
An Intensional Programming Approach to Multi-agent
Coordination in a Distributed Network of Agents⋆

Kaiyu Wan and Vasu S. Alagar

Department of Computer Science
Concordia University

Montreal, Quebec H3G 1M8, Canada
{ky wan,alagar}@cse.concordia.ca

Abstract. We explore the suitability ofIntensional Programming Paradigmfor
providing a programming model for coordinated problem solving in a multi-agent
systems. We extend our previous work on Lucx, an Intensional Programming
Language extended with context as first class object, to support coordination ac-
tivities in a distributed network of agents. We study coordination constructs which
can be applied to sequential programs and distributed transactions. We give for-
mal syntax and semantics for coordination constructs. The semantics for trans-
action expressions is given on top of the existing operational semantics in Lucx.
The extended Lucx can be used for internet-based agent applications.
Keywords: Multi-agent systems, coordinated transactions, Intensional Program-
ming Language, coordination constructs.

1 Introduction

Our goal is to provide a programming model for a network of distributed coordinating
agents in problem solving. We suggest anIntensional Programming Language, with
contextas first class objects and a minimal set of coordination constructs, to express the
coordinated communication and computing patterns in agent-based systems. We give a
formal syntax and semantics for the language and illustratethe power of the language
with a realistic example.

Intensional Programming Paradigm Intensional logic is a branch of mathematical
logic which is used to describe precisely context-dependent entities. According to Car-
nap, the real meaning of a natural language expression whosetruth-value depends on
the context in which it is uttered is itsintension. Theextensionof that expression is its
actual truth-value in the different possible contexts of utterance [8]. For an instance, the
statement“The capital of China is Beijing” is intensional because its valuation depends
on the context (here is the time) in which it is uttered. If this statement is uttered before
1949, the extensions of this statement areFalse(at that time, the capital was Nanjing).
However, if it is uttered after 1949, the extensions of this statement areTrue. In Inten-
sional Programming(IP) paradigm, which has its foundations in Intensional Logic, the
⋆ This work is supported by grants from Natural Sciences and Engineering Research Council,

Canada

148

baldoni

real meaning of an expression is a function from contexts to values, and the value of
the intension at any particular context is obtained by applying context operators to the
intension. Basically, intensional programming provides intension on the representation
level, and extensions on the evaluation level. Hence, intensional programming allows
more declarative way of programming without loss of accuracy.

Lucid was a dataflow language and evolved into a Multidimensional Intensional
Programming Language [1]. The only data type in Lucid isstream. Because of its
dataflow nature, Lucid provides a set of temporal operators on streams. Example 1
illustrates the definitions of these operators (nil indicates an undefined value).

Example 1 :

A = 1 2 3 4 5 . . .

B = 0 0 1 0 1 . . .

first A = 1 1 1 1 1 . . .

next A = 2 3 4 5 . . .

prev A = nil 1 2 3 4 5 . . .

A fby B = 1 0 0 1 0 1 . . .

A wvr B = 3 5 . . .

A asa B = 3 3 3 . . .

A upon B= 1 1 1 3 3 5 . . .

The following program computes the stream〈1, 1, 2, 3, 5, . . .〉 of all Fibonacci
numbers:

result = fib

fib = 1 fby (fib + g)
g = 0 fby fib

Lucid allows the notion of context only implicitly. This restricts the ability of Lu-
cid to express many requirements and constraints that arisein programming a complex
software system. So we have extended Lucid by adding the capability to explicitly ma-
nipulate contexts. This is achieved by extending Lucid conservatively withcontextas a
first class object. We call the resulting languageLucx (Lucid extended withcontexts).
Lucx has provided more power of representing problems in different application do-
mains and given more flexibility of programming. We discuss Lucx, context calculus
which is its semantic base, and multi-agent coordination constructs introduced in Lucx
in Section 3.

Multiple-Agent Paradigm By agent we mean software agents which can be person-
alized, continuously running and semi-autonomous, drivenby a set of beliefs, desires,
and intentions (BDI). We require a software agent to have theproperties: (1) an agent
is a software component designed to achieve certaingoals; (2) an agent is either au-
tonomous or always responds to a stimulus from its environment, which is a collection
of agents; (3) an agent has sufficient computational power,resources, andknowledgeto
complete thetasksassigned to it and deliver results within specified time bounds; (4) an
agent communicates with other agents in its environment through messages at itsports,
where a port is an abstraction of an access point for a bidirectional communication; (5)
an agent can dynamically change its behaviour whenever the context changes.

149

Instead of describing each agent in isolation, following [3] we consider agenttypes.
An agent type is characterised by a set of services. All agents of an agent type have the
same set of services. Agents are instances of agent types. Anagent with this charac-
terisation is a black-box with interfaces to service its clients. It behaves according to
the context and feedback from its environment. Two agents interact either directly or
through intermediaries, who are themselves agents. An atomic interaction between two
agents is aquery initiated by an agent and received by the other agent at the interface
which can service the query. An interaction among several agents is a collection of se-
quences of atomic interactions. Several methods are known to characterize such behav-
ior. Our goal is to explore intensional programming for expressing different interaction
types, not in characterizing the whole collection of interactions.

In order to understand interaction patterns let us considera typical business trans-
actions launched by an agent. The agent acquires data from one or more remote agents,
analyses the data and computes some result, and based on the computed result invokes
services from other agents. The agents may be invoked eitherconcurrently or in se-
quence. In the latter case, the result of an agent’s computation may be given as input to
the next agent in the sequence. In the former case, it is possible that an agent splits a
problem into subproblems and assigns each subproblem to an agent which has the ex-
pertise to solve it. We discuss the syntax and semantics for such coordination constructs
in Lucx, under the assumption that an infrastructure existsto carry out the basic tasks
expressed in the language.

A configurationis a collection of interacting agents, where each agent is aninstance
of an agent type. A configuration is simple if it has only one agent. An agent interacts
with itself when it is engaged in some internal activity. More generally, the agents in
a configuration communicate by exchanging messages throughbidirectional communi-
cation channels. A channel is an abstract binding which whenimplemented will satisfy
the specifications of the interfaces, the two ends of the channel. Thus, a configuration is
a finite collection of agents and channels. The interfaces ofa configuration are exactly
those interfaces of the agents that are not bound by channelsincluded in the config-
uration. In a distributed network of agents, each network node is either an agent or a
configuration. Within a configuration, the pattern of computation is deterministic but
need not be sequential.

There are three major language components in the design of distributed multi-agent
systems:

1. (ACL) agent communication language
2. (CCL) constraint choice language, and
3. (COL) coordination language.

These three languages have different design criteria. An ACL must supportinterop-
erability in agent community while providing the freedom for the agentto hide or reveal
its internal details to other agents. A CCL must be designed to support agent problem
solving by providing explicit representation of choices and choice problems. A COL
must support transaction specification and task coordination among the agents. The two
existing ACLs areKnowledge Query and Manipulation Language(KQML) and the
FIPA agent communication language [6]. The FIPA language includes the basic con-
cepts of KQML, yet they have slightly different semantics. Agents require a content

150

language to express information on constraints, which is encapsulated as a field within
performativesof ACL. FIPA Constraint Choice Language(CCL) is one such content
languages [4], designed to support agent problem solving byproviding explicit repre-
sentations of choices and choice problems.

In our previous works [2] [10], we have shown the suitabilityof Lucx, anInten-
sional Programming Language(IP), for agent communication as well for choice repre-
sentation. In this paper we extend Lucx with a small number ofconstructs to express
task coordination. We are motivated by the following meritsof Lucx.

1. Lucx allows the evaluation of expression atcontextswhich are definable as first
class objects in the language. Context calculus in Lucx provides the basis for ex-
pressing dynamically changing situations.

2. Performatives, expressible as context expressions, canbe dynamically introduced,
computed, and modified. A dialogue between agents is expressible as astreamof
performatives, and consequently using stream functions such asfirst, next, andfby,
a new dialogue can be composed, decomposed, and analyzed based on the existing
dialogues.

3. Lucx allows a cleaner and more declarative way of expressing the computational
logic and task propagation of a program without loss of accuracy of interpreting the
meaning of the program;

4. Lucx deals withinfinite entitieswhich can be any simple or composite data values.

2 Basics of Agent Coordination

An agent type is determined by the roles and responsibilities assigned to it. They in turn
determine the services and the coordination of tasks in a multi-agent system. A generic
classification of agent types, as given in [3], isinterface agent(IA), middle agent(MA),
task agent(TA), andsecurity agent(SA). We informally review their coordination pat-
terns below.

Interface agents assist the user in performing requests andcompile a user profile,
deduce the user’s information needs by direct communication and observation, trans-
late the requests of the user and select the task agent(s) whohave the expertise to solve
the problems of the user, present and store the retrieved data, take corrective actions on
behalf of the user, and adapt to the changes in the environment so that it can improve
its assistance to the user. In contrast, middle agents support the flow of information in
multi-agent Systems, assist in locating and connecting theultimate information provider
with the ultimate information requester, provide basic mediation services, coordinating
services according to given protocols, conventions, and policies. The MA type can be
specialised intoarbitrator agent, match-maker agent, andbroker agent. They play dif-
ferent roles, yet share the basic role of MA. A task agent willperform a specific task for
which an interface agent has given authorization. It also helps users formulate problem-
solving plans and carry out these plans by coordinating and exchanging information
with other software agents. Security agents are task agentsthat remember events, draw
inferences, and plan actions to achieve security goals. They are autonomous, evolve
through learning, and have the ability to make predictions based on logical inference.

151

Observe that roles and responsibilities determine thecollaboration environmentof an
agent type.

2.1 Abstract Coordination Expressions

A coordination expression,Corde, in its simplest form is a message/function call from
one agent to another agent. A generalCorde is a message/function from one configu-
ration to another configuration. We introduce an abstract agent coordination expression
S.a(C) whereS is a configuration expression,a is the message (function call) atS, and
C is a context expression (discussed in Section 3). The context C is combined with the
local context. If the context parameter is omitted it is interpreted as the current context.
If the message is omitted, it is interpreted as a call to default method invocation atS.
The evaluation of aCorde returns a result(x, C′), wherex is the result andC′ is the
context in whichx is valid. In principle,x may be a single item or a stream.

As an example, letB be a broker agent. The expressionB.sell(dd) is a call to the
broker tosell stocks as specified in the context expressiondd, which may include the
stock symbol, the number of shares to be sold, and the constraints on the transaction
such as date and time or minimum share price. The evaluation of the expression in-
volves contacting agentB with sellandddas parameters. The agentB computes a result
(x, dd′), and returns to the agentA who invoked its services, for which the expression
is A.receive(C′), where contextC′ includesx anddd′. In this example,dd′ may include
constraints on when the amountx can be deposited inA’s bank account.

Composition Constructs We introduce composition constructs for abstract coordi-
nation expressions and illustrate with examples. A coordination in a multi-agent sys-
tem requires the composition of configuration expressions.As an example, consider an
agent-based system for flight ticket booking. Such a system should function with min-
imal human intervention. An interface agent, representinga client, asks a broker agent
to book a flight ticket whose quoted price is no more than $300.The broker agent may
simultaneously contact two task agents, each representingan airline company, for price
quotes. The broker agent will choose the cheaper ticket if both of the quoted price are
less than $300 and make a commitment to the corresponding task agent, then informs
the interface agent about the flight information. If both prices are above $300, the bro-
ker agent will convey the information to the interface agent. The integrated activities of
those agents to obtain the solution for the user is regarded as a transaction. Typically, the
result from the interaction between two agents is used in some subsequent interaction,
and results from simultaneously initiated interactions are compared to decide the next
action. To meet these requirements, we provide many composition constructs,including
sequential composition, parallel composition, and aggregation constructs. We infor-
mally explain the sequential and parallel composition constructs below.

The expressionE = S1.a1(C1) > (x, C′) > S2.a2(C2) is a sequentialcom-
position of the two configuration expressionsS1.a1(C1), andS2.a2(C2). The expres-
sion E is evaluated by first evaluatingS1.a1(C1), and then callingS2 with each value
(x, C′) returned byS1.a1(C1). The contextsC′ is substituted forC2 in the evaluation of
S2.a2(C2).

152

The expressionS1.a1(C1) ‖ S2.a2(C2) is aparallel composition of the two config-
uration expressionsS1.a1(C1), andS2.a2(C2). The evaluation of the two expressions
are invoked simultaneously, and the result is the stream of values(x, C′) returned by the
configurations ordered by their time of delivery (availablein C′).

Example 2 Let A(Alice) and B(Bob) be two interface agents, and M be a mediator
agent. The mediator’s service is to mediate a dispute between agents in the system. It
receives the information from users and delivers a solutionto them. In the expression

((B.notifies> m1) ‖ (A.notifies> m2)) > M.receives(C′)
> (m3, C′′) > (B.receives‖ A.receives)

the mediator computes a compromise (default function) m3 for each pair of values
(m1, m2) and delivers to Bob and Alice. Context C′ includes(m1, m2 and the local
context in M. Context C′′ is a constraint on the validity of the mediated solution m3.

The other constructs that we introduce areAnd, Or, andXor constructs to enforce
certain order on expression evaluations. TheAnd (◦) construct is to enforce evaluation
of more than one expressions although the order is not important. TheOr (≀) construct
is to choose one of the evaluations nondeterministically. TheXor (⋄) construct defines
one of the expressions to be evaluated with priority. In addition, we introduceCommit
construct (com) to enable permanent state changes in the system after viewing the effect
of a transaction. The syntax and semantics of these constructs in Lucx are given in
Section 4. We can combine thewhere construct in Lucx with the above constructs to
define parameterized expressions. Once defined, such expressions may be called from
another expression.

3 Intensional Programming Model for Distributed Network of
Agents

Lucx [2] is a conservative extension of Lucid [1], an Intensional Programming Lan-
guage. We have been exploring Lucx for a wide variety of programming applications. In
[9] we have studied real-time reactive programming models in Lucx. Recently [10] we
have given constraint program models in Lucx. In this section we review these works
for agent communication and content description.

3.1 An Overview of Intensional Programming Language : Lucx

Syntax and Semantic Rules of LucxThe syntax of Lucx [2], shown in Figure 1, is suf-
ficient for programming agent communication and content representation. The syntactic
extensions to Lucid are shown in bold. The symbols@ and# are context navigation and
query operators. The non-terminalsE andQ respectively refer toexpressionsanddefini-
tions. The abstract semantics of evaluation in Lucx isD,P ′ ⊢ E : v, which means that in
the definition environmentD, and in the evaluation contextP ′ , expressionE evaluates
to v. The definition environmentD retains the definitions of all of the identifiers that ap-
pear in a Lucid program. Formally,D is a partial functionD : Id → IdEntry , whereId

153

is the set of all possible identifiers andIdEntry has five possible kinds of value such as:
Dimensions, Constants, Data Operators, Variables, andFunctions[8]. The evaluation
contextP ′, is the result ofP † c, whereP is the initial evaluating context,c is the de-
fined context expression, and the symbol†denotes the overriding function. A complete
operational semantics for Lucx is defined in [2].

E ::= id
| E(E1, . . . , En)
| if E then E′ else E′′

| #
| E @ E′

| [E1 : E′

1, . . . , En : E′

n]
| E where Q

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

Fig. 1.Abstract syntax for Lucx

The implementation technique of evaluation for Lucx programs is an interpreted
mode callededuction[8]. Eduction can be described astagged-token demand-driven
dataflow, in which data elements (tokens) are computed on demand following a dataflow
network defined in Lucid. Data elements flow in the normal flow direction (from pro-
ducer to consumer) anddemandsflow in the reverse order, both beingtaggedwith their
current context of evaluation.

Context Calculus Informally, A context is a reference to a multidimensional stream,
making an explicit reference to the dimensions and thetags(indexes) along each dimen-
sion. The formal definition is given in [2]. The syntax for context is[d1 : x1, . . . , dn : xn],
whered1, . . . , dn are dimension names, andxi is the tag for dimensiondi . Given an ex-
pressionE and a contextc, the Lucid expressionE @ c directs the eduction engine to
evaluateE in the contextc. According to the semantics,E @ c gives the stream value at
the coordinates referenced byc.

In our previous papers [2, 9], we have introduced the following context operators:
theoverride⊕ is similar to function override;difference⊖, comparison=, conjunction
⊓ , anddisjunction⊔ are similar to set operators;projection↓ andhiding ↑ are se-
lection operators;constructor[:] is used to construct an atomic context;substitution
/ is used to substitute values for selected tags in a context;choice| accepts a finite
number of contexts and nondeterministically returns one ofthem.undirected range⇋
anddirected range⇀ produce a set of contexts. The formal definitions of these oper-
ators can be found in [10]. The precedence rules for the context operators are given in
the right column (from the highest precedence to the lowest)and the formal syntax of
context expressions is shown in the left column of the table below. Parentheses will be
used to override this precedence when needed. Operators having equal precedence will
be applied from left to right. Rules for evaluating context expressions are given in [10].

154

Example 3 The evaluation steps of the well-formed context expressionc3 ↑ D⊕c1 | c2,
where c1 = [x : 3, y : 4, z : 5], c2 = [y : 5], and c3 = [x : 5, y : 6, w : 5], D = {w}, are
as follows:

[Step1]. c3 ↑ D = [x : 5, y : 6] [↑ Definition]
[Step2]. c1 | c2 = c1 or c2 [| Definition]
[Step3].Suppose in Step2,c1 is chosen,
c3 ↑ D ⊕ c1 = [x : 3, y : 4, z : 5] [⊕ Definition]
else ifc2 is chosen,
c3 ↑ D ⊕ c2 = [x : 5, y : 5] [⊕ Definition]

syntax precedence

C ::= c | C = C
| C ⊇ C | C ⊆ C
| C | C | C/C
| C⊕ C | C⊖ C
| C⊓ C | C⊔ C
| C ⇋ C | C ⇀ C
| C ↓ D | C ↑ D

1. ↓, ↑, /
2. |
3.⊓, ⊔
4.⊕,⊖
5. ⇋, ⇀
6. =,⊆,⊇

A context which is not a micro context or a simple context is called a non-simple
context. In general, a non-simple context is equivalent to aset of simple contexts [2]. In
several applications we deal with contexts that have the same dimension set∆ ⊆ DIM
and the tags satisfy a constraintp. The short hand notation for such a set is the syntax
Box[∆ | p].

Definition 1 Let ∆ = {d1, . . . , dk}, where di ∈ DIM i = 1, . . . , k, and p is a k-ary
predicate defined on the tuples of the relationΠd ∈∆ fdimtotag(d). The syntax

Box[∆ | p] = {s | s = [di1 : xi1 , . . . , dik : xik]},

where the tuple(x1, . . . , xk), xi ∈ fdimtotag(di), i = 1, . . . k satisfy the predicate p,
introduces a set S of contexts of degree k. For each context s∈ S the values in tag(s)
satisfy the predicate p.

Many of the context operators introduced above can be naturally lifted to sets of
contexts, in particular forBoxes. We have defined three operators exclusively forBoxes.
These are (⊠, ⊞, and⊡). They have equal precedence and have semantics analogous to
relational algebra operators. In the table below a box expressionB is formally defined,
with D denoting a dimension set.

syntax precedence

B ::= b | B | B
| B ⊡ B | B ⊠ B
| B ⊞ B | B ↓ D
| B ↑ D

1. ↓, ↑
2. |
3. ⊡, ⊞, ⊠

155

An Example of a Lucx Program Consider the problem of finding the solution in
positive integers that satisfy the following constraints:

x3 + y3 + z3 + u3 = 100

x < u

x + y = z

The Lucx program is given below:
Eval.B1, B2, B3 (x′, y′, z′, u′) = N

where

N = merge (merge(merge(x, y), z), u)
@ B1 ⊠ B2 ⊠ B3;

where

merge(x, y) = if (x <= y) then x else y;
B1 = Box [X, Y, Z, U | x3 + y3 + z3 + u3 = 100,

x ∈ X, y ∈ Y , z ∈ Z , u ∈ U];
B2 = Box [X, U | x < u, x ∈ X , u ∈ U];
B3 = Box [X, Y, Z | x + y = z, x ∈ X ,

y ∈ Y , z ∈ Z];
end

end

3.2 Agent Communication

Lucx can be used as anAgent Communication Language(ACL) [2]. Due to the static na-
ture of the predefinedcommunicative acts(CAs) in FIPA and performatives in KQML,
it is not possible to express the dynamic aspects in agent’s states and requirements.
Thus, interoperability is not fully achieved. In using Lucxas ACL this problem is reme-
died. The performatives are expressed as context expressions, and context isfirst class
objectin Lucx, hence we are able to dynamically manipulate performatives. The name
of a performative is considered as an expression, and the rest of the performative con-
stitute acontextwhich can be understood as acommunication context, with each field
except the name in the message being amicro context. The communication context will
be evaluated by the receiver, by evaluating the expression at the context obtained by
combining the micro contexts. In some cases, the receiver may combine the communi-
cation context with itslocal contextto generate a new context.

The syntax of a message in Lucx from agentA is of the form〈EA, E′

A〉, whereEA is
the message name andE′

A is a context expression. In an implementationEA corresponds
to a function. The contextE′

A includes all the information that agentA wants to convey
in an interaction to another agent. A response from agentB to agentA will be of the form
〈EB, E′′

B〉, whereE′′

B will include the reference to the query for which this is a response
in addition to the contexts in which the response should be understood. A conversa-
tion between two agentsA andB is of the form〈αA; βB〉, whereαA = 〈EA, E′

A〉, and
βB = 〈EB, E′′

B〉. The four dimensionsB(Belief), K(Know), W(Want), andI (Intention)
are predefined in the language. The tags along these dimensions are natural numbers.
The domainDB attached to dimensionB is a set of predicates, and the domainsDK ,
DW, andDI attached to the dimensionsK, W, andI respectively are sets of expressions.

156

Each performative is bound to a contextc = [B : i1, K : i2, W : i3, I : i4] over the
dimensionsB, K, W, I . The contextc is suggested as the precondition to act upon the
performative. If a dimension is not specified inc then it is equivalent to a “don’t care”
condition. The semantics of a conversation is given in [2]. Adialoguebetween two
agentsA, andB is a stream of conversations.

The operational semantics of Lucx is the basis for query evaluation. Consider queries
that demand some form of response. The query from agentA 〈EA, E′

A〉 to agentB is eval-
uated as follows:

1. agentB obtains the contextFB = E′

A ⊕ LB, whereLB is the local context forB.
2. agentB evaluatesEA@FB.
3. agentB constructs the new contextE′′

B that includes the evaluated result and
information suggesting the context in which it should be interpreted by agentA, and

4. sends the response〈EB, E′′

B〉 to agentA.
The above semantics should be changed for evaluating queries that do not necessarily
demand some form of response. The query from agentA may be evaluated at any local
context ofB, and the result of evaluation may trigger an appropriate action in B. For
instance, letB is a publisher agent which receives a material for publication in the form
of a query of this type from a mobile agentA. A mobile agent roams around the web,
collects information and delivers to his clients. AgentB may decide to process and pub-
lish the information delivered byA periodically or at a time that it “knows” to be most
appropriate. Thus, steps 3 and 4 in the above semantics should be modified as follows:
3’. agentB “determines” the contextE′′

B for processing the information (evaluated in
step 2), and

4’. processes the information at the contextE′′

B.
The semantics involves knowledge, belief, intention system of agentB.

Example 4 A query from agentPTAc about the Hotel information which was en-
coded as “ask-one” performative represented in Lucx as the expression E@ E′, E′ =
E1 ⊕ E2 ⊕ E3 ⊕ E4 ⊕ E5.

E@[E1⊕ E2⊕ E3⊕ E4⊕ E5]
where

E = ”ask− one”; E1 = [sender : PTAc]; E2 = [content : (InforHotel)];
E3 = [receiver : HBA]; E4 = [reply− with : Infor− Hotel];
E5 = [language : LPROLOG];

end

3.3 Lucx as a Content Choice Language

CCL is designed to support agent problem solving by providing explicit representations
of choices and choice problems. According to the requirements stated in [10], it should
be possible in CCL to represent the sets of choices to be made,define operations that can
be performed on the choices, declaratively state the relationships among choices, and
introduce simple propositional statements. Lucx can be used for agent-based problem
solving in the following four aspects that are normally attributed to a CCL [10].

1. Modelling: Choice Problem is modelled as CSP(Constraint Solving Problem) in
Lucx, say by an agent A;

157

2. Information Gathering: Agent A either sends the whole CSP to several other agents
or has the knowledge to decompose the CSP into several sub-CSPs, where each
sub-CSP is solvable by an agent; after decomposition it sends to those agents and
gets their feedback; Lucx, as ACL, can be used here;

3. Information Fusion: Agent A incorporates the feedbacks from other agents using
context calculus andBoxoperations.

4. Problem Solving: Agent A may run simple problem solving algorithm such as the
General CSP solver, or send the CSP components to problem solving agents, get
their solutions, and unify it.

Example 5 illustrates the first stepModellingusing Lucx as a CCL. That is, agent
PTAc asks agentHBA whether those hotels (Marriott, Hilton, Sheraton) are available:

Example 5 E@[E1⊕ E2⊕ E3⊕ E4⊕ E5]
where

E = ”ask− one”; E1 = [sender : PTAc]; E2 = [content : B′

1]];
where B′

1 = [Hc | h ∈ {Marriott, Hilton, Sheraton}]; end

E3 = [receiver : HBA]; E4 = [reply− with : Infor− Hotel];
E5 = [language : Lucx];

end

Example 6 illustrates the second stepInformation Gatheringusing Lucx as a CCL.
That is, as a reply, agentHBA tells agentPTAc that Marriott and Hilton are available:

Example 6 E′′

T = E′

1 ⊕ E′

2 ⊕ E′

3 ⊕ E′

4 ⊕ E′

5

E′@[E′
1
⊕ E′

2
⊕ E′

3
⊕ E′

4
⊕ E′

5

where

E′ = ”tell”; E′
1

= [sender : HBA]; E′

2 = [content : B′′

1];
where B′′

1
= [Hc | h ∈ {Marriott, Hilton}]; end

E′
3

= [receiver : PTAc]; E′

4 = [in − reply − to : Hotel − Infor];
E′
5

= [language : Lucx]; E′
6

= [ontology : NYSE− TICKS];
end

An example ofInformation Fusionis the expressionE7 that appears in Example 8,
Section 5. The expressionE8 in the same example illustratesProblem Solving. T

4 Introducing Coordination Constructs in Lucx

In this section we conservatively extend Lucx with coordination constructs and give
their formal syntax and semantics.

A CordeexpressionS.m(C) arises when an agentA invokesS through methodm
in a contextC. Using the Lucx notation introduced in Section 3.2 and the query in
Example 5 it is easy to map this expression to a query〈EA, E′

A〉, whereEA represents
m as the (ACL) performative name, andS, andC are respectively encapsulated as a
context expressionE′

A. That is, the representation ofS.m(C) is a Lucx performative.
The result of evaluation of aCordeexpression is also represented as a performative. We
take a performative as a primitive service for a distributedagent system.

158

A transactionis a dialogue between several agents. It is a distributed computation in
a distributed agent systems, consisting of many steps of primitive services. Yet a trans-
action need not to be successful. We smoothly integrate primitive services to represent
a transaction. Agent coordination is the set of transactions in the system.

4.1 Coordination Constructs in Lucx

The coordination constructs are n-ary constructs whose operands are performatives. We
introduce a unary construct for “committing” the state changes in the evaluation of an
expression.

Sequential Composition Construct≫ The expressiona ≫ b defines the sequential
composition of performativesa andb. The content field of each performative is actually
used to pass value/results between two agents, so the passedresult is not shown in the
syntax, however the value passing is implicitly supported in the semantics. Given two
performativesa, b, the sequential compositiona ≫ b is evaluated by first evaluating
the performative a and using the result of its evaluation, which is encapsulated in the
content field of the response performative ofa, in evaluating the performativeb. In
general, the expressiona1 ≫ a2 . . . ≫ ak denotes the execution of performativeai+1

with the result of execution ofai as an input, fori = 1, . . . , k− 1.

Parallel Composition Construct ‖ The expressiona ‖ b defines a parallel composi-
tion of performativesa andb. Given two performativesa, b, the parallel composition
a ‖ b is evaluated by simultaneous execution of performativesa andb. In general, the
evaluation of the expressiona1 ‖ a2 ‖ . . . ‖ ak will createk threads of computation,
one for each performative. The result of evaluation is the merging of the results in time
order.

Composition with no order ◦ The and ◦ defines the evaluation of more than one
expressions although their order is not important. Given two performativesa, b, the
expressiona ◦ b defines that performativesa andb should be evaluated by the receiver
agent, however the order of evaluation is not important. Theresult of evaluation is
the set of results produced by the evaluation of performativesa andb. In general, the
expressiona1 ◦ a2 ◦ . . . ◦ ak defines that all the performativesai , i = 1, k should be
evaluated by the receiver agent.

Nondeterministic Choice Construct≀ Given two performativesa, b, the expression
a ≀ b defines that one of the performatives be evaluated nondeterministically. In general,
a1 ≀ . . . ≀ ak denotes the evaluation of a nondeterministically chosen performative from
thek operands. If the performativeai is the nondeterministic choice, the result from the
evaluation of the performativeai is the result of evaluating the expressiona1 ≀ . . . ≀ ak.

159

Priority Construct ⋄ Given two performativesa andb, the expressiona ⋄ b defines
that performativea should be evaluated first, and if it succeeds, the performative b is
to be discarded; otherwise, performativeb should be evaluated by the receiver agent. In
general, the expression requires that the performatives beevaluated deterministically in
the order specified until the first successful evaluation of aperformative. The result of
evaluating the expressiona1 ⋄ . . . ⋄ ak is that of the first successful evaluation.

Commit Construct com This is a unary construct whose operand is a coordination ex-
pression. The result of evaluatingcom(e) is that the state changes that happened during
the evaluation of the coordination expressione are made permanent. The expression
a ≫ (b ‖ c) will produce a result, however the state changes that happened due to
the modifications of contexts will be ignored. The expression com(a ≫ (b ‖ c)) will
produce the result of evaluating the expressiona ≫ (b ‖ c), as well as make the state
changes permanent.

Construct Binding All the constructs have the same precedence, and hence the ex-
pression is evaluated from left to right. To enforce a particular order of evaluations,
parenthesis may be used.

Properties and ExamplesFrom the operational definitions for composition constructs
we can derive the following properties:

1. The expressione≫ e refers to two invocations of the performativee. The context
may change after the first evaluation ofe. The result of evaluating the expression is
the result produced by the second invocation ofe.

2. The construct≫ is not commutative, but left associative.
3. The construct‖ is both commutative and associative.
4. The evaluation of the expressione ‖ e makes two copies ofe and simultaneously

evaluates them. Hence, the invocation of expressionse, e≫ e, ande ‖ have differ-
ent effects.

5. With our semantics the evaluated result of the expressione ‖ f consists of all
possible outputs from invocations toeandf . If it is necessary to have them ordered
according to their times of arrival at the host agent, the Lucx functions such as
beforecan be used. Other Lucx functions can be used to gather (1) only the first
value, (2) a tuple combining the first one from each, (3) the first value that satisfies
a predicate, and (4) a tuple(x, y), wherex is a result from an invocation toe, y is a
result from an invocation tof such that the pairx, y satisfies a constraint.

6. The sequential construct does not distribute over the parallel construct. That is,
e≫ (f ‖ g) 6= e≫ f ‖ e≫ g. In the evaluation ofe≫ (f ‖ g), the performative
e is evaluated once, and the evaluation of expressionf ‖ g starts after that. In
evaluating the expressione ≫ f ‖ e ≫ g, there are two parallel invocations to
e, and the performativesf , g are invoked only after the corresponding results are
received.

7. The parallel construct does not distribute over the sequential construct. That is,
(e ‖ f) ≫ g 6= e≫ g ‖ f ≫ g

160

8. The commit construct distributes over other constructs.For an instance,com(a ≫
(b ‖ c)) = com(a) ≫ (com(b) ‖ com(c))

Example 7 Let us consider a small example: a mediator agent M receives the diaries
of a number of agents A1, . . . , An and fixes a conflict-free meeting time for them. Let ei

denote the performative from Ai to M, and e′i be the response performative from M to
Ai . We give three different solutions:

1. The expression,(e1 ‖ . . . ‖ en) ≫ (e′1 ‖ . . . ‖ e′n), when evaluated will give all
possible conflict-free meeting times, assuming that agent Mhas the skill to compute
it.

2. The expression,(e1 ◦ . . . ◦ en) ≫ (e′1 ‖ . . . ‖ e′n), when evaluated may give an
optimal conflict-free meeting time, assuming that agent M has the resources to save
the constraints in the performative, formulates it to a CSP,and solves it. That is,
the mediator must be a CSP solver.

3. The expression(e1 ⋄ . . . ⋄ en) ≫ (e′1 ‖ . . . ‖ e′n), when evaluated will give the
earliest conflict-free meeting time.

4.2 Formal Syntax and Semantics of the extended Lucx

M ::= M ≫ M ′

| M ‖ M ′

| M ◦M ′

| M ≀M ′

| M ⋄M ′

| com M
| E

E ::= id
| E(E1, . . . , En)
| if E then E′ else E′′

| #
| E @ E′

| [E1 : E′

1, . . . , En : E′

n]
| E where Q

Q ::= dimension id
| id = E
| id(id1, . . . , idn) = E
| Q Q

Fig. 2. Abstract syntax for the extended Lucx

The new syntactic rules are shown in bold in Figure 2. The new semantic rules are
shown in Figure 3. The semantic ruleM sequential is valid whether or not the result of
executingM is required for executingM′. Moreover, the semantic rule suggests that the
performativeM′ must be evaluated only after the evaluation ofM even whenM andM′

do not share data. The semantic rulesMparallel andM choice are easy to understand. The
semantic ruleM composition suggests thatM andM′ can be evaluated in any order with-
out affecting the outcome. In the semantic ruleMpriority , we usefalse to suggest that
the evaluation fails. Notice that partial evaluation in eduction procedure is not failure.
Because of the distributive property, we can write the commit expressioncom M, where
M is a coordination expression, as an expression in which eachatomic component is
com E, whereE is a performative. Since we have already given the semanticsfor eval-
uating performatives, we contend that no separate semantics forcom M is necessary.

161

M sequential :
D,P ⊢ M : v D,P†[M 7→ v] ⊢ M′ : v′

D,P ⊢ M ≫ M′ : v′

Mparallel :
D,P ⊢ M : v D,P ⊢ M′ : v′

D,P ⊢ M ‖ M′ : v † v′

M composition :
D,P ⊢ M : v D,P†[M 7→ v] ⊢ M′ : v′ or D,P ⊢ M′ : v D,P†[M′ 7→ v] ⊢ M : v′

D,P ⊢ M ◦M′ : v′

M choice :
D,P ⊢ M : v or D,P ⊢ M′ : v

D,P ⊢ M ≀M′ : v

Mpriority :
D,P ⊢ M : v or D,P ⊢ M : false D,P†[M 7→ false] ⊢ M′ : v

D,P ⊢ M ⋄M′ : v

Fig. 3.New Semantic rules for the Extended Lucx

5 Example

A general, but incomplete, description of the travel planning problem [10] is as follows:
Caroline would like to meet Liz in London for one of exhibition preview receptions at
the Tate Gallery. These will be held at the beginning of October. Both Liz and Caroline
have other appointments around that time, and will need to travel to London from their
homes in Paris and New York.

We suppose that there is an agent-based system making choices on when Liz and
Caroline meet. Several agents assist each participant: a Personal Travel Assistant Agent
(PTA) will communicate with Hotel Broker Agent(HBA), Air Travel Agent (ATA),
and Diary Agent(DA). That is, thePTA for Caroline (PTAc) will get the hotel infor-
mation fromHBA, flight information fromATA, and meeting time fromDA. After
collecting and combining the information, it sends the information to Problem Solv-
ing Agent(PSA). ThePSA will also receive the collected information fromPTA for
Liz(PTAl). ThePSA computes the final solution and sends the solution toPTAs.PTAc
communicates withHBA, ATA, andDA to make commitments. Once all these com-
mitments are acknowledged,PTAc informs Caroline of the exact meeting time. As we
remarked, the agents themselves are not important, only their usage of Lucx is impor-
tant. According to the above descriptions, the Lucx programfor the transaction is:

Example 8 (m1 ≫ m2) ‖ (m3 ≫ m4) ‖ (m5 ≫ m6) ≫ m7 ≫ m8 ≫ m9 ‖ m10 ‖ m11
where

m1 = E1@[E11 ⊕ E12 ⊕ E13 ⊕ E14 ⊕ E15];
where

E1 = ”ask− one”; E11 = [sender : PTAc]; E12 = [content : B1];
where B1 = [Hc | h ∈ {Marriott, Hilton, Sheraton}]; end

E13 = [receiver : HBA]; E14 = [reply− with : Hotel− Infor];
E15 = [language : Lucx];

end

162

m2 = E2@[E′

11 ⊕ E′

12 ⊕ E′

13 ⊕ E′

14 ⊕ E′

15];
where

E2 = ”tell”; E21 = [sender : HBA]; E22 = [content : B′′

1];
where B′

1 = [Hc | h ∈ {Marriott, Hilton}]; end

E23 = [receiver : PTAc]; E24 = [in− reply− to : Hotel− Infor];
E25 = [language : Lucx];

end

. . .
m7 = E7@[E′

71 ⊕ E′

72 ⊕ E′

73 ⊕ E′

74 ⊕ E′

75];
where

E7 = ”ask− one”; E71 = [sender : PTAc]; E72 = [content : B′

1 ⊠ B′

2 ⊠ B′

3];
where B′

1 = [Hc | h ∈ {Marriott, Hilton}];
B′

2 = [Ffromc | ffromc ∈ {[Tfl : 10am, Tfa : 13pm, Fn : AC32], [Tfl : 16pm, Tfa : 19pm, Fn : AC38]};
B′

3 = [T3c | t3c ∈ {Oct.3− 10am, Oct.6− 14pm}]; end

E73 = [receiver : PSA]; E74 = [reply− with : Meeting− Time];
E75 = [language : Lucx];

end

m8 = E8@[E81 ⊕ E82 ⊕ E83 ⊕ E84 ⊕ E85];
where

E8 = ”tell”; E81 = [sender : PSA]; E82 = [content : B′′

1 ⊠ B′′

2 ⊠ B′′

3];
where B′′

1 = [Hc | h ∈ {Marriott}];
B′′

2 = [Ffromc | ffromc ∈ {[Tfl : 10am, Tfa : 13pm, Fn : AC32]};
B′′

3 = [T3c | t3c ∈ {Oct.3− 10am}]; end

E83 = [receiver : PTAc]; E84 = [in− reply− to : Meeting− Time];
E85 = [language : Lucx];

end

m9 = E9@[E91 ⊕ E92 ⊕ E93 ⊕ E94 ⊕ E95];
where

E9 = ”commit”; E91 = [sender : PTAc]; E92 = [content : B′′

1];
where B′′

1 = [Hc | h ∈ {Marriott}]; end

E93 = [receiver : HBA]; E94 = [in− reply− to : Hotel− Reserve];
E95 = [language : Lucx];

end

. . .

end

6 Conclusion

We have been exploring Intensional Programming Paradigm asa viable programming
medium for different application domains. In this paper we have discussed our recent
research results in enriching Lucx [2], an Intensional Programming Language, with
coordination constructs for programming multi-agent coordination in a distributed net-
work of agents. We have given the formal syntax and operational semantics for the
coordination constructs in Lucx. The language, thus extended, preserves the original
syntax and semantics of Lucx which itself is a conservative extension of Lucid [2].

There is a huge amount of literature on network models for distributed computing
and most of them can be applied to multi-agent coordination.We are motivated by the
need to simplify the semantics of agent coordination. So we have designed a small

163

number of coordination constructs, for which formal operational semantics could be
given. We permit arbitrary sequential and parallel compositions ofCordeexpressions.
This enables us to express complex transaction activities among agents as well-formed
Lucx expressions. Using the semantics it seems possible to determine the equivalence
of arbitrary coordination expressions.

In introducing the coordination constructs in Lucx, we are motivated by the recent
work of Misra [7]. Yet, there are deep semantic differences in the two approaches. In
our work an atomicCordeis a performative which is a context expression in Lucx. It in-
cludes the service requirements, in addition to a request for service. This contrasts with
the termsite[7], which is a general term for aservice, including function names. There
is a need to investigate the full set of semantic differencesbetween Lucx constructs and
theOrc expressions of Misra, and the suitability of Lucx for wide area computing.

References

1. E. Ashcroft, A. Faustini, R. Jagannathan, W. Wadge.Multidimensional, Declarative Pro-
gramming.Oxford University Press, London, 1995.

2. Vasu S. Alagar, Joey Paquet, Kaiyu Wan.Intensional Programming for Agent Communica-
tion Proceedings of DALT’04, New York, July 2004. (post proceedingsto be published by
LNCS, Springer-Verlog)

3. V.S.Alagar, J.Holliday, P.V.Thiyagarajan, B.Zhou. Agent Types and Their Formal Descrip-
tions. Technical Report, Department of Computer Engineering, Santa Clara University, Santa
Clara, CA, U.S.A., May 2002.

4. FIPA CCL Content Language Specification. FIPA TC C, Document Number: XC00009B
www.fipa.org/specs/fipa00009/XC00009B.html,2001/08/10

5. R. V. Guha.Contexts: A Formalization and Some Applications.Ph.d thesis, Stanford Uni-
versity, February 10,1995.

6. Y. Labrou, T. Finin, and Y. Peng.Agent Communication Languages: The Current Landscape.
IEEE Journal on Intelligent Agents, Amrch/April 1999, pp. 45-52.

7. Jayadev Misra.A Programming Model for the Orchestration of Web ServicesProceed-
ings of the Second International Conference on Software Engineeringand Formal Methods
(SEFM04), Beijing, China, Sep 2004.

8. Joey Paquet.Intensional Scientific ProgrammingPh.D. Thesis, D́epartement d’Informa-
tique, Universite Laval, Quebec, Canada, 1999

9. K. Wan, V.S. Alagar, J. Paquet.Real Time Reactive Programming Enriched with Context.IC-
TAC2004, Guiyang, China, September 2004, Lecture Notes in ComputerScience,3407,Page
387-402, Springer-Verlag.

10. Kaiyu Wan.Lucx: An Intensional Programming Language Enriched With Contexts, Ph.d the-
sis(under preparation), Department of Computer Science, Concordia University, Montreal,
Canada, 2005.

164

