An Intensional Programming Approach to Multi-agent
Coordination in a Distributed Network of Agents*

Kaiyu Wan and Vasu S. Alagar

Department of Computer Science
Concordia University
Montreal, Quebec H3G 1M8, Canada
{ky_wan, al agar }@se. concordi a. ca

Abstract. We explore the suitability ofntensional Programming Paradigifior
providing a programming model for coordinated problem solving in a nagjént
systems. We extend our previous work on Lucx, an Intensional Bruging
Language extended with context as first class object, to supportinaticsh ac-
tivities in a distributed network of agents. We study coordination construutdw
can be applied to sequential programs and distributed transactionsvéV®gi
mal syntax and semantics for coordination constructs. The semantitafis-
action expressions is given on top of the existing operational semantiegin L
The extended Lucx can be used for internet-based agent applications.
Keywords: Multi-agent systems, coordinated transactions, Intensional Program-
ming Language, coordination constructs.

1 Introduction

Our goal is to provide a programming model for a network ofribated coordinating
agents in problem solving. We suggestlatensional Programming Languagerith
contextas first class objects and a minimal set of coordination coctst, to express the
coordinated communication and computing patterns in algaséd systems. We give a
formal syntax and semantics for the language and illustretgoower of the language
with a realistic example.

Intensional Programming Paradigm Intensional logic is a branch of mathematical
logic which is used to describe precisely context-depeneetities. According to Car-
nap, the real meaning of a natural language expression whabevalue depends on
the context in which it is uttered is itatension Theextensiorof that expression is its
actual truth-value in the different possible contexts ¢ténance [8]. For an instance, the
statementThe capital of China is Beijing”is intensional because its valuation depends
on the context (here is the time) in which it is uttered. Istefatement is uttered before
1949, the extensions of this statement atsgat that time, the capital was Nanjing).
However, if it is uttered after 1949, the extensions of théement ardrue In Inten-
sional Programmin(JP) paradigm, which has its foundations in Intensionalicothe

* This work is supported by grants from Natural Sciences and EngimgBesearch Council,
Canada

148

M. Baldoni, U. Endriss, A. Omicini, and P. Torroni (eds.)
DALT 2005, Third International Workshop, Utrecht, July 25th, 2005
http://www.doc.ic.ac.uk/ ue/DALT-2005/

baldoni

real meaning of an expression is a function from contextsataes, and the value of
the intension at any particular context is obtained by apglgontext operators to the
intension. Basically, intensional programming providggnsion on the representation
level, and extensions on the evaluation level. Hence, &beal programming allows
more declarative way of programming without loss of accyrac

Lucid was a dataflow language and evolved into a Multidimamesi Intensional
Programming Language [1]. The only data type in Lucidtieam Because of its
dataflow nature, Lucid provides a set of temporal operatorsteeams. Example 1
illustrates the definitions of these operatars {ndicates an undefined value).

Example 1 :

A =123 4 5
B =001 0 1
firstA =1 11 1 1
nextA =2 34 5 ...
prevA =nil12 3 4 5
AfoyB =1 00 1 0 1
AwvrB =3 5...

AasaB =3 33 ...
AuponB=1 11 3 3 5

The following program computes the streaim 1, 2, 3, 5, ...) of all Fibonacci
numbers:

result = fib

fib = 1 fby (fib + g)

g = 0fby fib

Lucid allows the notion of context only implicitly. This re&ts the ability of Lu-
cid to express many requirements and constraints thatiarggegramming a complex
software system. So we have extended Lucid by adding théip#o explicitly ma-
nipulate contexts. This is achieved by extending Lucid eovetively withcontextas a
first class object. We call the resulting langudgex (Lucid extended witlcontexs).
Lucx has provided more power of representing problems iferift application do-
mains and given more flexibility of programming. We discusgx, context calculus
which is its semantic base, and multi-agent coordinatiorsttacts introduced in Lucx
in Section 3.

Multiple-Agent Paradigm By agent we mean software agents which can be person-
alized, continuously running and semi-autonomous, driven set of beliefs, desires,
and intentions (BDI). We require a software agent to haveptbperties: (1) an agent

is a software component designed to achieve cegaals (2) an agent is either au-
tonomous or always responds to a stimulus from its envireripvehich is a collection

of agents; (3) an agent has sufficient computational paesourcesandknowledgeo
complete théasksassigned to it and deliver results within specified time lits(4) an
agent communicates with other agents in its environmeotdir messages at frts
where a port is an abstraction of an access point for a bitbread communication; (5)

an agent can dynamically change its behaviour whenevemtfitext changes.

149

Instead of describing each agent in isolation, followingW& consider agenypes
An agent type is characterised by a set of services. All agafrain agent type have the
same set of services. Agents are instances of agent typeagémt with this charac-
terisation is a black-box with interfaces to service itgwots. It behaves according to
the context and feedback from its environment. Two agenesant either directly or
through intermediaries, who are themselves agents. Aniaiateraction between two
agents is @ueryinitiated by an agent and received by the other agent at teeface
which can service the query. An interaction among severhsgs a collection of se-
quences of atomic interactions. Several methods are knoeiaracterize such behav-
ior. Our goal is to explore intensional programming for eqsing different interaction
types, not in characterizing the whole collection of intti@ns.

In order to understand interaction patterns let us considgpical business trans-
actions launched by an agent. The agent acquires data freraranore remote agents,
analyses the data and computes some result, and based amtpeted result invokes
services from other agents. The agents may be invoked aitiraurrently or in se-
quence. In the latter case, the result of an agent’s conipntatay be given as input to
the next agent in the sequence. In the former case, it iskgedbiat an agent splits a
problem into subproblems and assigns each subproblem tgeart which has the ex-
pertise to solve it. We discuss the syntax and semanticsiébr soordination constructs
in Lucx, under the assumption that an infrastructure exgstsarry out the basic tasks
expressed in the language.

A configurationis a collection of interacting agents, where each agentiissiance
of an agent type. A configuration is simple if it has only oner@g An agent interacts
with itself when it is engaged in some internal activity. Magenerally, the agents in
a configuration communicate by exchanging messages thitmdghctional communi-
cation channels. A channel is an abstract binding which vidmghemented will satisfy
the specifications of the interfaces, the two ends of themélaihus, a configuration is
a finite collection of agents and channels. The interfacesaufnfiguration are exactly
those interfaces of the agents that are not bound by chamuilsled in the config-
uration. In a distributed network of agents, each networlenis either an agent or a
configuration. Within a configuration, the pattern of congpiain is deterministic but
need not be sequential.

There are three major language components in the desigstabdied multi-agent
systems:

1. (ACL) agent communication language
2. (CCL) constraint choice language, and
3. (COL) coordination language.

These three languages have different design criteria. An/Gst supporinterop-
erability in agent community while providing the freedom for the ageritide or reveal
its internal details to other agents. A CCL must be designeslipport agent problem
solving by providing explicit representation of choicesiaoice problems. A COL
must support transaction specification and task coordinatinong the agents. The two
existing ACLs areKnowledge Query and Manipulation Langua€QML) and the
FIPA agent communication language [6]. The FIPA languagkides the basic con-
cepts of KQML, yet they have slightly different semanticgehts require a content

150

language to express information on constraints, which éapsulated as a field within
performativesof ACL. FIPA Constraint Choice Language(CCL) is one suchteon
languages [4], designed to support agent problem solvingroyiding explicit repre-
sentations of choices and choice problems.

In our previous works [2] [10], we have shown the suitabitifylLucx, anInten-
sional Programming LanguaggP), for agent communication as well for choice repre-
sentation. In this paper we extend Lucx with a small numberawistructs to express
task coordination. We are motivated by the following meoit& ucx.

1. Lucx allows the evaluation of expressioncaintextswhich are definable as first
class objects in the language. Context calculus in Lucxigesvthe basis for ex-
pressing dynamically changing situations.

2. Performatives, expressible as context expressiondyeaynamically introduced,
computed, and modified. A dialogue between agents is expless astreamof
performatives, and consequently using stream functiods asfirst, next andfby,

a new dialogue can be composed, decomposed, and analyzetdrathe existing
dialogues.

3. Lucx allows a cleaner and more declarative way of expngstfie computational
logic and task propagation of a program without loss of aacyiof interpreting the
meaning of the program;

4. Lucx deals withinfinite entitieswhich can be any simple or composite data values.

2 Basics of Agent Coordination

An agent type is determined by the roles and responsililssigned to it. They in turn
determine the services and the coordination of tasks in &-amnt system. A generic
classification of agent types, as given in [3]interface ager(tA), middle agenMA),
task agen(TA), and security ager(SA). We informally review their coordination pat-
terns below.

Interface agents assist the user in performing requests@mgile a user profile,
deduce the user’s information needs by direct communicatitd observation, trans-
late the requests of the user and select the task agent()aviedhe expertise to solve
the problems of the user, present and store the retrievedtdéte corrective actions on
behalf of the user, and adapt to the changes in the enviransoethat it can improve
its assistance to the user. In contrast, middle agents sughygoflow of information in
multi-agent Systems, assist in locating and connectingltireate information provider
with the ultimate information requester, provide basic ratdn services, coordinating
services according to given protocols, conventions, aridips. The MA type can be
specialised int@arbitrator agent match-maker agenandbroker agent They play dif-
ferent roles, yet share the basic role of MA. A task agentpétform a specific task for
which an interface agent has given authorization. It al$pshesers formulate problem-
solving plans and carry out these plans by coordinating acctanging information
with other software agents. Security agents are task aggttsemember events, draw
inferences, and plan actions to achieve security goalsy @he autonomous, evolve
through learning, and have the ability to make predictioamsell on logical inference.

151

Observe that roles and responsibilities determinectiiaboration environmendf an
agent type.

2.1 Abstract Coordination Expressions

A coordination expressiorGorde in its simplest form is a message/function call from
one agent to another agent. A geneZardeis a message/function from one configu-
ration to another configuration. We introduce an abstraghtigoordination expression
S.a(C) whereSis a configuration expressioa,s the message (function call) 8tand

C is a context expression (discussed in Section 3). The cbBtexcombined with the
local context. If the context parameter is omitted it is ipteted as the current context.
If the message is omitted, it is interpreted as a call to defaathod invocation a8
The evaluation of &ordereturns a resulfx, C'), wherex is the result andC’ is the
context in whichx is valid. In principle x may be a single item or a stream.

As an example, leB be a broker agent. The expressiBisell(dd) is a call to the
broker tosell stocks as specified in the context expressldnwhich may include the
stock symbol, the number of shares to be sold, and the cartstan the transaction
such as date and time or minimum share price. The evaluafitimeoexpression in-
volves contacting age®with sellanddd as parameters. The ag&itomputes a result
(x,dd’), and returns to the ageAtwho invoked its services, for which the expression
is A.receivéC’), where contex€’ includesx anddd'. In this exampledd’ may include
constraints on when the amountan be deposited iA's bank account.

Composition Constructs We introduce composition constructs for abstract coordi-
nation expressions and illustrate with examples. A coatitim in a multi-agent sys-
tem requires the composition of configuration expressiéasan example, consider an
agent-based system for flight ticket booking. Such a systenld function with min-
imal human intervention. An interface agent, represendiifient, asks a broker agent
to book a flight ticket whose quoted price is no more than $30@. broker agent may
simultaneously contact two task agents, each represeantiagline company, for price
quotes. The broker agent will choose the cheaper tickettlf bbthe quoted price are
less than $300 and make a commitment to the correspondik@gest, then informs
the interface agent about the flight information. If bottcps are above $300, the bro-
ker agent will convey the information to the interface ag@ihie integrated activities of
those agents to obtain the solution for the user is regarsladransaction. Typically, the
result from the interaction between two agents is used iressubsequent interaction,
and results from simultaneously initiated interactiorss @mpared to decide the next
action. To meet these requirements, we provide many coltnposbnstructs,including
sequential composition, parallel composition, and aggfieg constructs. We infor-
mally explain the sequential and parallel composition traiess below.

The expressiolE = S,.a;(C1) > (x,C') > $S.a2(Cp) is a sequentialcom-
position of the two configuration expressioBsa; (C;), andS;.a2(Cz). The expres-
sion E is evaluated by first evaluating .a; (C), and then callings, with each value
(x,C') returned bys, .a; (C,). The context€’ is substituted fo€, in the evaluation of

&.32(02).

152

The expressio;.a; (Cy) || $:.a2(Cs) is aparallel composition of the two config-
uration expressionS;.a; (C;), andS;.a2(Csz). The evaluation of the two expressions
are invoked simultaneously, and the result is the strearalogg(x, C’) returned by the
configurations ordered by their time of delivery (availail€’).

Example 2 Let A(Alice) and B(Bob) be two interface agents, and M be aiaed
agent. The mediator’s service is to mediate a dispute betwgents in the system. It
receives the information from users and delivers a solutiotiiem. In the expression

((B.notifies> my) || (A.notifies> my)) > M.receivesC’)
> (mg, C"”) > (B.receives|| A.receive$

the mediator computes a compromise (default functiop)fon each pair of values
(my, my) and delivers to Bob and Alice. Context @cludes(m;, m, and the local
context in M. Context Cis a constraint on the validity of the mediated solution m

The other constructs that we introduce Ared, Or, andXor constructs to enforce
certain order on expression evaluations. Amel (o) construct is to enforce evaluation
of more than one expressions although the order is not impbrtheOr (?) construct
is to choose one of the evaluations nondeterministicatig Xor (¢) construct defines
one of the expressions to be evaluated with priority. In totdli we introduceCommit
construct ¢om) to enable permanent state changes in the system aftemngj¢iae effect
of a transaction. The syntax and semantics of these coistiuc.ucx are given in
Section 4. We can combine tléhere construct in Lucx with the above constructs to
define parameterized expressions. Once defined, such sxpresnay be called from
another expression.

3 Intensional Programming Model for Distributed Network of
Agents

Lucx [2] is a conservative extension of Lucid [1], an Intemsl Programming Lan-
guage. We have been exploring Lucx for a wide variety of progning applications. In
[9] we have studied real-time reactive programming modelsiicx. Recently [10] we
have given constraint program models in Lucx. In this sectie review these works
for agent communication and content description.

3.1 An Overview of Intensional Programming Language : Lucx

Syntax and Semantic Rules of LucxThe syntax of Lucx [2], shown in Figure 1, is suf-
ficient for programming agent communication and contentasgntation. The syntactic
extensions to Lucid are shown in bold. The symh@ind# are context navigation and
query operators. The non-termin&8sindQ respectively refer texpressionanddefini-
tions The abstract semantics of evaluation in Luc®RisP’ - E : v, which means that in
the definition environmeriP, and in the evaluation conte®’ , expressiolE evaluates
tov. The definition environmer retains the definitions of all of the identifiers that ap-
pear in a Lucid program. Formallf is a partial functiorD : Id — IdEntry , whereld

153

is the set of all possible identifiers altEntry has five possible kinds of value such as:
Dimensions Constants Data Operators Variables and Function$8]. The evaluation
contextP’, is the result ofP { ¢, whereP is the initial evaluating context, is the de-
fined context expression, and the symiatgnotes the overriding function. A complete
operational semantics for Lucx is defined in [2].

E:=id Q ::= dimension id
| E(Ey,...,En) |id=E
| if E then E' else E” | id(idy,...,idn) = E
#
e 1QQ
|[E1: 37'“5En:E/n]
| E where Q

Fig. 1. Abstract syntax for Lucx

The implementation technique of evaluation for Lucx progsas an interpreted
mode callededuction[8]. Eduction can be described tegged-token demand-driven
dataflow in which data elements (tokens) are computed on demarvioly a dataflow
network defined in Lucid. Data elements flow in the normal florection (from pro-
ducer to consumer) ardemanddlow in the reverse order, both beitaggedwith their
current context of evaluation.

Context Calculus Informally, A context is a reference to a multidimension@aéam,
making an explicit reference to the dimensions andalys(indexes) along each dimen-
sion. The formal definition is given in [2]. The syntax for ¢extis[d; : X, ..., 0y : X,
wheredy, ..., d, are dimension names, argdis the tag for dimensiod;. Given an ex-
pressionE and a context, the Lucid expressioi @c directs the eduction engine to
evaluateE in the context. According to the semantick, @c gives the stream value at
the coordinates referenced by

In our previous papers [2, 9], we have introduced the follmniontext operators:
theoverride@ is similar to function overrideglifferences, comparison=, conjunction
M, anddisjunctionL! are similar to set operatorprojection| andhiding 1 are se-
lection operatorszonstructor|- : _] is used to construct an atomic contespstitution
/ is used to substitute values for selected tags in a contbrire| accepts a finite
number of contexts and nondeterministically returns oneri.undirected range=
anddirected range—~ produce a set of contexts. The formal definitions of these-ope
ators can be found in [10]. The precedence rules for the gboferators are given in
the right column (from the highest precedence to the lowasd)the formal syntax of
context expressions is shown in the left column of the tablev. Parentheses will be
used to override this precedence when needed. Operatarglemual precedence will
be applied from left to right. Rules for evaluating contexpeessions are given in [10].

154

Example 3 The evaluation steps of the well-formed context expressiorDdc; | ca,
where g = [x:3,y:4,2:5],c; =[y:5,andg = [x: 5,y: 6,w: 5], D = {w}, are
as follows:

[Stepl]. ¢ 1 D =[x:5,y: 6] [1 Definition]
[Step2]. g |co =corc, [| Definition]
[Step3].Suppose in Step2; is chosen,
3 TD®c=[x:3,y:4,z2:5] [@ Definition]
else ifcs is chosen,
C3 1 D®Cy=[x:5,y:5] [¢ Definition]
| syntax [precedence
C:=c |C=C

| cocccc ;f“/

| CIC |C/C '

| cocC |CocC igé

| cnc |cuc e

| c=c|c—~C T

| clp[ciD &ne2

A context which is not a micro context or a simple context ifecha non-simple
context. In general, a non-simple context is equivalentdetaf simple contexts [2]. In
several applications we deal with contexts that have thesimension sett C DIM
and the tags satisfy a constramtThe short hand notation for such a set is the syntax
BoxA | pl.

Definition 1 LetA = {d;,...,dk}, whereg € DIMi = 1,...,k,and pis a k-ary
predicate defined on the tuples of the relatidf c A faimtotag(d). The syntax

BOX[A“J] = {S|S: [dil :Xil7"’7dik:xik]}7

where the tuplgX;, ..., %), X% € faimotagdi), I = 1,...K satisfy the predicate p,
introduces a set S of contexts of degree k. For each contexEghe values in tg@)
satisfy the predicate p.

Many of the context operators introduced above can be rtlifted to sets of
contexts, in particular foBoxes. We have defined three operators exclusivelitoes.
These arel, B, andld). They have equal precedence and have semantics analogous t
relational algebra operators. In the table below a box esgioeB is formally defined,
with D denoting a dimension set.

| syntax | precedende
B:=b |B|B
| BHB|BXB ;ﬂ”
| BEB|B|D '
| B1D 3.0,H X

155

An Example of a Lucx Program Consider the problem of finding the solution in
positive integers that satisfy the following constraints:
x3+y3+z3+u3 =100
x<u
Xxt+ty=2
The Lucx program is given below:
Eval.B1,B2,B3 (x/,y’,2/,u’) =N
where
N = merge (merge(merge(x,y), z), u)
@B; X B, X Bs;
where
merge(x,y) = if (x <=y) thenx elsey;
B; =Box [X,Y,Z,U | x®+y3 + 2% +u® =100,
x€X,yEY, z€ Z,ueU]
B, =Box [X,U | x<u, x € X,u € UJ;
B =Box [X,Y,Z | x+y=2,x € X,
yEY, z € Z];
end
end

3.2 Agent Communication

Lucx can be used as &gent Communication Langua@®&CL) [2]. Due to the static na-
ture of the predefinedommunicative act€CAs) in FIPA and performatives in KQML,
it is not possible to express the dynamic aspects in ageafessand requirements.
Thus, interoperability is not fully achieved. In using Luex ACL this problem is reme-
died. The performatives are expressed as context expnsssiod context ifirst class
objectin Lucx, hence we are able to dynamically manipulate per&ivas. The name
of a performative is considered as an expression, and thefrése performative con-
stitute acontextwhich can be understood asammunication contexwith each field
except the name in the message beingiero contextThe communication context will
be evaluated by the receiver, by evaluating the expressitimacontext obtained by
combining the micro contexts. In some cases, the receivgramabine the communi-
cation context with it$ocal contexto generate a new context.

The syntax of a message in Lucx from agénis of the form(Ea, E,), whereE, is
the message name aBf is a context expression. In an implementaticorresponds
to a function. The contexX, includes all the information that ageAtwants to convey
in an interaction to another agent. A response from agémagentA will be of the form
(Es, Eg), whereEg will include the reference to the query for which this is apasse
in addition to the contexts in which the response should lerstood. A conversa-
tion between two agen® andB is of the form(apa; fs), Wherean = (Ea, Ej), and
Bs = (Es, Eg). The four dimension8(Belief), K(Know), W(Want), andl (Intention)
are predefined in the language. The tags along these dimeraie natural numbers.
The domainDg attached to dimensioB is a set of predicates, and the domains,
Dw, andD; attached to the dimensioks W, andl respectively are sets of expressions.

156

Each performative is bound to a context= [B : i1,K : io, W : i3, | : iy] over the
dimensionsB, K, W, |. The context is suggested as the precondition to act upon the
performative. If a dimension is not specifieddithen it is equivalent to a “don’t care”
condition. The semantics of a conversation is given in [2[diAloguebetween two
agentsA, andB is a stream of conversations.

The operational semantics of Lucx is the basis for queryuatan. Consider queries
that demand some form of response. The query from agéBi, E,,) to agenBiis eval-
uated as follows:

1. agenB obtains the conteXtg = E, @ Lg, whereLg is the local context foB.

2. agenB evaluate, @ ;.

3. agentB constructs the new contefy that includes the evaluated result and
information suggesting the context in which it should beipteted by agem, and

4. sends the respongkEg, Ef) to agentA.

The above semantics should be changed for evaluating gubaéedo not necessarily
demand some form of response. The query from agenay be evaluated at any local
context ofB, and the result of evaluation may trigger an appropriat®adh B. For
instance, leB is a publisher agent which receives a material for publicain the form
of a query of this type from a mobile agefst A mobile agent roams around the web,
collects information and delivers to his clients. AgBmnay decide to process and pub-
lish the information delivered b periodically or at a time that it “knows” to be most
appropriate. Thus, steps 3 and 4 in the above semanticsdsheuhodified as follows:
3'. agentB “determines” the contexgj for processing the information (evaluated in
step 2), and

4’. processes the information at the contegt
The semantics involves knowledge, belief, intention systé agentB.

Example 4 A query from agenPTAc about the Hotel information which was en-
coded as “ask-one” performative represented in Lucx as tt@ession EQE', E' =
E;: ® E;s @ E5s & E4 @ Es.
E@E1 @ E2 ® E3 @ E4 @ Eb|
where
E ="ask —one”; E; = [sender:PTAc|; E, = [content: (Inforpewel)];
Es = [receiver : HBA]; E4 = [reply — with : Infor — Hotel];
Es = [language : LPROLOG];
end

3.3 Lucx as a Content Choice Language

CCL is designed to support agent problem solving by progdixplicit representations
of choices and choice problems. According to the requiresmated in [10], it should
be possible in CCL to represent the sets of choices to be rdafiee operations that can
be performed on the choices, declaratively state the oslstiips among choices, and
introduce simple propositional statements. Lucx can be fizeagent-based problem
solving in the following four aspects that are normallyiatited to a CCL [10].

1. Modelling Choice Problem is modelled as CSP(Constraint Solving IEnopin
Lucx, say by an agent A;

157

2. Information GatheringAgent A either sends the whole CSP to several other agents
or has the knowledge to decompose the CSP into several sBb;@$ere each
sub-CSP is solvable by an agent; after decomposition itssemthose agents and
gets their feedback; Lucx, as ACL, can be used here;

3. Information Fusion Agent A incorporates the feedbacks from other agents using
context calculus anBoxoperations.

4. Problem SolvingAgent A may run simple problem solving algorithm such as the
General CSP solver, or send the CSP components to problemgalgents, get
their solutions, and unify it.

Example 5 illustrates the first stéypodellingusing Lucx as a CCL. That is, agent
PTAc asks agentBA whether those hotels (Marriott, Hilton, Sheraton) are latxdeé:

Example 5 EQE1 @ E2 @ E3 @ E4 & E5]
where
E="ask —one”; E; = [sender:PTAc]; E, = [content: Bi]];
where B] = [H. | h € {Marriott,Hilton, Sheraton}]; end
Es = [receiver : HBA]; E4 = [reply — with : Infor — Hotel];
Es = [language : Lucx];
end

Example 6 illustrates the second steformation Gatheringusing Lucx as a CCL.
That is, as a reply, ageRBA tells agenfPTAc that Marriott and Hilton are available:

Example 6 Ef =E; & E; ® E; ® E; & Ef

E'@E|; ®E, DE; D E, ®Eg

where
E' =7tell”; E| = [sender:HBA|; E, = [content: B/];

where B/ =[H.|h € {Marriott,Hilton}]; end

Ej = [receiver : PTAc|; Ej = [in — reply — to : Hotel — Infor];
E{ = [language : Lucx]; Eg = [ontology : NYSE — TICKS];

end

An example ofinformation Fusions the expressiok; that appears in Example 8,
Section 5. The expressidty in the same example illustratBsoblem SolvingT

4 Introducing Coordination Constructs in Lucx

In this section we conservatively extend Lucx with coordimra constructs and give
their formal syntax and semantics.

A CordeexpressiorBm(C) arises when an age#tinvokesS through methodn
in a contextC. Using the Lucx notation introduced in Section 3.2 and thergun
Example 5 it is easy to map this expression to a qu&wy E,), whereE, represents
m as the (ACL) performative name, ai8l andC are respectively encapsulated as a
context expressiot,. That is, the representation 8m(C) is a Lucx performative.
The result of evaluation of @ordeexpression is also represented as a performative. We
take a performative as a primitive service for a distribiagdnt system.

158

A transactionis a dialogue between several agents. It is a distributegbatation in
a distributed agent systems, consisting of many steps wiiivé services. Yet a trans-
action need not to be successful. We smoothly integrateifprénservices to represent
a transaction. Agent coordination is the set of transastiotthe system.

4.1 Coordination Constructs in Lucx

The coordination constructs are n-ary constructs whoseaogds are performatives. We
introduce a unary construct for “committing” the state dpesin the evaluation of an
expression.

Sequential Composition Construct>> The expressiola > b defines the sequential
composition of performativesandb. The content field of each performative is actually
used to pass value/results between two agents, so the passitds not shown in the
syntax, however the value passing is implicitly supportethe semantics. Given two
performativesa, b, the sequential compositica > b is evaluated by first evaluating
the performative a and using the result of its evaluatiorichvis encapsulated in the
content field of the response performativeapfin evaluating the performative. In
general, the expressia > a, ... > a denotes the execution of performatizg |
with the result of execution a as an input, foi = 1,..., k— 1.

Parallel Composition Construct || The expressiom || b defines a parallel composi-
tion of performatives andb. Given two performatives, b, the parallel composition
a || bis evaluated by simultaneous execution of performativasdb. In general, the

evaluation of the expressian || a; || ... || & will createk threads of computation,
one for each performative. The result of evaluation is theging of the results in time

order.

Composition with no order o The and o defines the evaluation of more than one
expressions although their order is not important. Givea p&rformativesa, b, the
expressiora o b defines that performativessandb should be evaluated by the receiver
agent, however the order of evaluation is not important. fdselt of evaluation is
the set of results produced by the evaluation of perforraativandb. In general, the
expressiora; o a; o ... o g defines that all the performatives, i = 1,k should be
evaluated by the receiver agent.

Nondeterministic Choice Construct? Given two performatives, b, the expression
a! b defines that one of the performatives be evaluated nondeiistivally. In general,

a; !... & denotes the evaluation of a nondeterministically chosefoprative from
thek operands. If the performatig is the nondeterministic choice, the result from the
evaluation of the performativ& is the result of evaluating the expressmn . .. ¢ a.

159

Priority Construct ¢ Given two performatives andb, the expressioa ¢ b defines
that performativea should be evaluated first, and if it succeeds, the perfommnatis

to be discarded; otherwise, performativehould be evaluated by the receiver agent. In
general, the expression requires that the performativesdlaated deterministically in
the order specified until the first successful evaluation pédormative. The result of
evaluating the expressiaj ¢ . .. ¢ a is that of the first successful evaluation.

Commit Construct com This is a unary construct whose operand is a coordination ex-
pression. The result of evaluatiocgm(e) is that the state changes that happened during
the evaluation of the coordination expressmare made permanent. The expression
a > (b || c) will produce a result, however the state changes that hagpdoe to

the modifications of contexts will be ignored. The expressioma > (b || ¢)) will
produce the result of evaluating the expressios- (b || c), as well as make the state
changes permanent.

Construct Binding All the constructs have the same precedence, and hence-the ex
pression is evaluated from left to right. To enforce a paféic order of evaluations,
parenthesis may be used.

Properties and ExamplesFrom the operational definitions for composition conssuct
we can derive the following properties:

1. The expressior > e refers to two invocations of the performatigeThe context
may change after the first evaluationeofThe result of evaluating the expression is
the result produced by the second invocatioe.of

. The construct> is not commutative, but left associative.

. The construcf is both commutative and associative.

4. The evaluation of the expressier]| e makes two copies a¢ and simultaneously
evaluates them. Hence, the invocation of expressipass e, ande || have differ-
ent effects.

5. With our semantics the evaluated result of the expressidnf consists of all
possible outputs from invocationséa@ndf. If it is necessary to have them ordered
according to their times of arrival at the host agent, thexLfunctions such as
beforecan be used. Other Lucx functions can be used to gather (§)tloalfirst
value, (2) a tuple combining the first one from each, (3) thet fialue that satisfies
a predicate, and (4) a tup{&, y), wherex is a result from an invocation g y is a
result from an invocation tb such that the paix, y satisfies a constraint.

6. The sequential construct does not distribute over thallphiconstruct. That is,
e> (f || g) #e>f || e> g. Inthe evaluation oé > (f || g), the performative
e is evaluated once, and the evaluation of expressidh g starts after that. In
evaluating the expressian> f || e > g, there are two parallel invocations to
e, and the performative§ g are invoked only after the corresponding results are
received.

7. The parallel construct does not distribute over the setipleconstruct. That is,
(elf)>g#ex>g| f>g

W N

160

8. The commit construct distributes over other construfts.an instancecoma >

(bl ¢)) = com(a) > (comb) || comr(c))

Example 7 Let us consider a small example: a mediator agent M receivesliaries

of a number of agents;A. . . , A, and fixes a conflict-free meeting time for them. Let e
denote the performative from £ M, and ¢ be the response performative from M to
Ai. We give three different solutions:

1. The expressiorig; || ... || &) > (¢, || ... || €), when evaluated will give all
possible conflict-free meeting times, assuming that agemadthe skill to compute
it.

2. The expressior(g; o...oe,) > (€, | ... || €), when evaluated may give an
optimal conflict-free meeting time, assuming that agent Bltha resources to save
the constraints in the performative, formulates it to a C&RJ solves it. That is,
the mediator must be a CSP solver.

3. The expressiofe; ¢ ...o€,) > (€] || ... || &), when evaluated will give the
earliest conflict-free meeting time.

4.2 Formal Syntax and Semantics of the extended Lucx

M:=M>M" E:=id Q ::= dimension id
[M || M’ | E(Eq,...,En) |id=E
| M oM’ | if E then E’ else E” | id(idy,...,idn) = E
MM 4 Q0
| M oM’ | E @E'
| com M | [E1:EL, ..., En: Ej
E E where
\ \ Q

Fig. 2. Abstract syntax for the extended Lucx

The new syntactic rules are shown in bold in Figure 2. The reawastic rules are
shown in Figure 3. The semantic rul®sequential is valid whether or not the result of
executingM is required for executiniyl’. Moreover, the semantic rule suggests that the
performativeM’ must be evaluated only after the evaluatiovbéven wherM andM’
do not share data. The semantic rulégaraier andM choice are easy to understand. The
semantic ruleM composition SUggests tha¥l andM’ can be evaluated in any order with-
out affecting the outcome. In the semantic riMgioriry , We usefalseto suggest that
the evaluation fails. Notice that partial evaluation in eilin procedure is not failure.
Because of the distributive property, we can write the conexpressiortom M, where
M is a coordination expression, as an expression in which atrhic component is
com E whereE is a performative. Since we have already given the semdiatieval-
uating performatives, we contend that no separate sersdaticom Mis necessary.

161

D,P-M:v D, P{M—VEM:V
DPEM>M :v

M sequential -

D,PFM:v D,P-M :V
D,PEM| M :viV

M parallel -

D,PEM:v D, PtHM—=VFM:V or D,PFM:vDPHM —V+FM:V

M composition *

D,PEMoM :V

D,PEM:v or D,PFM :v

Maoice D,PFMIM :v
D,PFM:v or D,P+M:false D,Pt[M — falsd - M’ : v
Merrty : D,PFMoM :v
Fig. 3. New Semantic rules for the Extended Lucx
5 Example

A general, butincomplete, description of the travel plagrproblem [10] is as follows:
Caroline would like to meet Liz in London for one of exhibitjgreview receptions at
the Tate Gallery. These will be held at the beginning of OetdBoth Liz and Caroline
have other appointments around that time, and will needaweerto London from their
homes in Paris and New York.

We suppose that there is an agent-based system making €lusicghen Liz and
Caroline meet. Several agents assist each participantsariz Travel Assistant Agent
(PTA) will communicate with Hotel Broker Ageri{BA), Air Travel Agent @TA),
and Diary AgentDA). That is, thePTA for Caroline PTAc) will get the hotel infor-
mation fromHBA, flight information fromATA, and meeting time fronDA. After
collecting and combining the information, it sends the infation to Problem Solv-
ing AgentPSA). The PSA will also receive the collected information froRITA for
Liz(PTAI). ThePSA computes the final solution and sends the solutidATias. PTAc
communicates wittHBA, ATA, and DA to make commitments. Once all these com-
mitments are acknowledgeBTAc informs Caroline of the exact meeting time. As we
remarked, the agents themselves are not important, onlyubage of Lucx is impor-
tant. According to the above descriptions, the Lucx progfanthe transaction is:

Example 8 (my > m) || (ms > ma) || (ms >> ms) > m7 > mg >> mg || myo || ms

where
m; = E;@E1; @ Eip @ E13 @ E1s @ Ess);
where
E; = "ask —one”; Ei; = [sender : PTAc|; Ei, = [content : By];

where B; = [Hc|h € {Marriott,Hilton, Sheraton}]; end
Eis = [receiver : HBA]; Eis = [reply — with : Hotel — Infor];
Eis = [language : Lucx];

end

162

m = E;@E}, © Eqp © Ejg @ Ely ® Egsl;
where
E; = "tell”; Ep = [sender : HBA]; E, = [content : BY];
where Bj = [Hc |h € {Marriott,Hilton}]; end
Es = [receiver : PTAC]; Ezs = [in — reply — to : Hotel — Infor|;
Eos = [language : Lucx];
end

my = Er@E7; & Er, @ Ers @ Erg @ Erg);

where
E; = "ask — one”; E;; = [sender : PTAC]; E;» = [content : B} X B}, X Bj];
where Bj = [Hc | h € {Marriott,Hilton}];

B% = [Ftrom, | ftrome € {[T1 : 10am, Ta : 13pm, Fp : AC32], [Ts1 : 16pm, Tsa : 19pm, Fy : AC38]};

B} = [Tac | tac € {Oct.3 — 10am,Oct.6 — 14pm}]; end
E73 = [receiver : PSA|; E7s = [reply — with : Meeting — Time];
E7s = [language : Lucx];
end
mg = Eg@Es1 @ Es2 @ Egs @ Eea @ Ees);
where
Es = "tell”; Eg = [sender : PSA|; Eg, = [content : Bj X B} X Bj];
where B} = [H |h € {Marriott}];
BY = [Ftrom, | ffrome € {[T#1 : 10am, Tsa : 13pm, F, : AC32]};
BY = [Tac | tac € {0ct.3 — 10am}]; end
Egs = [receiver : PTAC]; Ess = [in — reply — to : Meeting — Time];
Ess = [language : Lucx];

end

mg = Es@Es; @ Eop @ Egs @ Eos @ Egs);

where
Ey = "commit”; Eg; = [sender : PTAc|; Eg» = [content : BY];
where Bj = [Hc |h € {Marriott}]; end
Egs = [receiver : HBA]; Egs = [in — reply — to : Hotel — Reserve|;
Egs = [language : Lucx];

end

end

6 Conclusion

We have been exploring Intensional Programming Paradiganaéable programming
medium for different application domains. In this paper vewéndiscussed our recent
research results in enriching Lucx [2], an Intensional Paogning Language, with
coordination constructs for programming multi-agent daetion in a distributed net-
work of agents. We have given the formal syntax and operatisemantics for the
coordination constructs in Lucx. The language, thus exdngreserves the original
syntax and semantics of Lucx which itself is a conservatiteresion of Lucid [2].
There is a huge amount of literature on network models fdridiged computing
and most of them can be applied to multi-agent coordinatidmare motivated by the
need to simplify the semantics of agent coordination. So aeetdesigned a small

163

number of coordination constructs, for which formal opiersl semantics could be
given. We permit arbitrary sequential and parallel comiimss of Cordeexpressions.
This enables us to express complex transaction activitiesg agents as well-formed
Lucx expressions. Using the semantics it seems possibletéordine the equivalence
of arbitrary coordination expressions.

In introducing the coordination constructs in Lucx, we armatisated by the recent
work of Misra [7]. Yet, there are deep semantic differeneethe two approaches. In
our work an atomi€ordeis a performative which is a context expression in Lucx.4tin
cludes the service requirements, in addition to a requeseiwice. This contrasts with
the termsite[7], which is a general term for service including function names. There
is a need to investigate the full set of semantic differefie®een Lucx constructs and
the Orc expressions of Misra, and the suitability of Lucx for wideacomputing.

References

1. E. Ashcroft, A. Faustini, R. Jagannathan, W. Wad§&ultidimensional, Declarative Pro-
gramming.Oxford University Press, London, 1995.

2. Vasu S. Alagar, Joey Paquet, Kaiyu Wamtensional Programming for Agent Communica-
tion Proceedings of DALT'04, New York, July 2004. (post proceeditogse published by
LNCS, Springer-Verlog)

3. V.S.Alagar, J.Holliday, P.V.Thiyagarajan, B.Zhou. Agent Tped Their Formal Descrip-
tions. Technical Report, Department of Computer Engineering, Sdata Gniversity, Santa
Clara, CA, U.S.A., May 2002.

4. FIPA CCL Content Language Specification. FIPA TC C, Documennbir: XC00009B
www.fipa.org/specs/fipa00009/XC00009B.html,2001/08/10

5. R. V. Guha.Contexts: A Formalization and Some Applicatiof®.d thesis, Stanford Uni-
versity, February 10,1995.

6. Y. Labrou, T. Finin, and Y. Pend\gent Communication Languages: The Current Landscape.
IEEE Journal on Intelligent Agents, Amrch/April 1999, pp. 45-52.

7. Jayadev Misra.A Programming Model for the Orchestration of Web Servid@sceed-
ings of the Second International Conference on Software Engineanithgrormal Methods
(SEFMO04), Beijing, China, Sep 2004.

8. Joey Paquetintensional Scientific ProgrammingPh.D. Thesis, Bpartement d’Informa-
tique, Universite Laval, Quebec, Canada, 1999

9. K.Wan, V.S. Alagar, J. Paqué®eal Time Reactive Programming Enriched with Conté.
TAC2004, Guiyang, China, September 2004, Lecture Notes in ComBuaience,3407,Page
387-402, Springer-Verlag.

10. Kaiyu WanLucx: An Intensional Programming Language Enriched With Cont&tisd the-
sis(under preparation), Department of Computer Science, Caaddrdversity, Montreal,
Canada, 2005.

164

