allocations of indivisible goods. *Social Choice and Welfare*, 19 :415–430.

Compact preference representation

Three possible answers to combinatorial explosion :

- Ignore it and suppose that the number of objects is low [Herreiner and Puppe, 2002].
- Add some restrictive assumptions on the preferences (for example : additivity) that make the expression possible [Brams et al., 2003] and [Demko and Hill, 1998].
 - Use a compact representation language.

Brams, S. J., Edelman, P. H., and Fishburn, P. C. (2003). Fair division of indivisible items. *Theory and Decision*, 55(2):147–180.

Demko, S. and Hill, T. P. (1998). Equitable distribution of indivisible items. *Mathematical Social Sciences*, 16:145–158.

7

Herreiner, D. K. and Puppe, C. (2002). A simple procedure for finding equitable allocations of indivisible goods. *Social Choice and Welfare*, 19 :415–430.

Compact preference representation

Three possible answers to combinatorial explosion :

- Ignore it and suppose that the number of objects is low [Herreiner and Puppe, 2002].
- Add some restrictive assumptions on the preferences (for example : additivity) that make the expression possible [Brams et al., 2003] and [Demko and Hill, 1998].
- **Over a compact representation language**.

Brams, S. J., Edelman, P. H., and Fishburn, P. C. (2003). Fair division of indivisible items. *Theory and Decision*, 55(2) :147–180.

Demko, S. and Hill, T. P. (1998). Equitable distribution of indivisible items. *Mathematical Social Sciences*, 16 :145–158.

7

Herreiner, D. K. and Puppe, C. (2002). A simple procedure for finding equitable allocations of indivisible goods. *Social Choice and Welfare*, 19 :415–430.

Compact preference representation languages

- Dichotomous preferences :
 - propositional logics.
- Ordinal preferences :
 - prioritized goals (best-out, discrimin, leximin...),
 - CP-nets, TCP-nets.
- Cardinal Preferences :
 - k-additive languages, GAI-nets,
 - weighted-goals based languages,
 - bidding languages for combinatorial auctions (OR, XOR, ...),
 - UCP-nets,
 - valued CSP.

Compact preference representation languages

- Dichotomous preferences :
 - propositional logics.
- Ordinal preferences :
 - prioritized goals (best-out, discrimin, leximin...),
 - CP-nets, TCP-nets.
- Cardinal Preferences :
 - k-additive languages, GAI-nets,
 - weighted-goals based languages,
 - bidding languages for combinatorial auctions (OR, XOR, ...),
 - UCP-nets,
 - valued CSP.

Resource allocation and compact representation

We will introduce two compact representation languages, based on **propositional logic**, for the two following problems :

- Maximizing collective utility.
- Existence of a Pareto-efficient and envy-free allocation.

Agents, objects and allocation

Allocation of indivisible goods among agents

- Set of agents $\mathcal{N} = \{1, \ldots, n\}$.
- Set of items \mathscr{O} .
- Allocation $\overrightarrow{\pi} = \langle \pi_1, \dots, \pi_n \rangle$ ($\pi_i \subseteq \mathcal{O}$ is agent *i*'s share).

Constraints

A propositional language $L_{\mathcal{O}}^{alloc}$:

- a set of propositional symbols $\{alloc(o, i) \mid o \in \mathcal{O}, i \in \mathcal{N}\}.$
- the usual connectives \neg,\wedge,\vee

Constraint

A constraint is a formula of $L_{\mathscr{O}}^{alloc}$.

Example

The preemption constraint can be expressed by the set of formulae :

 $\{\neg(alloc(o,i) \land alloc(o,j)) \mid i,j \in \mathcal{N}, i \neq j\}.$

A language based on weighted logic

Preference representation :

- A propositional language L_O...
 - $\bullet\,$ a set of propositional symbols $\mathscr{O},$
 - the usual connectives \neg, \wedge, \vee
- ... and some weights $w \in \mathscr{V}$.

A language based on weighted logic

Preference representation :

- A propositional language L_O...
 - $\bullet\,$ a set of propositional symbols $\mathscr{O},$
 - the usual connectives \neg, \wedge, \vee
- ... and some weights $w \in \mathscr{V}$.

Example

• Agent 1's requests :

Individual utility

Expresses the satisfaction of an agent regarding an allocation. Depends on :

- her share (assumption of non exogenity),
- her weighted requests,

and is obtained by **aggregating** the weights of the satisfied formulas, using an operator \oplus .

Individual utility

Given an agent *i*, her requests Δ_i , an allocation $\overrightarrow{\pi}$, her individual utility is :

$$u_i(\pi_i) = \bigoplus \{ w \mid \langle \varphi, w \rangle \in \Delta_i \text{ et } x_i \vDash \varphi \}.$$

Two reasonable choices for \oplus : + or max.

Modelling

Compact Representation

Conclusion

Individual utility

Example

• Agent 1's requests :

Computation of individual utility ($\oplus = +$) :

Modelling

Compact Representation

Conclusion

Individual utility

Example

• Agent 1's requests :

•
$$\left\langle \bigtriangleup \land \left((\blacksquare \land \heartsuit) \lor \blacksquare \right), 110 \right\rangle$$
,
• $\left\langle \boxdot , -10 \right\rangle$,
• $\left\langle \heartsuit \land \diamondsuit , 50 \right\rangle$.

Computation of individual utility ($\oplus = +$) :

$$\pi_1 = \{ \textcircled{Q}, \blacksquare, \blacksquare, \blacksquare, \And \} \Rightarrow u_1(\pi_1) = \underbrace{ \left\{ \textcircled{Q}, \blacksquare \right\}}_{110}$$

Modelling

Compact Representation

Conclusion

Individual utility

Example

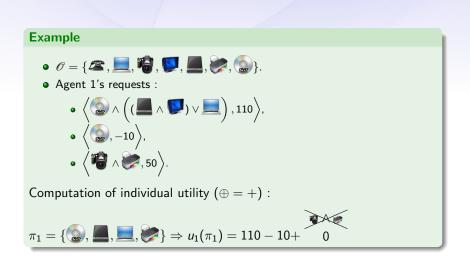
• Agent 1's requests :

•
$$\left\langle \bigtriangleup \land \left((\blacksquare \land \heartsuit) \lor \blacksquare \right), 110 \right\rangle$$
.
• $\left\langle \bigtriangleup , -10 \right\rangle$.
• $\left\langle \bigtriangledown \land \diamondsuit , 50 \right\rangle$.

Computation of individual utility ($\oplus = +$) :

$$\pi_1 = \{ \bigcirc, \blacksquare, \blacksquare, \boxtimes, \bigotimes \} \Rightarrow u_1(\pi_1) = 110 - 10$$

Individual utility



Modelling

Compact Representation

Conclusion

Individual utility

Example

• Agent 1's requests :

Computation of individual utility ($\oplus = +$) :

$\pi_1 = \{ \bigcirc, \blacksquare, \blacksquare, \bigtriangledown, \diamondsuit \} \Rightarrow u_1(\pi_1) = 110 - 10 + 0 = 100$

Collective utility

Expressed as an aggregation of individual utilities.

Collective utility

Given : an allocation $\overrightarrow{\pi}$, a set of agents $\mathscr N$ and their individual utilities,

$$uc(\overrightarrow{\pi}) = g(u_1(\pi_1),\ldots,u_n(\pi_n)),$$

with g a commutative and non-decreasing function from \mathscr{V}^n to \mathscr{V} .

Two levels of aggregation

$$\begin{array}{cccc} w_1^1, \dots, w_{\rho_1}^1 & \stackrel{\oplus}{\mapsto} & u_1 \\ & & \vdots \\ w_1^n, \dots, w_{\rho_n}^n & \stackrel{\oplus}{\mapsto} & u_n \end{array} \right\} \stackrel{g}{\mapsto} uc.$$

Fair Allocation of Indivisible Goods: Modelling, Compact Representation using Logic, and Complexity

33 / 49

33 / 49

Collective utility

Expressed as an aggregation of individual utilities.

Collective utility

Given : an allocation $\overrightarrow{\pi}$, a set of agents $\mathscr N$ and their individual utilities,

$$uc(\overrightarrow{\pi}) = g(u_1(\pi_1),\ldots,u_n(\pi_n)),$$

with g a commutative and non-decreasing function from \mathscr{V}^n to \mathscr{V} .

Two levels of aggregation :

$$\begin{array}{cccc} w_1^1, \dots, w_{\rho_1}^1 & \stackrel{\oplus}{\mapsto} & u_1 \\ & \vdots & \\ w_1^n, \dots, w_{\rho_n}^n & \stackrel{\oplus}{\mapsto} & u_n \end{array} \right\} \stackrel{g}{\mapsto} uc.$$

The resource allocation problem

To sum-up :

Instance of the resource allocation problem

- - A finite set \mathscr{O} of indivisible items.
 - A finitie set $\mathscr C$ of constraints expressed in a propositional language $L^{alloc}_{\mathscr C}$.
 - A pair of aggregation operators (\oplus, g) .

Output • An allocation $\overrightarrow{\pi} \in 2^{\mathscr{O}^n}$ such that $\{alloc(o, i) \mid o \in \pi_i\} \vDash \bigwedge_{C \in \mathscr{C}} C$ and that maximizes the collective utility function defined as :

$$uc(\overrightarrow{\pi}) = g(u_1, \ldots, u_n)$$
, with

$$u_i = \bigoplus \{ w \mid \langle \varphi, w \rangle \in \Delta_i \text{ et } x_i \vDash \varphi \}.$$

The collective utility maximization problem

What is the complexity of the problem of maximizing collective utility?

Problem [MAX-CUF]

Given an instance of the resource allocation problem, and an integer K ($\mathscr{V} = \mathbb{N}$), does an admissible allocation $\overrightarrow{\pi}$ exists, such that $uc(\overrightarrow{\pi}) \ge K$?

This problem is **NP-complete**.

Does it remain **NP**-complete in the following cases :

- restrictions on the operators ($\oplus \in \{+, \max\}, g \in \{+, \min, \text{leximin}\}$),
- restrictions on the constraints (preemption, volume, exclusion),
- restriction on the preferences (atomic)?

The collective utility maximization problem

What is the complexity of the problem of maximizing collective utility?

Problem [MAX-CUF]

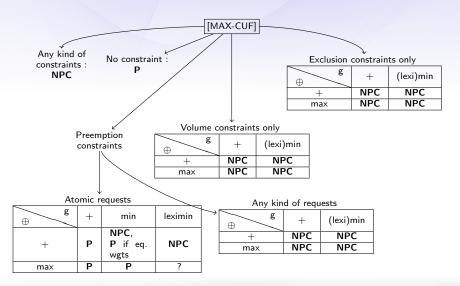
Given an instance of the resource allocation problem, and an integer K ($\mathscr{V} = \mathbb{N}$), does an admissible allocation $\overrightarrow{\pi}$ exists, such that $uc(\overrightarrow{\pi}) \ge K$?

This problem is **NP-complete**.

Does it remain NP-complete in the following cases :

- restrictions on the operators ($\oplus \in \{+, \max\}, g \in \{+, \min, \text{leximin}\}$),
- restrictions on the constraints (preemption, volume, exclusion),
- restriction on the preferences (atomic)?

The complexity results



Fair Allocation of Indivisible Goods: Modelling, Compact Representation using Logic, and Complexity

36 / 49

Another way to consider the notion of equity : envy-freeness.

Envy-freeness alone is not enough : we need an **efficiency** criterion (**Pareto-efficiency**, completeness, CUF maximization, ...).

But... There does not always exist an envy-free and efficient allocation does not always exist, and it could be **complex** to determine if there is one.

How complex it is to determine if there is an efficient and envy-free allocation, when the agents' preferences are expressed compactly, with preemption constraint only?

Another way to consider the notion of equity : envy-freeness.

Envy-freeness alone is not enough : we need an **efficiency** criterion (**Pareto-efficiency**, completeness, CUF maximization, ...).

But... There does not always exist an envy-free and efficient allocation does not always exist, and it could be **complex** to determine if there is one.

How complex it is to determine if there is an efficient and envy-free allocation, when the agents' preferences are expressed compactly, with preemption constraint only?

Another way to consider the notion of equity : envy-freeness.

Envy-freeness alone is not enough : we need an **efficiency** criterion (**Pareto-efficiency**, completeness, CUF maximization, ...).

But... There does not always exist an envy-free and efficient allocation does not always exist, and it could be **complex** to determine if there is one.

How complex it is to determine if there is an efficient and envy-free allocation, when the agents' preferences are expressed compactly, with preemption constraint only?

Another way to consider the notion of equity : envy-freeness.

Envy-freeness alone is not enough : we need an **efficiency** criterion (**Pareto-efficiency**, completeness, CUF maximization, ...).

But... There does not always exist an envy-free and efficient allocation does not always exist, and it could be **complex** to determine if there is one.

How complex it is to determine if there is an efficient and envy-free allocation, when the agents' preferences are expressed compactly, with preemption constraint only?

Of dichotomous preferences...

We will study the particular case where preferences are dichotomous.

Dichotomous preference relation

 \succeq is dichotomous \Leftrightarrow there exists a set of "good" bundles *Good* such that $\pi \succeq \pi' \Leftrightarrow \pi \in Good$ ou $\pi' \notin Good$.

Example :

$$\mathscr{O} = \{o_1, o_2, o_3\}$$

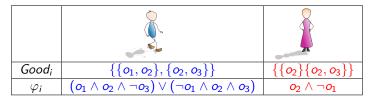
$$\Rightarrow 2^{\mathscr{O}} = \{ \varnothing, \{o_1\}, \{o_2\}, \{o_3\}, \{o_1, o_2\}, \{o_1, o_3\}, \{o_2, o_3\}, \{o_1, o_2, o_3\} \}$$

$$\frac{Good \longrightarrow \{\{o_1, o_2\}, \{o_2, o_3\}\}}{\overline{Good} \longrightarrow \{\varnothing, \{o_1\}, \{o_2\}, \{o_3\}, \{o_1, o_3\}, \{o_1, o_2, o_3\}\}}$$

Once again, propositional logic...

A dichotomous preference relation is represented by its set *Good*. A direct way to represent this set is to use propositional logic.

Example :



Preemption, envy-freeness and Pareto-efficiency

• The preemption constraint : a logical formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Gamma_{\mathcal{P}}$.

- The envy-freeness property can be expressed as a formula of $L_{O}^{alloc} \rightsquigarrow \Lambda_{P}$.
- The Pareto-efficiency property is equivalent to :
 - satisfying a maximal number (in the inclusion sense) of agents,
 - the consistency of $F(\vec{\pi})$ with a maximal-consistent subset of formulae from $\{\varphi_1^*, \ldots, \varphi_n^*\}$.

Existence of a Pareto-efficient and envy-free allocation

 $\exists \mathscr{S} \text{ maximal } \Gamma_{\mathcal{P}}\text{-consistent subset of } \{\varphi_1^*, \dots, \varphi_n^*\} \text{ such that } \\ \bigwedge_{\varphi \in \mathscr{S}} \varphi \wedge \Gamma_{\mathcal{P}} \wedge \Lambda_{\mathcal{P}} \text{ is consistent.}$

Preemption, envy-freeness and Pareto-efficiency

- The preemption constraint : a logical formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Gamma_{\mathcal{P}}$.
- The envy-freeness property can be expressed as a formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Lambda_{\mathcal{P}}$.
- The Pareto-efficiency property is equivalent to :
 - satisfying a maximal number (in the inclusion sense) of agents,
 - the consistency of $F(\overrightarrow{\pi})$ with a maximal-consistent subset of formulae from $\{\varphi_1^*,\ldots,\varphi_n^*\}$.

Existence of a Pareto-efficient and envy-free allocation

 $\exists \mathscr{S} \text{ maximal } \Gamma_{\mathcal{P}}\text{-consistent subset of } \{\varphi_1^*, \dots, \varphi_n^*\} \text{ such that } \\ \bigwedge_{\varphi \in \mathscr{S}} \varphi \wedge \Gamma_{\mathcal{P}} \wedge \Lambda_{\mathcal{P}} \text{ is consistent.}$

Preemption, envy-freeness and Pareto-efficiency

- The preemption constraint : a logical formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Gamma_{\mathcal{P}}$.
- The envy-freeness property can be expressed as a formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Lambda_{\mathcal{P}}$.
- The Pareto-efficiency property is equivalent to :
 - satisfying a maximal number (in the inclusion sense) of agents,
 - the consistency of $F(\vec{\pi})$ with a maximal-consistent subset of formulae from $\{\varphi_1^*, \ldots, \varphi_n^*\}$.

Existence of a Pareto-efficient and envy-free allocation

 $\exists \mathscr{S} \text{ maximal } \Gamma_{\mathcal{P}}\text{-consistent subset of } \{\varphi_1^*, \dots, \varphi_n^*\} \text{ such that } \\ \bigwedge_{\varphi \in \mathscr{S}} \varphi \wedge \Gamma_{\mathcal{P}} \wedge \Lambda_{\mathcal{P}} \text{ is consistent.}$

Preemption, envy-freeness and Pareto-efficiency

- The preemption constraint : a logical formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Gamma_{\mathcal{P}}$.
- The envy-freeness property can be expressed as a formula of $L_{\mathcal{O}}^{alloc} \rightsquigarrow \Lambda_{\mathcal{P}}$.
- The Pareto-efficiency property is equivalent to :
 - satisfying a maximal number (in the inclusion sense) of agents,
 - the consistency of $F(\vec{\pi})$ with a maximal-consistent subset of formulae from $\{\varphi_1^*, \ldots, \varphi_n^*\}$.

Existence of a Pareto-efficient and envy-free allocation

 $\exists \mathscr{S} \text{ maximal } \Gamma_{\mathcal{P}}\text{-consistent subset of } \{\varphi_1^*, \dots, \varphi_n^*\} \text{ such that } \\ \bigwedge_{\varphi \in \mathscr{S}} \varphi \wedge \Gamma_{\mathcal{P}} \wedge \Lambda_{\mathcal{P}} \text{ is consistent.} \end{cases}$

A skeptical inference problem

It is actually a well-known problem in the field of non-monotonic reasoning : *skeptical inference with normal defaults without prerequisites* [Reiter, 1980].

The [EEF-EXISTENCE] problem can be reduced to :

 $\langle \Gamma_{\mathcal{P}}, \{\varphi_1^*, \ldots, \varphi_n^*\} \rangle \not \sim^{\forall} \neg \Lambda_{\mathcal{P}}$

Reiter, R. (1980). A logic for default reasoning. *Artificial Intelligence*, 13 :81–132.

The [EEF EXISTENCE] problem, dichotomous preferences

Proposition

The [EEF EXISTENCE] problem for agents having monotonic dichotomous preferences under logical form is Σ_2^p -complete ($\Sigma_2^p = \mathbf{NP}^{\mathbf{NP}}$).

This results holds even if preferences are not mononic.

• Restrictions :

- identical preferences,
- number of agents,
- the propositional language.
- Alternative efficiency criterion :
 - completeness,
 - maximal number of satisfied agents.

The [EEF EXISTENCE] problem, dichotomous preferences

Proposition

The [EEF EXISTENCE] problem for agents having monotonic dichotomous preferences under logical form is Σ_2^p -complete ($\Sigma_2^p = \mathbf{NP}^{\mathbf{NP}}$).

This results holds even if preferences are not mononic.

Restrictions :

- identical preferences,
- number of agents,
- the propositional language.

Alternative efficiency criterion :

- completeness,
- maximal number of satisfied agents.

Non dichotomous preferences?

Corollary

The [EEF EXISTENCE] problem for agents having monotonic preferences expressed in a compact language under logical form \mathcal{L} is Σ_2^p -complete.

provided that :

- $\mathcal L$ is as compact as the previous language for dichotomous preferences;
- Every pair of alternatives can be compared in polynomial time.

What about weighted logic and additive preferences?

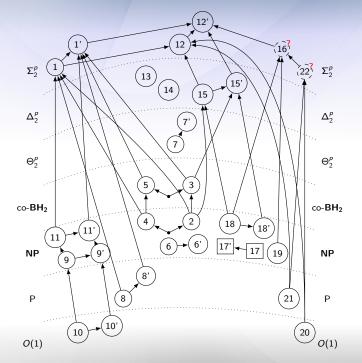
- Weighted logic : alternative efficiency based on collective utility maximization.
- Additive preferences :
 - Completeness : result already known [Lipton et al., 2004].
 - Pareto-efficiency : ???
 - identical preferences,
 - 0-1 preferences,
 - 0-1-...-k preferences (???),
 - number of objects lower than the number of agents.

Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004). On approximately fair allocations of divisible goods. In *Proceedings of the 5th ACM Conference on Electronic Commerce (EC-04)*, New York, NY. ACM.

What about weighted logic and additive preferences?

- Weighted logic : alternative efficiency based on collective utility maximization.
- Additive preferences :
 - Completeness : result already known [Lipton et al., 2004].
 - Pareto-efficiency : ???
 - identical preferences,
 - 0-1 preferences,
 - 0-1-...-k preferences (???),
 - number of objects lower than the number of agents.

Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004). On approximately fair allocations of divisible goods. In *Proceedings of the 5th ACM Conference on Electronic Commerce (EC-04)*, New York, NY. ACM.



Summary of the talk and contributions

- Modelling of resource allocation problems : A review of the basic concepts and a formalism for taking exogenous rights into account in the welfarist framework.
 - Ompact representation :
 - Problem of maximizing the collective utility : weighted logic.
 - Existence of an envy-free and Pareto-efficient allocation : logic.
- Computational complexity : [MAX-CUF] and [EEF EXISTENCE], and several of their restrictions.
- Algorithmics : Constraint programming for leximin optimization.
- Experiments :
 - Generation of realistic instances of resource allocation problems.
 - Experimental comparison of leximin optimization algorithms.

Summary of the talk and contributions

- Modelling of resource allocation problems : A review of the basic concepts and a formalism for taking exogenous rights into account in the welfarist framework.
- Ompact representation :
 - Problem of maximizing the collective utility : weighted logic.
 - Existence of an envy-free and Pareto-efficient allocation : logic.
- Computational complexity : [MAX-CUF] and [EEF EXISTENCE], and several of their restrictions.
- Algorithmics : Constraint programming for leximin optimization.
- Experiments :
 - Generation of realistic instances of resource allocation problems.
 - Experimental comparison of leximin optimization algorithms.

Summary of the talk and contributions

- Modelling of resource allocation problems : A review of the basic concepts and a formalism for taking exogenous rights into account in the welfarist framework.
- Ompact representation :
 - Problem of maximizing the collective utility : weighted logic.
 - Existence of an envy-free and Pareto-efficient allocation : logic.
- Computational complexity : [MAX-CUF] and [EEF EXISTENCE], and several of their restrictions.
- Algorithmics : Constraint programming for leximin optimization.
- Experiments :
 - Generation of realistic instances of resource allocation problems.
 - Experimental comparison of leximin optimization algorithms.

46 / 49

Summary of the talk and contributions

- Modelling of resource allocation problems : A review of the basic concepts and a formalism for taking exogenous rights into account in the welfarist framework.
- Ompact representation :
 - Problem of maximizing the collective utility : weighted logic.
 - Existence of an envy-free and Pareto-efficient allocation : logic.
- Computational complexity : [MAX-CUF] and [EEF EXISTENCE], and several of their restrictions.
- 4 Algorithmics : Constraint programming for leximin optimization.
- Experiments :
 - Generation of realistic instances of resource allocation problems.
 - Experimental comparison of leximin optimization algorithms.

Summary of the talk and contributions

- Modelling of resource allocation problems : A review of the basic concepts and a formalism for taking exogenous rights into account in the welfarist framework.
- Ompact representation :
 - Problem of maximizing the collective utility : weighted logic.
 - Existence of an envy-free and Pareto-efficient allocation : logic.
- Computational complexity : [MAX-CUF] and [EEF EXISTENCE], and several of their restrictions.
- Algorithmics : Constraint programming for leximin optimization.
- **Section** Experiments :
 - Generation of realistic instances of resource allocation problems.
 - Experimental comparison of leximin optimization algorithms.

47 / 49

Perspectives and other issues

• Resource allocation and graphical languages for preference representation (CP-nets).

- Strategies and manipulation.
- A joint study of egalitarianism and envy-freeness (a few words about this in [Brams and King, 2005]).

Brams, S. J. and King, D. L. (2005). Efficient fair division : Help the worst off or avoid envy? *Rationality and Society*, 17 :387–421.

Perspectives and other issues

- Resource allocation and graphical languages for preference representation (CP-nets).
- Strategies and manipulation.
- A joint study of egalitarianism and envy-freeness (a few words about this in [Brams and King, 2005]).

Brams, S. J. and King, D. L. (2005). Efficient fair division : Help the worst off or avoid envy? *Rationality and Society*, 17 :387–421.

Perspectives and other issues

- Resource allocation and graphical languages for preference representation (CP-nets).
- Strategies and manipulation.
- A joint study of egalitarianism and envy-freeness (a few words about this in [Brams and King, 2005]).

Brams, S. J. and King, D. L. (2005). Efficient fair division : Help the worst off or avoid envy? *Rationality and Society*, 17 :387–421.

Perspectives and other issues (2)

- Approximating fairness :
 - definition of this notion of approximation (measure of envy, approximated leximin),
 - approximation algorithms (PTAS, incomplete algorithms).
 - envy-freeness : limited knowledge of the agents EndrissAAAI07.
- Repeated allocation and temporal regulation.

48 / 49

Perspectives and other issues (2)

- Approximating fairness :
 - definition of this notion of approximation (measure of envy, approximated leximin),
 - approximation algorithms (PTAS, incomplete algorithms).
 - envy-freeness : limited knowledge of the agents EndrissAAAI07.
- Repeated allocation and temporal regulation.

Perspectives and other issues (2)

- Approximating fairness :
 - definition of this notion of approximation (measure of envy, approximated leximin),
 - approximation algorithms (PTAS, incomplete algorithms).
 - envy-freeness : limited knowledge of the agents EndrissAAAI07.
- Repeated allocation and temporal regulation.

