O P-S F N E T - Volume 29, Number 6 - November 15, 2022
The Electronic News Net of the
SIAM Activity Group on Orthogonal Polynomials and Special Functions http://math.nist.gov/opsf

OP-SF Net is distributed to OPSF Activity Group members and non-members alike through the OP-SF Talk listserv.
If you are interested in subscribing to the Newsletter and/or OP-SF Talk, or if you would like to submit a topic to the Newsletter or a contribution to OP-SF Talk, please send an email to the OP-SF Net Editors.

Editors:
Howard S. Cohl howard.cohl@nist.gov Sarah Post
spost@hawaii.edu

Topics:

1. Announcement: OPSFA-17 (June 2024) in Granada, Spain
2. Announcement: Integrable Systems and OP, Cape Town, South Africa
3. Report by Cohl: Special Session at AMS Western Sectional Meeting in Salt Lake City, Utah
4. Report by Marcellán: 2 Days in Orthogonal Polynomials held in Granada, Spain
5. Two remembrances of Steven Zelditch (1953-2022)
5.1. Amir Vig
5.2. Maciej Zworski
6. Preprints in arXiv.org
7. Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)
8. Thought of the Month by Paul Halmos

Calendar of Events:

December 5-10, 2022
Escuela de Invierno de Análisis (Analysis Winter School)
Instituto de Matemáticas, CU, UNAM, Ciudad de México
https://www.eia22.matem.unam.mx/
April 1-2 (Saturday-Sunday), 2023
2023 Spring Eastern Virtual Sectional Meeting, American Mathematical Society, Associate Secretary for the AMS Scientific Program: Steven H. Weintraub, shw2@lehigh.edu.
AMS Special Session on Hypergeometric functions, q-Series and Adjacent Topics, Organized by Howard Cohl, Robert Maier and Roberto S. Costas-Santos, http://www.ams.org/meetings/sectional/2305_progfull.html

April 11-15, 2023
Workshop on Integrable Systems and Orthogonal Polynomials—Numerical and Analytical Perspectives
AIMS South Africa, Muizenberg, Cape Town, South Africa
https://aims.ac.za/event/workshop-on-integrable-systems-and-orthogonal-polynomials-numerical-and-analytical-perspectives/
June 12-21, 2023
Foundations of Computational Mathematics (FoCM 2023), Sorbonne University, Paris, France https://focm2023.org/

Workshops related to our SIAG:
Session II.5, June 15-17, 2023: Random Matrices
Organizers: Ioana Dumitriu, University of Washington, Sheehan Olver, Imperial College
Session III.2, June 19-21,2023: Approximation Theory
Organizers: Albert Cohen, Sorbonne Université
Peter Binev, University of South Carolina, Guergana Petrova, Texas A\&M University
Session III.7, June 19-21, 2023: Special Functions and Orthogonal Polynomials
Organizers: Ana Loureiro, University of Kent,
Paco Marcellán, Universidad Carlos III de Madrid,
Andrei Martínez-Finkelshtein, Baylor University and Universidad de Almería.

Topic \#1 _ OP - SF Net 29.6
 November 15, 2022

From: Miguel A. Piñar (mpinar@ugr.es)
Subject: Announcement: OPSFA-17 (June 2024) in Granada, Spain
$17^{\text {th }}$ International Symposium on Orthogonal Polynomials, Special Functions and Applications, Universidad de Granada, Granada, Spain, June 24-28, 2024.

The $17^{\text {th }}$ Symposium on Orthogonal Polynomials, Special Functions and Applications (OPSFA-17) will take place from June 24 to June 28, 2024, in Granada, Spain. The Institute of Mathematics (IMAG) and the Faculty of Sciences of the University of Granada will support the organization of the symposium. The conference venue will be the Faculty of Sciences of the University of Granada.

The University of Granada is one of the most prominent universities in Spain and a very important source of scientific research. Granada is an iconic Andalusian destination well worth visiting. The city has a wealth of attractions, including UNESCO World Heritage Sites.

More information on the symposium will be provided in due time. All interested colleagues are cordially invited to attend this meeting.

Conferences in the OPSFA series provide a forum for mathematicians, physicists, and computational scientists to communicate recent research results in the areas of orthogonal polynomials and special functions.

The symposium is an event of the SIAM Activity Group on Orthogonal Polynomials and Special Functions. The activity group promotes basic research in orthogonal polynomials and special functions, as well as applications of this subject in other parts of mathematics, and in science and industry. It encourages and supports the exchange of information, ideas, and techniques between workers in this field and other mathematicians and scientists. The activity group also awards the Gábor Szegő Prize every two years to an early-career researcher for outstanding research contributions in the area of orthogonal polynomials and special functions.

Local Organizing Committee:

- Antonia M. Delgado
- Lidia Fernández
- Teresa E. Pérez
- Miguel A. Piñar
- Joaquín Sánchez

Topic \#2

 OP - SF Net 29.6 November 15, 2022From: Kerstin Jordaan (jordakh@unisa.ac.za) and Peter Clarkson (P.A.Clarkson@kent.ac.uk) Subject: Announcement: Integrable Systems and OP, Cape Town, South Africa

Workshop on Integrable Systems and Orthogonal Polynomials:
Numerical and Analytical Perspectives,
April 11-15, 2023
African Institute for Mathematical Sciences (AIMS), Muizenberg, Cape Town, South Africa. Closing date for applications: December 15, 2022.

Figure 1: Muizenberg, South Africa
This workshop will focus on the relationship between integrable systems, in particular the Painlevé equations and discrete Painlevé equations, and orthogonal polynomials from both numerical and analytical perspectives. The Painlevé equations, continuous and discrete, are nonlinear analogs of the classical special functions and form the core of modern special function theory. In recent years various interesting connections between Painlevé equations and orthogonal polynomials have been studied. For example, rational solutions and special function solutions of Painlevé equations have a close relationship with orthogonal polynomials. The relationship between orthogonal polynomials and Painlevé equations has interesting applications, for example to random matrices. From
a numerical perspective, reliable and efficient evaluation of solutions of Painlevé equations poses significant challenges, and several approaches have been proposed in the literature, including initial value and boundary value methods in the complex plane and numerical calculation based on the Riemann-Hilbert formulation. Presentations will include survey type lectures on important developments in the area as well as lectures on recent results and open problems.

Target Audience: Researchers, Postdoctoral Fellows, PhD and Master's students.
Organisers: Kerstin Jordaan (University of South Africa) and Peter Clarkson (University of Kent)
For more information and to express an interest in attending the workshop, please visit the following link.

Academic enquiries: Kerstin Jordaan (jordakh@unisa.ac.za).
Closing date for applications: December 15, 2022.
Topic \#3 _ OP - SF Net 29.6
November 15, 2022

From: Howard Cohl (howard.cohl@nist.gov)
Subject: Report by Cohl: Special Session at AMS Western Sectional Meeting in Salt Lake City, Utah

Figure 2: Surrounding Mountains in Salt Lake City, Utah

On October 22-23, 2022, there was held the Fall AMS Western Sectional Meeting, University of Utah, Salt Lake City, UT, USA. Howard Cohl, NIST, Robert Maier, University of Arizona, and Roberto Costas-Santos, Universidad Loyola Andalusía, organized a special session at the meeting entitled, hypergeometric functions and q-series. The special session was held on Saturday October 22 from $3 \mathrm{pm}-4.30 \mathrm{pm}$ and then again at 9.30am-11 am on Sunday October 23. In the special session there were talks by the following individuals:

Figure 3: Howard Cohl and Robert Maier discussing a planned AMS Contemporary Mathematics Proceedings on Hypergeometric functions, q-series and generalizations with Sergei Gelfand, Publisher, AMS.

- Howard S. Cohl, National Institute of Standards and Technology, Gaithersburg, Maryland (working remotely out of Ladera Ranch, California)
Representations and special values for nonsymmetric and symmetric Poisson kernels of the Askey-Wilson polynomials
- Nicholas S. Witte, Victoria University of Wellington, Wellington, New Zealand A novel extension of the extreme value distributions - the Fréchet, Weibull and Gumbel - and infinite products of Gauß hypergeometric functions.
- Robert S. Maier, University of Arizona, Tucson, Arizona

From Triangular Recurrences to Operator Ordering Identities

- Timothy J. Huber*, James Mc Laughlin, Dongxi Ye, University of Texas Rio Grande Valley, Edinburg, Texas (* indicates the speaker)
Lacunary eta quotients with identically vanishing coefficients
- James Brandt Kronholm, University of Texas Rio Grande Valley, Edinburg, Texas Crank generating functions for partitions with bounded part size and number of parts
- Sergei K. Suslov, Arizona State University, Tempe, Arizona

The role of hypergeometric functions in the discovery of wave mechanics
The organization of the meeting, led by Michelle Ann Manes, Department of Mathematics, University of Hawaii, Honolulu, and the staff from the Department of Mathematics, University of Utah

Figure 4: Counterclockwise around the table starting from the right: Nicholas Witte, Sergei Suslov, Howard Cohl, and Robert Maier relaxing before a Japanese meal. Photo taken by Roman Suslov.
was superb. They provided an endless stream of coffee and snacks which was nice. It was a great opportunity to move across the country and enjoy some fresh air, talk and catch up, one on one with colleagues. There was a fantastic invited address by Bhargav Bhatt, University of Michigan entitled Algebraic geometry in mixed characteristic.
The Special Session attendees converged on Salt Lake City from around the country. Robert Maier flew into Salt Lake City for the first time in decades on a direct flight from Tucson, Arizona. Tim Huber and Brandt Kronholm, departed the University of Texas Rio Grande Valley, Edinburg, Texas, by air through Dallas, Texas. Howard Cohl departed his remote work location in Orange County, California and conveniently flew out of John Wayne Airport in Santa Ana, California. Sergei Suslov and his son Roman completed a 12 hour drive (almost due north) with his devoted son Roman in his Tacoma truck from Tempe, Arizona (near Phoenix). Roman and Sergei were able to spend some enjoyable one on one time together and the rest of us were also able to enjoy Roman's big-hearted (and often usefu!!) company as well.

Fortunately, Nicholas Witte, a professor and special functions savant from the School of Mathematics and Statistics of Victoria University of Wellington, New Zealand attended the special session in Salt Lake City. FYI, Wellington is the capital of New Zealand. He was nearing the end of his one year sabbatical visit to the United States in Lubbock, Texas (or West Texas according to the locals). His US visit started on October $21^{\text {st }} 2021$ at Texas Tech University, arriving in the lull between the delta and omicron waves. According to him, this was a bit of a leap into the unknown. His one-year visiting position at Texas Tech University was arranged for me by a colleague (Lu Wei) in the Department of Computer Science which was a novel experience for him, but he was already convinced that applications arising from outside of arbitrary boundaries of mathematical disciplines can have a profound influence back on the theory. One of the clear influences on the fields he is active in has been the work of Donald Knuth in enumerative combinatorics and representation theory. He has
noted that the R-S-K correspondence comes immediately to mind. The meeting in Salt Lake City was just a little step away from Texas in relative distance, and also the special session topics were very close in various ways to his mathematical interests. Witte also presented, in person, at the hybrid Baylor Analysis Fest in honor of Lance Littlejohn, which Cohl also presented at, but virtually (see OPSF-Net Volume 29, Number 4 - July 15, 2022 for a report by Andrei Martínez-Finkelshtein and Fritz Gesztesy on this meeting). We will miss Nicholas for the time being!

Topic \#4 _ OP - SF Net 29.6 __ November 15, 2022

From: Paco Marcellán (pacomarc@ing.uc3m.es)
Subject: Report by Marcellán: 2 Days in Orthogonal Polynomials held in Granada, Spain
In November 10-11, the workshop 2 Days in Orthogonal Polynomials held in Granada. It was organized by the research group on Orthogonality and Approximation (GOYA) of such a university. This is the third edition of a program of joint meetings by University of Almería and University of Granada.

Figure 5: Participants at the Two Days in Orthogonal Polynomials Workshop, Granada, Spain.

35 people, coming from Spanish and Portuguese universities, attended the meeting whose aim was to share recent trends on orthogonal polynomials and special functions and their connections with Potential Theory, Complex Analysis, Linear Algebra, as well as their applications in Optics and Mathematical Physics. The following twelve plenary lectures are delivered. They cover topics on the theory of orthogonal polynomials in several frameworks (multivariate, on the real line, on the unit circle, Sobolev, matrix, exceptional), asymptotic analysis, moment matrices, equilibrium for the distribution of points on surfaces, inequalities for polynomials, among others.

- Amílcar Branquinho, Universidade de Coimbra, Portugal Applications of quadratic decomposition for bivariate orthogonal polynomials
- María José Cantero Universidad de Zaragoza

Wall polynomials: a tool for Khrushchev's formula

- Mirta M. Castro Smirnova, Universidad de Sevilla

Time-and-band limiting for matrix valued orthogonal polynomials

- Carmen Escribano, Universidad Politécnica de Madrid

Generalized eigenvalues of moment matrices, density of polynomials density and support of of measures

- Chelo Ferreira, Universidad de Zaragoza

Convergent and asymptotic expansions of Laplace transforms

- María Ángeles García Ferrero, Universidad de Barcelona

Exceptional Jacobi polynomials

- Fátima Lizarte, Universidad de Cantabria

On the minimal logarithmic energy on the 2-sphere

- Juan Francisco Mañas, Universidad de Almería

Mehler-Heine type asymptotics for families of orthogonal polynomials

- Francisco Marcellán, Universidad Carlos III de Madrid

Orthogonal polynomials and truncated normal distribution

- Misael E. Marriaga, Universidad Rey Juan Carlos

Zernike-Sobolev polynomials and orthogonal expansions on the unit ball

- Ramón Orive, Universidad de La Laguna

From Orthogonal Polynomials to Riesz Equilibrium Problems. The case of unbounded conductors

- Joaquim Ortega Cerdà, Universidad de Barcelona

Polynomial hypercontrative inequalities
A poster session, where young researchers announced preliminary results of their doctoral dissertations, was the opportunity to know the progress in their scientific work.

The meeting was very well organized and the participants enjoyed the friendly atmosphere in the site of the meeting, the Carmen de la Victoria, a very beautiful guest house of the University of Granada located just in front of the Alhambra Palace.

Topic \#5 _ OP - SF Net 29.6 ___ November 15, 2022

From: OP-SF Net Editors
Subject: Two remembrances of Steven Zelditch (1953-2022)

Two remembrances of
 Steven Zelditch

(September 13, 1953—September 11, 2022)

by Vig and Zworski

Below are two remembrances of Steve Zelditch from some of his colleagues:

Amir Vig and Maciej Zworski.

For a link to Zelditch's obituary, see:
https://news.northwestern.edu/stories/2022/09/mathematics-pioneer-steve-zelditch-dies-at-68/.

Amir Vig, Postdoctoral Assistant Professor, Department of Mathematics, University of Michigan, Ann Arbor, Michigan.

Steven Zelditch Memoriam

Steve Zelditch was a pioneering mathematician who transformed the fields of microlocal analysis, spectral theory and geometry by forging deep connections between distant areas of mathematics. He sadly passed away on September $9^{\text {th }}, 2022$ on the final day of a conference held in his honor. Steve was the advisor of my own PhD advisor, Hamid Hezari, making him my academic grandfather. I looked up to Steve in many ways and his enthusiasm for mathematics has been a true inspiration to me throughout my time in academia.

Steve Zelditch's most important contributions to mathematics were probably his proof of the Quantum Ergodicity Theorem, the Catlin-Tian-Yau-Zeldtich expansion of Bergman kernels and his work on the inverse spectral problem. Zelditch's Quantum Ergodicity Theorem makes precise the Bohr correspondence principle in a chaotic setting by using ergodic properties of the underlying classical Hamiltonian flow to show that high energy eigenfunctions (thought of as quantum objects) equidistribute in phase space. The applications of this theorem and its successors (eg. quantum ergodic restriction theorems) have had numerous applications in spectral geometry. For example, they have been used to study nodal sets and domains, L^{p} norms of eigenfunctions and more general spectral asymptotics. This work led to the quantum unique ergodicity (QUE) conjecture of Rudnick-Sarnak, which remains wide open in the general setting of negative curvature. In 2010, Lindenstrauss won the Fields Medal in part for his work on QUE in the very special case of arithmetic surfaces with an additional algebraic symmetry. Zelditch's asymptotic expansion of the Bergman kernel gave rise to a new arena in geometry, in which microlocal and semiclassical methods can be used to study Kähler manifolds. Zelditch has also contributed more than anyone to answering the question "Can one hear the shape of a drum?" which was popularized by Mark Kac in 1966. His seminal 2009 Annals paper answered the question affirmatively in the case of analytic planar domains with mirror symmetry and mild dynamical assumptions. In 2019, together with Hamid Hezari, he showed that ellipses of small eccentricity are completely determined by their Laplace spectrum amongst all smooth, bounded planar domains, which is undoubtedly the strongest result to date in the direction of Kac's original problem.

Steve was a prolific writer and had an extraordinary love for mathematics. I remember asking him once if there was any area of math in which he was not interested, to which he replied "no." He found elegant and powerful ways of bridging analysis, geometry and probability. His legacy and profound impact on mathematics will continue to inspire mathematicians for generations to come. We will miss him greatly.

Maciej Zworski, Department of Mathematics, University of California, Berkeley.

Steve Zelditch who passed away on September 9 this year was one of the leaders in global harmonic analysis and microlocal analysis and their applications to spectral geometry. By providing the first available proof of the quantum ergodicity theorem, stated in the Soviet Union by Shnirelman in 1973, and by popularizing and developing that theorem in the West, he started the field of mathematical quantum chaos. He also made profound contributions to complex geometry by applying microlocal methods, in particular results of Boutet de Monvel-Sjöstrand, to the study of Bergman kernel asymptotics for powers of positive line bundles over Kähler manifolds. These asymptotics, now known as Catlin-Tian-Yau-Zelditch, have had many applications since their introduction in 1998.

Figure 6: Steven Zelditch.

One particular direction, was the study of random sections of these line bundles, conducted with many collaborators, especially Shiffman. In spectral geometry one line of research was his collaborations with Sogge and others on the relation between the size of eigenfunctions of the Laplacian and dynamical properties of the geodesic flow. The most recent spectacular result of Zelditch, culminating many years of work and interest, is his theorem with Hezari showing that ellipses sufficiently close to the circle are spectrally determined among domains in the plane (in the sense of the celebrated question "Can you hear the shape of the drum?" We can "hear" ellipses). We have lost a great and charismatic figure in geometric analysis.

Topic \#6 _ OP - SF Net 29.6 _ November 15, 2022

From: OP-SF Net Editors
Subject: Preprints in arXiv.org
The following preprints related to the fields of orthogonal polynomials and special functions were posted or cross-listed to one of the subcategories of arXiv.org during September and October 2022. This list has been separated into two categories.

OP-SF Net Subscriber E-Prints

http://arxiv.org/abs/2209.01523
On the Perturbed Second Painlevé Equation
Joshua Holroyd, Nalini Joshi
http://arxiv.org/abs/2209.01787
A348456(4) $=7157114189$
Manuel Kauers, Christoph Koutschan, George Spahn
http://arxiv.org/abs/2209.03399
An Operational Calculus Generalization of Ramanujan's Master Theorem Zachary P. Bradshaw, Christophe Vignat
http://arxiv.org/abs/2209.03506
Spectral properties related to generalized complementary Romanovski-Routh polynomials Vinay Shukla, A. Swaminathan
http://arxiv.org/abs/2209.04615
On classical orthogonal polynomials on lattices and some characterization theorems
K. Castillo, D. Mbouna, J. Petronilho
http://arxiv.org/abs/2209.06010
Moments of Moments of the Characteristic Polynomials of Random Orthogonal and Symplectic Matrices
Tom Claeys, Johannes Forkel, Jonathan P. Keating
http://arxiv.org/abs/2209.06745
Composition-theoretic series in partition theory
Robert Schneider, Andrew V. Sills
http://arxiv.org/abs/2209.06765
Discrete Rearrangements and the Polya-Szego Inequality on Graphs
Stefan Steinerberger
http://arxiv.org/abs/2209.07128
Differential and Difference Equations for Recurrence Coefficients of Orthogonal Polynomials with a Singularly Perturbed Laguerre-type Weight
Chao Min, Yuan Cheng, Yang Chen
http://arxiv.org/abs/2209.07253
Weak and strong confinement in the Freud random matrix ensemble and gap probabilities Tom Claeys, Igor Krasovsky, Oleksandr Minakov
http://arxiv.org/abs/2209.07433
R_{I} biorthogonal polynomials of Hahn type
Luc Vinet, Meri Zaimi, Alexei Zhedanov
http://arxiv.org/abs/2209.07713
The Ariki-Koike algebras and Rogers-Ramanujan type partitions
Shane Chern, Zhitai Li, Dennis Stanton, Ting Xue, Ae Ja Yee
http://arxiv.org/abs/2209.07767
On the moments of the variance-gamma distribution
Robert E. Gaunt
http://arxiv.org/abs/2209.07887
Error bounds for the asymptotic expansion of the partition function
Koustav Banerje, Peter Paule, Cristian-Silviu Radu, Carsten Schneider
http://arxiv.org/abs/2209.07995
Charting the q-Askey scheme. II. The q-Zhedanov scheme Tom H. Koornwinder
http://arxiv.org/abs/2209.08186
Sobolev orthogonal polynomials on the conic surface
Lidia Fernandez, Teresa Perez, Miguel Pinar, Yuan Xu
http://arxiv.org/abs/2209.08878
Some elementary aspects of q-Fibonacci and q-Lucas polynomials Johann Cigler
http://arxiv.org/abs/2209.09213
Bethe ansatz diagonalization of the Heun-Racah operator
Pierre-Antoine Bernard, Gauvain Carcone, Nicolas Crampe, Luc Vinet
http://arxiv.org/abs/2209.10515
Takasaki's rational fourth Painlevé-Calogero system and geometric regularisability of algebroPainlevé equations
Galina Filipuk, Alexander Stokes
http://arxiv.org/abs/2209.10716
Uniform asymptotic expansions for Gegenbauer polynomials and related functions via differential equations having a simple pole
T. M. Dunster
http://arxiv.org/abs/2209.10725
Para-Bannai-Ito polynomials
Jonathan Pelletier, Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/2209.10727
Continuous -1 Hypergeometric Orthogonal Polynomials
Jonathan Pelletier, Luc Vinet, Alexei Zhedanov
http://arxiv.org/abs/2209.12239
Unimodality of ranks and a proof of Stanton's conjecture
Kathrin Bringmann, Siu Hang Man, Larry Rolen
http://arxiv.org/abs/2209.12353
New Finite Type Multi-Indexed Orthogonal Polynomials Obtained From State-Adding Darboux Transformations
Satoru Odake
http://arxiv.org/abs/2209.12658
Applications of Lipschitz summation formula and a generalization of Raabe's cosine transform Atul Dixit, Rahul Kumar
http://arxiv.org/abs/2209.13472
Three new identities for the sixth-order mock theta functions
Eric T. Mortenson
http://arxiv.org/abs/2209.14153
An inequality characterizing convex domains
Stefan Steinerberger
http://arxiv.org/abs/2209.14561
Phase function methods for second order linear ordinary differential equations with turning points James Bremer
http://arxiv.org/abs/2209.15302
Enumeration of permutations by the parity of descent position
Qiongqiong Pan, Jiang Zeng
http://arxiv.org/abs/2209.15372
Matrix Jacobi Biorthogonal Polynomials via Riemann-Hilbert problem
Amílcar Branquinho, Ana Foulquié-Moreno, Assil Fradi, Manuel Mañas
http://arxiv.org/abs/2209.15495
The constant term algebra of type A : the Structure
Guoce Xin, Chen Zhang, Yue Zhou, Yueming Zhong
http://arxiv.org/abs/2209.15636
Does solitary wave solution persist for the long wave equation with small perturbations?
Hang Zheng, Y-H. Xia
http://arxiv.org/abs/2210.00082
Asymptotic analysis of a family of Sobolev orthogonal polynomials related to the generalized Charlier polynomials
Diego Dominici, Juan José Moreno Balcázar
http://arxiv.org/abs/2210.00360
Lower bound for cyclic sums with one-sided maximal averages in denominators
Sergey Sadov
http://arxiv.org/abs/2210.00797
Asymptotics of matrix valued orthogonal polynomials on $\sim[-1,1]$
Alfredo Deaño, Arno B. J. Kuijlaars, Pablo Román
http://arxiv.org/abs/2210.00977
Extended commonality of paths and cycles via Schur convexity
Jang Soo Kim, Joonkyung Lee
http://arxiv.org/abs/2210.01350
Partial degeneration of finite gap solutions to the Korteweg-de Vries equation: soliton gas and scattering on elliptic background
Marco Bertola, Robert Jenkins, Alexander Tovbis
http://arxiv.org/abs/2210.01949
On Complex Analytic tools, and the Holomorphic Rotation methods
Ronald R. Coifman, Jacques Peyrière, Guido Weiss
http://arxiv.org/abs/2210.02246
Transmutation Method and Boundary-Value Problems for Singular Elliptic Equations
Valeriy V. Katrakhov, Sergey M. Sitnik
http://arxiv.org/abs/2210.03391
On cellular rational approximations to $\zeta(5)$
Francis Brown, Wadim Zudilin
http://arxiv.org/abs/2210.04659
Finite trigonometric sums arising from Ramanujan's theta functions
Bruce C. Berndt, Sun Kim, Alexandru Zaharescu
http://arxiv.org/abs/2210.06387
On intertwining of maxima of sum of translates functions with nonsingular kernels Bálint Farkas, Béla Nagy, Szilárd Gy. Révész
http://arxiv.org/abs/2210.07303
Elliptic finite-band potentials of a non-self-adjoint Dirac operator
Gino Biondini, Xu-Dan Luo, Jeffrey Oregero, Alexander Tovbis
http://arxiv.org/abs/2210.07614
Precise asymptotics with log-periodic term in an elementary optimization problem Sergey Sadov
http://arxiv.org/abs/2210.08208
A new type of degenerate poly-Euler polynomials
Yuankui Ma, Taekyun Kim, Hongze Li
http://arxiv.org/abs/2210.08247
A sparse spectral method for fractional differential equations in one-spacial dimension Ioannis P. A. Papadopoulos, Sheehan Olver
http://arxiv.org/abs/2210.08575
Laguerre-Freud Equations for three families of hypergeometrical discrete orthogonal polynomials Itsaso Fernández-Irisarri, Manuel Mañas
http://arxiv.org/abs/2210.09811
A Direct Method of Moving Planes for Logarithmic Schrödinger Operator Rong Zhang, Vishvesh Kumar, Michael Ruzhansky
http://arxiv.org/abs/2210.10029
Concentration inequalities for Paley-Wiener spaces
Syed Husain, Friedrich Littmann
http://arxiv.org/abs/2210.10727
Bidiagonal factorization of tetradiagonal matrices and Darboux transformations
Amílcar Branquinho, Ana Foulquié-Moreno, Manuel Mañas
http://arxiv.org/abs/2210.10728
Positive bidiagonal factorization of tetradiagonal Hessenberg matrices
Amílcar Branquinho, Ana Foulquié-Moreno, Manuel Mañas
http://arxiv.org/abs/2210.10748
Identities on Zagier's rank two examples for Nahm's conjecture
Liuquan Wang
http://arxiv.org/abs/2210.12269
Variations on the Missionaries and Cannibals Problem
George Spahn, Doron Zeilberger
http://arxiv.org/abs/2210.13245
The AFLT q-Morris constant term identity
Yue Zhou
http://arxiv.org/abs/2210.13469
Symmetric function generalizations of the q-Baker-Forrester ex-conjecture and Selberg-type integrals
Guoce Xin, Yue Zhou
http://arxiv.org/abs/2210.13731
Discrete orthogonality of the polynomial sequences in the q-Askey scheme
Luis Verde-Star
http://arxiv.org/abs/2210.13928
A new property of exceptional orthogonal polynomials
M. M. Castro, F. A. Grünbaum
http://arxiv.org/abs/2210.14180
The B2 harmonic oscillator with reflections and superintegrability
Charles F. DunkI
http://arxiv.org/abs/2210.14693
On the positivity of a certain function related with the Digamma function
K. Castillo
http://arxiv.org/abs/2210.15260
An algebraic treatment of the Pastro polynomials on the real line Vutha Vichhea Chea, Luc Vinet, Meri Zaimi, Alexei Zhedanov
http://arxiv.org/abs/2210.16603
Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube
Da-Wei Yang, Zihao Xu, Yan-Quan Feng, Jaeun Lee
http://arxiv.org/abs/2210.16793
Approximation on hexagonal domains by Taylor-Abel-Poisson means
Jürgen Prestin, Viktor Savchuk, Andrii Shidlich
http://arxiv.org/abs/2210.16922
Asymptotic root distribution of Charlier polynomials with large negative parameter Petr Blaschke, František Štampach
http://arxiv.org/abs/2210.16982
Computation of parabolic cylinder functions having complex argument
T. M. Dunster, A. Gil, J. Segura
http://arxiv.org/abs/2210.17502
Global Rational Approximations of Functions With Factorially Divergent Asymptotic Series
N. Castillo, O. Costin, R.D. Costin

Other Relevant OP-SF E-Prints

http://arxiv.org/abs/2209.00212
Failure of L^{p} Symmetry of Zonal Spherical Harmonics
Gabriel Beiner, William Verreault
http://arxiv.org/abs/2209.00234
Mock theta functions and characters of $\mathrm{N}=3$ superconformal modules IV
Minoru Wakimoto
http://arxiv.org/abs/2209.01669
Lambda-invariants of Mazur-Tate elements attached to Ramanujan's tau function and congruences with Eisenstein series
Anthony Doyon, Antonio Lei
http://arxiv.org/abs/2209.01689
The Carlson-type zero-density theorem for the Beurling zeta function
Szilárd Gy. Révész
http://arxiv.org/abs/2209.01890
A Simple Proof of the Riemann Hypothesis
Hatem Fayed
http://arxiv.org/abs/2209.02411
A Riemann Hilbert approach to the study of the generating function associated to Pearcey process Thomas Chouteau
http://arxiv.org/abs/2209.02516
On a matrix element representation of the GKZ hypergeometric functions
A. A. Gerasimov, D. R. Lebedev, S. V. Oblezin
http://arxiv.org/abs/2209.02689
A fast-convolution based space-time Chebyshev spectral method for peridynamic models
Luciano Lopez, Sabrina Francesca Pellegrino
http://arxiv.org/abs/2209.02843
Periods, the meromorphic 3D-index and the Turaev-Viro invariant
Stavros Garoufalidis, Campbell Wheeler
http://arxiv.org/abs/2209.03023
On the Hurwitz-type zeta function associated to the Lucas sequence
Lejla Smajlović, Zenan Šabanac, Lamija Šćeta
http://arxiv.org/abs/2209.03301
On Abel's problem and Gauss congruences
É. Delaygue, T. Rivoal
http://arxiv.org/abs/2209.03531
Orthogonal polynomial duality and unitary symmetries of multi-species $\operatorname{ASEP}(q, \theta)$ and higher-spin vertex models via *-bialgebra structure of higher rank quantum groups
Chiara Franceschini, Jeffrey Kuan, Zhengye Zhou
http://arxiv.org/abs/2209.03590
Volumes of spheres and special values of zeta functions of \mathbb{Z} and $\mathbb{Z} / n \mathbb{Z}$
Anders Karlsson, Massimiliano Pallich
http://arxiv.org/abs/2209.04202
The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators
Markus Faulhuber, Anupam Gumber, Irina Shafkulovska
http://arxiv.org/abs/2209.04658
The screw line of the Riemann zeta-function
Masatoshi Suzuki
http://arxiv.org/abs/2209.04858
Integral expressions for Schur multiple zeta values
Minoru Hirose, Hideki Murahara, Tomokazu Onozuka
http://arxiv.org/abs/2209.05006
Higher genus polylogarithms on families of algebraic curves
Takashi Ichikawa
http://arxiv.org/abs/2209.05169
On the application of the generating series for nonlinear systems with polynomial stiffness
Tristan Gowdridge, Nikolaos Dervilis, Keith Worden
http://arxiv.org/abs/2209.05439
A Fourier integral formula for logarithmic energy
Leonhard Frerick, Jürgen Müller, Tobias Thomaser
http://arxiv.org/abs/2209.06150
AGT correspondence, ($q-$)Painlevé equations and matrix models
A. Mironov, V. Mishnyakov, A. Morozov, Z. Zakirova
http://arxiv.org/abs/2209.06574
Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution
K. A. Penson, K. Górska, A. Horzela, G. H. E. Duchamp
http://arxiv.org/abs/2209.06599
The dihedral Dunkl-Dirac symmetry algebra with negative Clifford signature
Alexis Langlois-Rémillard
http://arxiv.org/abs/2209.06770
Parametric Apéry-type Series and Hurwitz-type Multiple Zeta Values
Masanobu Kaneko, Weiping Wang, Ce Xu, Jianqiang Zhao
http://arxiv.org/abs/2209.07434
The lambda extensions of the Ising correlation functions $C(M, N)$
S. Boukraa, J-M. Maillard
http://arxiv.org/abs/2209.08047
Prime divisors of ℓ-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level ℓ Pieter Moree, Pietro Sgobba
http://arxiv.org/abs/2209.08300
Subclass of bi-univalent function associated to Chebyshev polynomial
G. M. Birajdar, N. D. Sangle
http://arxiv.org/abs/2209.08481
Hörmander's L^{2}-method, $\bar{\partial}$-problem and polyanalytic function theory in one complex variable Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa
http://arxiv.org/abs/2209.08913
Triple product integrals and Rankin-Selberg L-functions
András Biró
http://arxiv.org/abs/2209.09849
On The Global Renormalization and Regularization of Several Complex Variable Zeta Functions by Computer
V. C. Bui, V. Hoang Ngoc Minh, V. Nguyen Dinh, Q. H. Ngo
http://arxiv.org/abs/2209.09859
Modified Macdonald polynomials and the multispecies zero range process: II
Arvind Ayyer, Olya Mandelshtam, James B. Martin
http://arxiv.org/abs/2209.10135
Vector-valued orthogonal modular forms
Shouhei Ma
http://arxiv.org/abs/2209.10502
β-function of the level-zero Gross-Neveu model
Dmitri Bykov
http://arxiv.org/abs/2209.10522
A Prime Power Equation
Timothy Redmond, Charles Ryavec
http://arxiv.org/abs/2209.10990
Polynomial Moments with a weighted Zeta Square measure on the critical line
Sébastien Darses, Erwan Hillion
http://arxiv.org/abs/2209.11009
Exterior extension problems for strongly elliptic operators: solvability and approximation using fundamental solutions
Vitaly Kalinin, Alexander Shlapunov
http://arxiv.org/abs/2209.11075
Cyclotomic valuation of q-Pochhammer symbols and q-integrality of basic hypergeometric series B. Adamczewski, J. P. Bell, É. Delaygue, F. Jouhet
http://arxiv.org/abs/2209.11114
Orthogonal polynomial duality of a two-species asymmetric exclusion process
Danyil Blyschak, Olivia Burke, Jeffrey Kuan, Dennis Li, Sasha Ustilovsky, Zhengye Zhou
http://arxiv.org/abs/2209.11863
A Meyer-Vietoris formula for the determinant of the Dirichlet-to-Neumann operator on Riemann surfaces
Richard A. Wentworth
http://arxiv.org/abs/2209.11874
The cubic Pell equation L-function
Dorian Goldfeld, Gerhardt Hinkle
http://arxiv.org/abs/2209.12175
The Ihara expression of a generalization of the weighted zeta function on a finite digraph Ayaka Ishikawa
http://arxiv.org/abs/2209.12294
On large sieve inequalities involving pth powers of trigonometric polynomials
Saulius Norvidas
http://arxiv.org/abs/2209.12719
An analogue of Siegel's determinant
Tapani Matala-aho
http://arxiv.org/abs/2209.12768
The mixed mock modularity of a new U-type function related to the Andrews-Gordon identities Nikolay Borozenets
http://arxiv.org/abs/2209.13068
On the Su-Schrieffer-Heeger model of electron transport: low-temperature optical conductivity by the Mellin transform
Dionisios Margetis, Alexander B. Watson, Mitchell Luskin
http://arxiv.org/abs/2209.13257
Zeta distributions generated by Dirichlet series and their (quasi) infinite divisibility
Takashi Nakamura
http://arxiv.org/abs/2209.13843
Determinants of Riemann operators on Quillen's higher K-groups: periodicity Nobushige Kurokawa, Hidekazu Tanaka
http://arxiv.org/abs/2209.13854
On the Northcott property of Dedekind zeta functions
Xavier Généreux, Matilde Lalín
http://arxiv.org/abs/2209.14103
Some extensions of classes involving pair of weights related to the boundedness of multilinear commutators associated to generalized fractional integral operators
Fabio Berra, Gladis Pradolini, Jorgelina Recchi
http://arxiv.org/abs/2209.14428
On Pidduck polynomials and zeros of the Riemann zeta function
Ori J. Ganor
http://arxiv.org/abs/2209.14438
Kontsevich's star-product up to order 7 for affine Poisson brackets: where are the Riemann zeta values?
Ricardo Buring, Arthemy V. Kiselev
http://arxiv.org/abs/2209.14625
On the properties of invariant functions
Zhi-Hong Sun
http://arxiv.org/abs/2209.14665
Covering models of the asymmetric quantum Rabi model: η-shifted non-commutative harmonic oscillators
Cid Reyes-Bustos, Masato Wakayama
http://arxiv.org/abs/2210.00668
Multiple Scale Asymptotics of Map Enumeration
Nicholas Ercolani, Joceline Lega, Brandon Tippings
http://arxiv.org/abs/2210.01331
Double series for π and their q-analogues
Chuanan Wei, Guozhu Ruan
http://arxiv.org/abs/2210.01871
The modularity of Siegel's zeta functions
Kazunari Sugiyama
http://arxiv.org/abs/2210.02027
The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution
Yassine El Maazouz, Jim Pitman
http://arxiv.org/abs/2210.02280
Mock theta functions and indefinite modular forms II
Minoru Wakimoto
http://arxiv.org/abs/2210.02294
Infinitely many zeros of additively twisted L-functions on the critical line Doyon Kim
http://arxiv.org/abs/2210.02817
The reducible double confluent Heun equation and a general symmetric unfolding of the origin Tsvetana Stoyanova
http://arxiv.org/abs/2210.02858
Analytical expressions for the exact curved surface area of a hemiellipsoid via Mellin-Barnes type contour integration
M. A. Pathan, M. I. Qureshi, Javid Majid
http://arxiv.org/abs/2210.03035
Quadratic enrichment of the logarithmic derivative of the zeta function Margaret Bilu, Wei Ho, Padmavathi Srinivasan, Isabel Vogt, Kirsten Wickelgren
http://arxiv.org/abs/2210.03179
Optimal Chebyshev Smoothers and One-sided V-cycles
Malachi Phillips, Paul Fischer
http://arxiv.org/abs/2210.03302
A method for constructing Weierstrass elliptic function solutions and their degenerated solutions of the mKdV equation
Na Sirendaoreji
http://arxiv.org/abs/2210.03503
A note on n-divisible positive definite functions
Saulius Norvidas
http://arxiv.org/abs/2210.03536
The thermodynamic limit of an ideal Bose gas by asymptotic expansions and spectral ζ-functions Daniel Alexander Weiss
http://arxiv.org/abs/2210.03616
Evaluation of the multiple zeta values $\zeta(2, \ldots, 2,4,2, \ldots, 2)$ via double zeta values, with applications to period polynomial relations and to multiple t values
Steven Charlton, Adam Keilthy
http://arxiv.org/abs/2210.04204
Lasso trigonometric polynomial approximation for periodic function recovery in equidistant points Congpei An, Mou Cai
http://arxiv.org/abs/2210.05445
Borel (α, β)-multitransforms and Quantum Leray-Hirsch: integral representations of solutions of quantum differential equations for \mathbb{P}^{1}-bundles
Giordano Cotti
http://arxiv.org/abs/2210.05536
Novel Closed-form Point Estimators for the Beta Distribution
Piao Chen, Xun Xiao
http://arxiv.org/abs/2210.06253
Holomorphic Eisenstein series of rational weights and special values of Gamma function Xiao-Jie Zhu
http://arxiv.org/abs/2210.06768
Rational function approximations of the special function $e^{x} E_{1}(x)$ and applications to irrationality of Euler-Gompertz constant δ
Naoki Murabayashi, Hayato Yoshida
http://arxiv.org/abs/2210.07244
Asymptotic Properties of Stieltjes Constants
Krzysztof Maślanka
http://arxiv.org/abs/2210.07341
Harmonic Maass forms associated with CM newforms
Stephan Ehlen, Yingkun Li, Markus Schwagenscheidt
http://arxiv.org/abs/2210.07579
Summation from the viewpoint of distributions
Su Hu, Min-Soo Kim
http://arxiv.org/abs/2210.07608
Pell's equation, sum-of-squares and equilibrium measures of a compact set
Jean-Bernard Lasserre
http://arxiv.org/abs/2210.07964
Analytical expression for the exact curved surface area of a frustum of hemiellipsoid, through hypergeometric function approach
M. A. Pathan, M. I. Qureshi, Javid Majid
http://arxiv.org/abs/2210.08017
An integral transform for quantum amplitudes
Jack C. Straton
http://arxiv.org/abs/2210.08446
Analytical expression for the exact curved surface area and volume of a hyperboloid of one sheet via Mellin-Barnes type contour integration
M. A. Pathan, M. I. Qureshi, Javid Majid
http://arxiv.org/abs/2210.08683
A Hörmander-Fock space
Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini, Daniele C. Struppa
http://arxiv.org/abs/2210.08712
Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected (n, m)-Point Functions, and Double Hurwitz Numbers
Zhiyuan Wang, Chenglang Yang
http://arxiv.org/abs/2210.08789
Symmetric generating functions and Euler-Stirling statistics on permutations
Emma Yu Jin
http://arxiv.org/abs/2210.09123
From Fourier series to infinite product representations of π and infinite-series forms for its positive powers
Jean-Christophe Pain
http://arxiv.org/abs/2210.09736
Spectral solver for Cauchy problems in polar coordinates using discrete Hankel transforms
Rundong Zhou, Nicolas Grisouard
http://arxiv.org/abs/2210.09882
The random Weierstrass zeta function I. Existence, uniqueness, fluctuations
Mikhail Sodin, Aron Wennman, Oren Yakir
http://arxiv.org/abs/2210.10245
A potential system with infinitely many critical periods Jihua Wang
http://arxiv.org/abs/2210.10450
On Formal Series Solutions To 4th-order Quadratic Homogeneous Differential Equations And Their Convergence
Tatsuya Hosoi
http://arxiv.org/abs/2210.10942
Lecture notes on Legendre polynomials: their origin and main properties
F. M. S. Lima
http://arxiv.org/abs/2210.11286
Bijective proofs of some coinversion identities related to Macdonald polynomials
Nicholas A. Loehr
http://arxiv.org/abs/2210.11732
Number of \mathbb{F}_{q}-points on Diagonal hypersurfaces and hypergeometric function
Sulakashna, Rupam Barman
http://arxiv.org/abs/2210.11938
Depth two polylogarithms can be expressed via $\mathrm{Li}_{n-1,1}$
Steven Charlton, Herbert Gangl, Danylo Radchenko, Daniil Rudenko
http://arxiv.org/abs/2210.12534
Toda lattice with constraint of type B
I. Krichever, A. Zabrodin
http://arxiv.org/abs/2210.12680
A functional realization of the Gelfand-Tsetlin base
D.V. Artamonov
http://arxiv.org/abs/2210.13174
Special Functions for Hyperoctahedral Groups Using Bosonic, Trigonometric Six-Vertex Models
Ben Brubaker, Will Grodzicki, Andrew Schultz
http://arxiv.org/abs/2210.13460
Spectrum completion and inverse Sturm-Liouville problems
Vladislav V. Kravchenko
http://arxiv.org/abs/2210.13479
New Instantons for Matrix Models
Marcos Marino, Ricardo Schiappa, Maximilian Schwick
http://arxiv.org/abs/2210.13520
Gosper's algorithm and Bell numbers
Robert Dougherty-Bliss
http://arxiv.org/abs/2210.13993
Appell-Lauricella hypergeometric functions over finite fields and algebraic varieties
Akio Nakagawa
http://arxiv.org/abs/2210.14130
Trigonometric inequalities and the Riemann zeta-function
Pace P. Nielsen
http://arxiv.org/abs/2210.14344
A Prym Hypergeometric
Alessio Corti, Giulia Gugiatti, Fernando Rodriguez Villegas
http://arxiv.org/abs/2210.14394
Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions
Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto
http://arxiv.org/abs/2210.14464
Symmetric and Nonsymmetric Macdonald Polynomials via a Path Model with a Pseudo-crystal Structure
Cristian Lenart, Satoshi Naito, Fumihiko Nomoto, Daisuke Sagaki
http://arxiv.org/abs/2210.14590
Sharp estimates for Jacobi heat kernels in conic domains
Dawid Hanrahan, Dariusz Kosz
http://arxiv.org/abs/2210.14776
The small- N series in the zero-dimensional $O(N)$ model: constructive expansions and transseries Dario Benedetti, Razvan Gurau, Hannes Keppler, Davide Lettera
http://arxiv.org/abs/2210.15100
Diffusion orthogonal polynomials in 3-dimensional domains bounded by developable surfaces
S. Yu. Orevkov
http://arxiv.org/abs/2210.15252
A random variable related to the Hurwitz zeta-function with algebraic parameter Masahiro Mine
http://arxiv.org/abs/2210.15321
Mixed moments of the Riemann zeta function
Javier Pliego
http://arxiv.org/abs/2210.15485
A Double Chebyshev Series: Derivation And Evaluation
Robert Reynolds, Allan Stauffer
http://arxiv.org/abs/2210.15618
Two q-operational equations and Hahn polynomials
Gu Jing, Yang DunKun, Bao Qi
http://arxiv.org/abs/2210.16153
The MacWilliams Identity for the Skew Rank Metric
Izzy Friedlander, Thanasis Bouganis, Maximilien Gadouleau
http://arxiv.org/abs/2210.16214
A domain free of the zeros of the partial theta function
Vladimir Petrov Kostov
http://arxiv.org/abs/2210.16605
On orthogonal polynomials with respect to a class of differential operators
Jorge A. Borrego-Morell
http://arxiv.org/abs/2210.16854
Relations of multiple t-values of general level
Zhonghua Li, Zhenlu Wang
http://arxiv.org/abs/2210.17109
Quantum dilogarithm identities arising from the product formula for universal R-matrix of quantum affine algebras
Masaru Sugawara
http://arxiv.org/abs/2210.17182
Landen's trilogarithm functional equation and ℓ-adic Galois multiple polylogarithms
Hiroaki Nakamura, Densuke Shiraishi

Topic \#7 _ OP - SF Net 29.6 _ November 15, 2022

From: OP-SF Net Editors
Subject: Submitting contributions to OP-SF NET and SIAM-OPSF (OP-SF Talk)
To contribute a news item to OP-SF NET, send e-mail to one of the OP-SF Editors howard.cohl@nist.gov, or spost@hawaii.edu.

Contributions to OP-SF NET 30.1 should be sent by January 1, 2023.
OP-SF NET is the electronic newsletter of the SIAM Activity Group on Special Functions and Orthogonal Polynomials (SIAG/OPSF). We disseminate your contributions on anything of interest to the special functions and orthogonal polynomials community. This includes announcements of conferences, forthcoming books, new software, electronic archives, research questions, and job openings as well as news about new appointments, promotions, research visitors, awards and prizes. OPSF Net is transmitted periodically through a post to OP-SF Talk which is currently managed and moderated by Howard Cohl (howard.cohl@nist.gov). Anyone wishing to be included in the mailing list (SIAG/OPSF members and non-members alike) should send an email expressing interest to him. Bonita Saunders also posts the Newsletter through SIAM Engage (SIAG/OPSF) which is received by all SIAG/OPSF members.

OP-SF Talk is a listserv associated with SIAG/OPSF which facilitates communication among members, non-members and friends of the Activity Group. To post an item to the listserv, send e-mail to howard.cohl@nist.gov.

WWW home page of this Activity Group:
http://math.nist.gov/opsf
Information on joining SIAM and this activity group: service@siam.org
The elected Officers of the Activity Group (2020-2022) are:
Peter Alan Clarkson, Chair
Luc Vinet, Vice Chair
Andrei Martínez-Finkelshtein, Program Director
Teresa E. Pérez, Secretary and SIAM Engage (SIAG/OPSF) moderator
The appointed officers are:
Howard Cohl, OP-SF NET co-editor
Sarah Post, OP-SF NET co-editor
Bonita Saunders, Webmaster and SIAM Engage (SIAG/OPSF) moderator

From: OP-SF Net Editors
Subject: Thought of the Month by Paul Halmos
"For a student of mathematics to hear someone talk about mathematics does hardly any more good than for a student of swimming to hear someone talk about swimming. You can't learn swimming technique by having someone tell you where to put your arms and legs; and you can't learn to solve problems by having someone tell you to complete the square or to substitute $\sin u$ for y."

Paul Richard Halmos, Hungarian-American mathematician (1916-2006), "The Problem of Learning to Teach. I. The teaching of problem solving," (Halmos, Moise, Piranian), The American Mathematical Monthly, May 1975, Vol. 82, No. 5, pp. 466-476.

